

2035-7

Conference on Superconductor-Insulator Transitions

18 - 23 May 2009

Tunneling studies in a disordered s-wave superconductor close to the Fermi glass regime

P. Raychaudhuri Tata Institute of Fundamental Research Mumbai India

Tunneling studies on a 3-dimensional disordered s-wave superconductor close to the Fermi Glass regime

Pratap Raychaudhuri Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai.

Collaborators

Madhavi Chand

S P Chockalingam

John Jesudasan

Anand Kamlapure, Mintu Mondal, Archana Mishra, Vivas Bagwe

Vikram Tripathi

Johan Vanacken, Gufei Zhang Leuven

Plan of the talk

Introduction

What is good about NbN (films)? Tuning the disorder with deposition conditions Transport and Hall measurements

S. P. Chockalingam, Madhavi Chand et al., Phys. Rev. B 77, 214503 (2008)

V

Evolution of superconducting properties with disorder Tunneling measurements

S. P. Chockalingam, Madhavi Chand et al., Phys. Rev. B 79, 094509 (2009).

Introduction

Beyond Anderson Theorem

2-dimension T=0

Response to imposed twist

(b)

$$H = -J \sum_{\langle i,j \rangle} \cos(\theta_i - \theta_j)$$

Continuous system

 $H = -\rho_s \int d^3r \left| \nabla \theta \right|^2$

Increasing disorder

Amit Ghosal, Mohit Randeria and Nandini Trivedi, Phys. Rev. Lett. **81**, 3940 (1998) **also** M. V. Feigelman et al., Phys. Rev. Lett. **98**, 027001 (2007).

Superconductor-Insulator Transitions

Can Superconductivity get destroyed by (thermal) phase fluctuations in a 3D disordered film?

Ideal Sample: A disordered superconductor with no intentional source of granularity

3D single crystal / epitaxial thin film with vacancy.

At which level of disorder does this effect manifest itself?

T_c~16K ξ~5nm λ~200nm

NbN Thickness of our films > 50nm

Grows as epitaxial thin film on (100) MgO substrate using reactive magnetron sputtering:

Stability Phase diagram of NbN

Increasing Nb/N₂ ratio in the plasma

Growth Protocols of dc sputtered of NbN films Substrate Temperature: 600^oC, Total Ambient pressure (Ar+N₂): 5mTorr

Carrier density varies by a factor of 5 from 4.77*10²⁸ electrons/m³ to 2.39*10²⁹ electrons/m³

(Electronic) Carrier density

Nb 4d band

Matheiss, PRB 5, 315 (1969)

 $\frac{20}{\left(4.413\times10^{-10}\right)^3} = 2.33\times10^{29} el/m^3$

Nb atoms contribute to the carriers \rightarrow 5 electrons per Nb atom

Face Centered Cubic structure has 4 Nb atoms per unit cell→20 electrons/unit cell

Lattice parameter of the unit cell: a=4.413Å

Electronic Carrier density=

T_c is likely to be primarily governed by carrier density rather than disorder scattering.

$$\sigma_n \propto n$$
 $\sigma_n = \frac{ne^2\tau}{m}$

No significant change in carrier mobility.

"Theoretical value" of n for the stoichiometric compound:

n~2.34*10²⁹ electrons/*m*³

Parameters extracted from free electron theory

Sample Name	$k_{f}(m^{-1})$	v _f (m/s)	<i>l</i> (Å)	B _{c2} (0) (T)	ξ _{GL} (0) (nm)	N(0) (states/m ³ -eV)	k _F l	λ
1-NbN-200	1.80*10 ¹⁰	2.09*106	3.96	14.80	4.72	2.38*10 ²⁸	7.15	1.50
1-NbN-150	1.68*10 ¹⁰	1.95*106	2.91	17.82	4.30	2.23*10 ²⁸	4.90	1.40
1-NbN-100	1.40*10 ¹⁰	1.62*10 ⁶	3.28	17.58	4.33	1.86*10 ²⁸	4.60	1.16
1-NbN-80	$1.37*10^{10}$	1.59*10 ⁶	3.34	16.65	4.45	1.82*10 ²⁸	4.58	1.14
1-NbN-40	1.33*1010	$1.54*10^{6}$	3.04	15.12	4.67	$1.77*10^{28}$	4.05	1.11
2-NbN-25	1.31*10 ¹⁰	1.52*106	2.28	14.79	4.72	1.74*10 ²⁸	2.98	1.09
2-NbN-30	1.24*1010	$1.44*10^{6}$	2.07	13.08	5.02	1.65*10 ²⁸	2.56	1.03

^aN(0)=0.511 states/NbN-eV

APW calculations: 0.54 states/NbN-eV *Matheiss (1969)*

Specific heat: 0.50 states/NbN-eV Geballe (1966)

loffe-Regel disorder parameter:
$$k_F l = \left(\frac{2\pi}{\lambda_{de-Broglie}}\right)^{d}$$

Measure of mean free path as a function of de-Broglie wavelength at Fermi level McMillan theory for strong coupling superconductor

$$T_{c} = \frac{\Theta}{1.45} \exp\left(-\frac{1.04(1+\lambda)}{\lambda - \mu^{*}(1+0.62\lambda)}\right) \quad \lambda = N(0) \frac{\langle g^{2} \rangle}{M\langle \omega^{2} \rangle} = KN(0)$$

 $\lambda \rightarrow$ electron phonon interaction constant $\mu^* \rightarrow$ electron-electron repulsive interaction

μ^{*}=0.13

K depends primarily on lattice properties

$$\ln(T_c) = \ln\left(\frac{\Theta}{1.45}\right) - \frac{1.04(1 + KN(0))}{KN(0) - \mu^*(1 + 0.62KN(0))}$$

Studies on disorder

Measure of disorder: $k_F l$

- The loffe-Regel parameter is calculated from the ρ_n and $R_{\rm H},$ using free electron approximation

Ioffe-Regel (at 17K) parameter varies from 1.36-8.77

Evolution of T_c and ρ_n with $k_F l$

 $k_F l \sim 1.38 - 8.77$

 T_c decreases and ρ_n increases with increase in disorder

Why does the carrier density change with disorder ?

Not accounted for by chemical effects alone

Localization effects?

Evolution of Normal State with disorder

range Hopping:

$$o \sim \exp\left(-\left(\frac{T_0}{T}\right)^{1/4}\right)$$

Anderson Localization

For an Anderson insulator electrical transport takes place through carriers excited over the mobility edge.

Resistivity for an Anderson insulator

$$\frac{0.002}{0.7} = 0.03 \Longrightarrow 3\%$$

The effect of phonons is overshadowed by impurity scattering

Temperature dependence of the Hall resistance

Phenomenological Phase Diagram

Tunneling measurement

Fitting the tunneling spectra

$$N_{s}(E) = \operatorname{Re}\left\{\frac{E - i\Gamma}{\left[\left(E - i\Gamma\right)^{2} - \Delta^{2}\right]^{1/2}}\right\}$$

 Δ : Superconducting energy gap Γ : incorporates all non-thermal sources of broadening: Phase fluctuations, spatial inhomegeneity of Δ

$$G(V) = \frac{dI}{dV}\Big|_{V} = \frac{d}{dV} \left\{ \int_{-\infty}^{\infty} N_{s}(E) N_{n}(E - eV) \left\{ f(E) - f(E - eV) \right\} dE \right\}$$

R. C. Dynes, V. Narayanamurti, and J. P. Garno, Phys. Rev. Lett. 41, 1509 (1978).

Resistance measurement

Tunneling spectra

$T_{c} \sim 7.7 K$ $k_{F} l \sim 1.4$

superconductivity

 $T_c \sim 15.6 \text{K} \quad k_F l \sim 6.5$

Small increase in Γ due to ph induced recombination of el and hole like quasiparticles:

R. C. Dynes, V. Narayanamurti, and J. P. Garno, <u>Phys. Rev. Lett. **41**</u>, <u>1509 (1978)</u>.

 $T_c \sim 14.9 \text{K} k_F l \sim 6$

Temperature dependence of Δ and Γ

Pseudogap state above T_c?

 $2\Delta/k_{\rm B}T_{\rm c}$

Measure of electron-phonon coupling strength within "mean field" theories of superconductivity.

Disorder

NbN 21 Fermi Pseudogap Anderson Insulator 18 Glass 15 €¹² ⊢ 9 Superconductor 6 Δ (T) vanishes at T_c 0 2 8 3 7 9 4 5 6 1 ∆(T)≠0 a T_c $k_{\rm F} l$ (at 17K) 1.0

state?

1.6

Connection with BEC

Disorder