

2035-21

Conference on Superconductor-Insulator Transitions

18 - 23 May 2009

Glassiness in insulating granular aluminum thin films

T. Grenet

LEPES - CNR

Grenoble

France

Glassiness in insulating granular Al thin films

Thierry Grenet, Julien Delahaye, Frédéric Gay, Maher Sabra

Institut Néel, CNRS Grenoble (France)

OUTLINE

- how it started
- some aspects of the « glassiness » in granular Al
- is ageing present ? (is it a glass ?)
- is it an electron glass?

Electron Coulomb glass?

J. H. Davies, P. A. Lee and T. Rice (1982):

localized electrons + unscreened coulomb repulsion → highly correlated → new glass (finite T glass transition?)

Ben Chorin et Ovadyahu (1991): anomalous field effect and very slow relaxation of conductance in insulating indium oxide

Manifestation of the electron (Coulomb ?) glass in indium oxide ...

Indium oxide ... what else?

QUESTIONS:

- What is special with indium oxide ? Why no other system ?
- Standard doped semi-conductors: Ø
- -What about granular metals?
 - → look for these effects in granular Al

actually seen in: granular gold (Adkins et al., 1984)
ultrathin lead (Goldman et al., 1997 and 2001)

OUTLINE

- how it started
- some aspects of the « glassiness » in granular Al
- is ageing present ? (is it a glass?)
- is it an electron glass?

Granular Aluminium samples

Study insulating films:

 R/\Box at 4K: 100 k $\Omega \rightarrow$ 100 G Ω

Out of equilibrium effects

Never ending slow conductance relaxation after a quench

Out of equilibrium effects

R_{\Box} =30M Ω at 4.2K

- Field effect anomaly (the "cusp" or "dip")
- Amplitude grows like Ln(t)

When do we see this anomaly?

- the anomaly is always seen in insulating films
- it is most prominent (in %):
 - → at low T (most measurements at 4K)
 - → in more insulating samples

- for practical reasons we study samples were the anomaly is not so large ($\leq 1\%$) but it can be a large effect

Cusp dynamics

Recall: after a cooling

After a gate voltage change:

Formation of a new dip and erasure of the old one:

 $\Rightarrow \Delta G \sim -\ln t$? but see later ...

Is the dynamics activated?

Is the dynamics accelerated when T is increased? (it would explain why the dip becomes very faint)

But how to detect a change of the dynamics if it has no characteristic time?

→ look at the erasure time of a previously formed dip

Is the dynamics activated?

 \Rightarrow dynamics is not activated

Electron Coulomb glass interpretation

Electron Coulomb glass model

Fixed gate voltage Vg=0: system proceeds slowly to the equilibrium state (of minimum conductance)

After fast gate voltage change: system in a highly excited state (higher conductance)

OUTLINE

- how it started
- some aspects of the « glassiness » in granular Al
- is ageing present ? (is it a glass?)
- is it an electron glass?

If it is a glass ... does it age?

AGEING:

Ex: creep tests on polymers

The dynamics depends on time: the « older » the system, the slower the response to a stimulus! Creep compliance (t) = ε (t) / σ_0

PVC quenched from 90°C to 40°C (T_g =80°C) L.C.E Struik, 1978

« Two dip » versus « ageing protocol

« Two dips » protocol

Standard « ageing » protocol

Two dip protocol: full « ageing »?

« Two dips » protocol

t/t_w scaling = « full ageing » ?

... it does not demonstrate ageing

A simple model can reproduce the data:

- -collection of independant reversible« degrees of freedom » (e.g. polarisable TLS)
- additive effect on G
- tunnel \rightarrow Ln(τ_i) has a broad (flat) distribution

Then:

$$\Delta G(t < t_w) = -\Delta G_0 \sum_{i} (1 - \exp(-\frac{t}{\tau_i}))$$

$$\Delta G(t > t_w) = \Delta G_0 \sum_{i} (1 - \exp(-\frac{t_w}{\tau_i})) \exp(-\frac{t - t_w}{t_i})$$

But this is NOT ageing!

Picturial view of the « two dip » protocol

 \ll full scaling $\gg \leftrightarrow t_{end} = t_{w}$: trivial effect!

Standard ageing protocol (1)

New dip growth: NOT like Ln(t) when t_{eq} NOT very large

(i.e. when system has not already aged!)

Standard ageing protocol (2)

the departure from Ln(t) scales with t_{eq}

i.e. «effective» relaxation time distribution depends on the system's age:

Example of spin glasses

The age of the system is printed in its relaxation time distribution

Ageing in the two dip protocol?

Ageing in the two dip protocol

Conclusions about ageing

- In very « old » (already aged) samples ageing was hardly visible
- In « young » samples ageing is prominent (and consists in deviations from the « regular » two dip protocol behaviour)
- « old » samples can be rejuvenated e.g. by a moderate higher T excursion or by a large enough V_g change (large perturbations tend to erase any history of the sample) \rightarrow ageing is restarted
- models involving simple degrees of freedom acting in parallel (independently) are ruled out, we have a glassy behaviour in a strict sense

OUTLINE

- how it started
- some aspects of the « glassiness » in granular Al
- is ageing present ? (is it a glass?)
- is it an electron glass?

- competing « extrinsic » (non electronic) scenarios have been envisaged (slow atomic or ionic processes influencing the conductance)
- what are the indications in favor of the coulomb electron glass?
- 1) a good indication in Indium oxide: effect of carrier concentration

The closer the carriers are from each other, the more correlated they are (consistent with coulomb glass)

- 2) slow relaxation in mesoscopic samples :

- mesoscopic fluctuations (fluctuations of percolation path as a function of $\boldsymbol{V}_{\!g})$ and the cusp coexist
- both seem to have very different time scales (disorder seems totally frozen) → may be consistent with electron glass (cusp slow relaxation not due to disorder (atoms) relaxation)

Apparent paradoxes:

- thermal memory of cusp but not of « back-ground » conductance
- very slow electrons even for weakly insulating samples

- 3) systematics in other materials:

Up to now:

- studied in: indium oxide, granular aluminium

- seen in: granular gold, ultra thin Pb on a-Ge

 maybe present in icosahedral insulating quasicrystal i-AlPdRe

All these may be a priori good candidates for the coulomb glass: disordered insulators with high electron concentrations

... and the materials we've heard about in this conference (MoGe etc...) could also be good candidates!

