

2035-11

Conference on Superconductor-Insulator Transitions

18 - 23 May 2009

Spin effects near the superconductor-insulator transition in ultra-thin A1 and Be films

P. Adams

Louisiana State University

Baton Rouge

USA

Spin Effects Near the Superconductor-Insulator Transition in Ultra-Thin Al and Be Films

Philip W. Adams

Outline:

- 1. Superconductivity and Magnetic Fields
- 2. The Spin-Paramagnetic Transition
- 3. Incoherent pairing in film with $R \ll R_Q$
- 4. Quantum Metallicity in films with $R > R_Q$
- 5. Summary and Future Research

Collaborators:

- •Yimin Xiong
- •Gianluigi Catelani

Wenhao Wu

Vladimir Butko

Hank Wu

Orbital Response of a Superconductor to a Magnetic Field

Normal State

Disk with width $<< \xi$ in a parallel field

Normal State

Superconducting State (no screening currents)

Thin Film Superconductivity in High Parallel Magnetic Fields

Assume magnetic field oriented parallel to superconducting film of thickness $d < \xi_o$ so that there can be no significant orbital response to the applied field.

(Spin-Paramagnetic)

$$B_{c\parallel} \approx \frac{\Delta}{\sqrt{2}\mu_B}$$

$$(g_L = 2)$$

Electron Tunneling and the DOS

Tunneling Conductance: $G(V) \propto N_1 N_2$ (kT << eV, Δ)

Sample Geometry

Be: $T_c = 0.026 \text{ K (bulk)}$ $T_c \sim 0.6 \text{ K (quenched film)}$ barrier type oxide BeO g-factor=2; $E_z = 2\mu_B B_{\parallel}$ Al: $T_c = 1.1 \text{ K (bulk)}$ $T_c = 2.7 \text{ K (quenched film)}$ barrier type oxide Al_2O_3 g-factor $\sim 1.8^*$; $E_z \sim 1.8 \mu_B B_{\parallel}$

Spin Paramagnetic Phase Diagram in Al Films

DoS at Fermi Energy

N: normal state

SM: state memory coexistance

S: superconducting phase

Superconducting spectrum

"Normal state" spectrum

Reentrance in Tunneling DoS

Pairing Resonance

Aleiner and Altshuler, PRL 79, 4242 (1997)

Extracting Superconducting Parameters From PR

Catelani et al., arXiv:0905.2414v1

Parameters Extracted From PR Fits

Gap: Δ_{o}

SO:
$$b = \frac{\hbar}{3\tau_{so}\Delta_{o}}$$

SO:
$$b = \frac{\hbar}{3\tau_{so}\Delta_o}$$

Orbital: $c = \frac{De^2t^3\Delta_o}{8l_o\mu_B^2\hbar}$

FL Parameter: G⁰

Note:
$$E_z = \frac{2\mu_B H}{1 + G^0}$$
 $H_c^{CC} = \frac{\Delta_o \sqrt{1 + G^o}}{\sqrt{2}\mu_B}$

S-I Insulator Transition from the perspective of the PR

Can the PR survive the zero-field S-I transition, and, if so, does film morphology matter?

Al/AlO_x/FM Tunnel Junctions and Electron Polarization

Ferromagnetic Carbides: CNi₃, CCo₃, CFe₃

The magnetic properties of these films are very similar to that of pure Ni, Co, and Fe films.

Al-CNi₃ Tunneling Spectra 1.5 Tedrow and Meservey, PRL 26, 192 (1971) SC phase 0.5 H_{II} = 4.0 T G(V)/G(4mV) Coexistence region $H_{cll} \sim 6.9 \text{ T}$ 8.0 Pauli-limited Normal State 0.9 -3 -2 -1 0 1 V (mV)

Polarization in a CCo₃ Film

DoS @ Fermi Energy

Quantum Metallicity in Insulating Be Films

Coulomb Gap in High Resistance Be Films

Superconducting Phase of a 3 nm Be Film with R << R_Q

Evolution of Tunneling Density of States with Increasing R

VRH in Film Conductance

Extraordinary MC in VRH Regime

99061a eh/lb

Phase Diagram Assuming No Spin-Orbit

Inducing Spin-Orbit by Dusting with Au

Reduced Critical Field as a Function of Be Thickness

Be films coated with 5 Å of Au.

Assuming that the films are sufficiently thin so that the Zeeman coupling dominates the critical field behavior, we expect

$$\frac{2\mu_B H_{c\parallel}}{\Delta_o} = \sqrt{\frac{3b}{\Delta_o}}$$

Pristine Be films.

Phase Diagram With Spin-Orbit

Summary

- We observe incoherent Cooper pairs in high-field tunneling spectroscopy.
- By fitting PR feature to theory we can determine the gap, the spin-orbit scattering rate, orbital pair breaking parameter, and the anti-symmetric FL parameter G⁰.
- The PR can also be used to determine spin polarization in ferromagnetic films at fields well beyond the parallel critical field.
- High field saturation of MR to R_Q observed in Be, InO_x, and TiN films, all of which undergo a S-I transition.
- The effect of spin-orbit scattering is to greatly increase the characteristic field scale of the quantum metal phase.
- Naively, if localized Cooper pairs exists then spin-orbit scattering will dramatically increase their Zeeman critical field.