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Superconductivity and Coulomb 
interactions

Josephson junction arrays
(Fazio, Schön, …) Insulator  
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Clean, granular systems 

What if there is strong disorder (generic)?

Simply exponential pair transport (see K. Efetov’s talk) 
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At lowest T:

What if there are no pre-structured grains?

CC EE ~δ

Insulator: gap is destroyed a priori no simple activation!

Do “effective grains” form due to the disorder configuration?



SIT in strong disorder:

Localization and delocalization of 
Cooper pairs

in Coulomb disorder

Similar analysis for neutral cold atoms in random disorder 
potentials, see
Falko, Nattermann and Pokrovski (08); Shklovskii (08)



Compensated high Tc materials
K. Segawa and Y. Ando, PRB 74, 100508 (2006)

Doping n-type carriers by La-substitution for Ba

Y1-z Laz (Ba1-xLax)2 Cu3 Oy

Vary p-type doping by 
annealing oxygen content y

n-type doping controlled by x
Ba2+ La3+

y < 6.32 : n-type doping
y = 6.32: fully compensated 
6.32 < y : p-type doping

YBa2Cu3Oy

6.21 < y < 6.95
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Expected phase diagram

No compensation, n = N



Expected phase diagram

Compensation,
N = ND+NA > n = ND+NA



Analysis of the SIT in terms of a 
scaling analysis

-
All numerical prefactors will be 

neglected 



The compensation driven metal-
insulator transition (fermions)
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Uncompensated semiconductors (3d): Mott’s criterion
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Overlapping hydrogen-like wavefunctions delocalization

Metal-insulator transition (MIT):

With BCS instability in the metal SIT: 1~3
MIT
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The compensation driven metal-
insulator transition (fermions)

Metal-Insulator transition in strongly 
compensated semiconductors
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Non-trivial regime:
Heavy doping

AD NNN +=

Most carriers are captured by doping ions  
Excess carriers in the conduction band:

Delocalization transition upon tuning n:

Strong disorder from N random charged impurities!

Nn <<→ MIT  

NNNn DA <<−=
Experimentally 

confirmed in 
compensated Ge



MIT: Derivation
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Random charge density in volume Rd :

1. Non-linear screening of the disorder

Non-linear screening scale Rs:

Roughness of the disorder potential:

Efros and Shklovskii (1971)

mnEF /~ 3/22
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2. Delocalization condition
Fermi energy of excess carriers:

Delocalization if disorder is weak enough:
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Na
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1    1 33  Na NRs >>↔>>Consistency condition for scaling analysis:



Droplets in the insulator
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MITnn <In the insulator: 

Small droplets (Fermi lakes in the 
deepest wells) of size Rq < Rs ! 

Typical size of the droplets:

( ) )()/( Cb
2/13

qq ReVRNn ==µ

Transport: Variable range hopping between the droplets!
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Compensated superconductors 
with preformed pairs

Assume strong coupling mechanism (“glue”)
preformed Cooper pairs of size 

(finite pairing energy Epair - no nodal quasiparticles) 

13 =ξn

• How do bosons modify non-linear screening and delocalization?

• How does the BEC-BCS crossover manifest itself?

• What is the transport on the insulating side?

Possible systems with preformed pairs: 
• Underdoped high Tc materials
• Bipolarons
• [Anderson pseudospins (doubly occupied localized wavefunctions)]



BEC – BCS crossover

1~3ξn

• For                       the transition remains the same as with fermions

• Distinctly “bosonic” behavior occurs at the SIT when

?)(SIT =Nn
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BEC – BCS crossover : 

a        13
SIT <↔< ξξn

Needed: small pairs, large Bohr radii



BEC regime – 3d SC
1. Nonlinear screening with (2e)’s instead of e’s, but otherwise no difference
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3/2~ Nn
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2. Very low density

Energy of confinement to screening volume: 
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Delocalization of the BEC condensate:

5/4~ Nn



BEC regime – 3d SC
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1. Nonlinear screening with (2e)’s instead of 1e’s, but otherwise no difference

3. Chemical potential for bosons:
Bose gas with scattering length 
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4. Bose delocalization criterion:

2/1~ Nn

3/2~ Nn
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The Bose insulator
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SITnn <In the insulator: 

Small droplets (boson lakes in the 
deepest wells) of size Rq < Rs ! 

Typical size of the droplets:
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BEC regime:

Nature of the ground state
Level spacing in a droplet (±1e): qq ReRdnd /  ) /(~ 2

!
3 =µδ

Pair-breaking energy:  22
pair /~ ξmE 

Breaking pairs is unfavorable, all electrons are paired!
Single electron excitations are gapped!

δ>→ pairE

a<ξBEC:  



Properties of the insulator

• At low T: Variable range hopping of pairs between droplets!
• In the BEC regime (strong coupling, small pairs) : always 2e-transport 
• In the BCS regime (weak coupling): 1e-transport when Δ < δ.   
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• Single particle gap
• SC spectrum of small droplets (and corresponding coherence peaks)

Tunneling

Transport



Layered superconductors
Examples: Cuprates (CuO compounds), pnictides (FeAs compounds) 

Differences 2d vs. 3d:

1. Nonlinear screening is 
modified when d > Rs ; need to 
account for anisotropic dielectric 
constant

2. Delocalization criterion:

d : Distance between layers 
hosting the carriers

( ) ( ) ( )nd
nE

ndm
ndn F

22

2

BEC 2D, /1log
)(

/1log ξξ
µ ==


Only extra log at the BCS-BEC crossover!
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SIT Phase diagram – 2D
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crossover



SIT Phase diagram – 2D



Applicability to high Tc ?
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Condition for the SI transition to occur in the BEC regime:

Parameters for typical underdoped high Tc’s:

Y1-z Laz (Ba1-xLax)2 Cu3 Oy Segawa & Ando

BaFeCoKAs (Co donor, K acceptor) D. Canfield

Candidate systems:

nm21−≈typξ
A54~a   :BSCCO − At the border of 

BEC-BCS 
crossover



BEC-regime in bipolarons
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Condition for the SI transition to occur in the BEC regime:

• Electron-phonon coupling: α > αc = 2.9  (in 2d)

• Ratio between electronic and static dielectric constant:
η = κel/κ needs to be η >> 1 :

1   ~  
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ξ
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Two independent parameters:



Summary
• SIT in the presence of strong Coulomb disorder:

Delocalization of preformed pairs in a self-consistently 
screened disorder potential

• Non-linear screening is less efficient with bosons
(exclusion principle less effective in BEC regime)

• Low T transport in the insulator in the BEC regime is 
always dominated by pairs

)()( fermions
SIT

bosons
SIT nn >


