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Superconductity v/s Localization

* Granular systems with Coulomb interaction
K.Efetov 1980 et al “Bosonic mechanism”

» Coulomb-induced suppression of Tc in
uniform films “Fermionic mechanism”

A.Finkelstein 1987 et al

« Competition of Cooper pairing and

localization (no Coulomb)
Imry-Strongin, Ma-Lee, Kotliar-Kapitulnik, Bulaevsky-Sadovsky(mid-80's)
Ghosal, Randeria, Trivedi 1998-2001

There will be no grains and no Coulomb in this talk !



Plan of the talk

Motivation from experiments
BCS-like theory for critical eigenstates

- transition temperature
- local order parameter

Superconductivity with pseudogap
- transition temperature v/s pseudogap

- tunnelling conductance

- spectral weight

. Conclusions and open problems



Major exp. data calling for a new theory

» Activated resistivity s 5

in insulating a-InO,
D.Shahar-Z.Ovadyahu 1992,
V.Gantmakher et al 1996

T, = 3-15K
* Local tunnelling data

B.Sacepe et al 2007-8

o /B (LA/TK)

* Nernst effect above T,
P.Spathis, H.Aubin et al 2008




Class of relevant materials

 Amorphously disordered
(no structural grains)
* Low carrier density
(around 10%' cm at low temp.)

Examples:

INO, NDbN, thick films or bulk (+ B-doped Diamond?)
TIN thinfims  Be, Bi (ultra thin films)



Phase Diagram

Mott-law
Insulator

Hard Gap
Insulator

Disorder



Theoretical model

Simplest BCS attraction model,

but for critical (or weakly)
localized electrons

Hy - g dor W19 19 W,

H

Y =2 Cj LPJ' (r) Basis of localized eigenfunctions

M.Ma andP.Lee (1985):  S-| transitionat o= T,



Superconductivity at the
Localization Threshold: T, >> 9,

Now we will consider the case of Fermi energy
very close to the mobility edge:

single-electron states are extended fractal
populate small fraction of the whole volume

How BCS theory should be modified to account

for eigenstate’s fractality ?

Method: combination of analitic theory and numerical
data for Anderson mobility edge model



Mean-Field Eq. for T,

A(r) =ffi';r-|{r, A )% (9]
where kernel Ii’-;- 18 equal to
, ) = tanh £ + tanh 2 o
Kp(r,r') = Evn,zj. i 3 L (o0 () (7 () (10)

Standard averaging over space A(r) = A leads to " Anderson theorem™ result: totally
incorrect in the present situation.
The reason: critical eigenstates y;(r) are strongly correlated in real 3D space, they fill

some small submanifold of the whole space only.



In fact one should define T, as the divergence temperature of the Cooper ladder
2w =1
€= [:1 _ .I-.:)

Thus averaging procedure should be applied to C instead of K

We expand C in powers of K and average over disorder realizations. Keeping main
sequence of resulting diagramms only, we come to the following equation for determination
of T,

%)= % f dg'm};fwhf(f—E')@(E') i)



M(w)=VM; = fﬂ",-ﬂ{rjth:?{r}ddr for | =& =w

For critical elgenstates

one finds

where

is a measure of fractality

Usual "dirty superconductor™:

3D Anderson model:

Lige = o0

Mw) =1

y = 0.57

T=10

D, =1.3

in 3D



1 1 | |
by EF=E-.':|. L=
.. ]
ol |
L |
. |
e “oal g il.S-EE\\
10° F -l' 1}y = 1.787 |
iy
] :Lﬂ':ﬂ [iLe ] Al
—
=)
o
O
=
10' | -

30 Gauss, W=4 Ef“"'ﬁ' n'.-:l=l:|.5

k]

10 10" 107 10° 10" 10

FIG. 2: (Color online) Correlation function M(w) for 3DAM
with Guassian disorder and lattice sizes L = 10, 14, 20 at the
mobility edge E = 5.5 (red, blue and black points) and at
the energy E = 8 inside localized band (green points). Inset
shows < values for L = 10.12.14.16.20.



Modified mean-field approximation
for critical temperature T,

A

A€ =5 [ QM€ - A

i =0 = & Ftanh(&;/2T)

*
b

T\, ~) = EoAY 7 C ()

i

For small )\ this T, is higher than BCS value !

arxiv:0810.2915 Y.Yanase & N.Yorozu: T, for doped diamond, Si and SiC



Numerical solution of MMFA
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FIG. 13: Functional dependence A(£) for T' = T¢ at v = 0.57.



Virial expansion method

(A.Larkin & D.Khmelnitsky 1970)
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T, from 3 different calculations

Modified MFA equation
leads to:

FIG. 16: Ratio 2A(0)/T. as function of .
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Order parameter in real space

A g . -
Alr) = E Z}: ﬂu;?}‘,i;'ﬂ-’ﬁ[l’j

.?}?'_ = N — g:l t-;-l.ll]l(:f.i/QT) AA |:> i(g) for ?’ = ?’k

*
b

CaC

(A(r))? = Y ff:fdr&.%rj = Shf dén(E)AZ(€)
0

ﬂ 1 : = _
A(r) = ﬁ/ddmm =Aj dén(E)AL(E)
0



Fluctuations of SC order parameter

With Prob =p <<1 A(r)=A , otherwise A(r)=0 /=>

- 2
: ;"hI::I‘)) O QIIH'II T-: ! ~ 1
SC fraction = A2 = A7) = C () (E_g) &

prefactor =1.7 for y = 0.57

Alr
Higher moments: ( j - (T EEﬂjil—dnﬁd}[n—lj
. ¢

(A(r))"

(P,) ~ ¢p—(d=dg)(q=1) 1 —dq(q—1) | —dq(q—1)



Tunnelling DoS

vie,r) = EE (1 + ‘ETJ) [6(z — =;) o=+ _’j-}] i:;'*fhj &) = g
, :

G_sc-10.eps
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Asymmetry FIG. 23: Average zero-temperature density of states for t
critial 3DAM solution (full line) together with BCS dens

of states with the same gap value (dashed line).

Vao(e,r) = 5(v(e,r)—v(—e,1).

36

(et = i (v( )2 ) [M(0) — M(2£(2)))



Neglected : off-diagonal terms

Maus = [ e ()05 (0 ().
Non-pair-wise terms with 3 or 4 different eigenstates were omitted

To estimate the accuracy we derived effective Ginzburg-
Landau functional taking these terms into account

F[¥(r)] defined in terms of an envelope function

U(r) = A(r)/A(r) Aw) =5 Aum ()
k

For[¥(r)] = veT? f dr (a.r;rplr?[;r) + gwm + c‘rwar[;rn?)

. B W2
L C3veT. )2 : Glg ~ o3 1




Superconductivity at the Mobillity
Edge: major features

- Critical temperature T, is well-defined through
the whole system in spite of strong A(r)
fluctuations

- Local DoS strongly fluctuates in real space; it
results in asymmetric tunnel conductance

G(V,r) # G(-V,r)

- Both thermal (Gi) and mesoscopic (Giy)
fluctuational parameters of the GL functional are
of order unity



Superconductivity with Pseudogap

Now we move Fermi-level into the
range of localized eigenstates

Local pairing in addition to
collective pairing



Local pairing energy

1. Parity gap in ultrasmall grains
K. Matveev and A. Larkin 1997

A < & no many-body correlations

%P.: %)\5 Ar = A/ (1 = Xlog(eg/d)). Ap

B )
21n %




2. Parity gap for Anderson-
localized eigenstates

The increase of thermodynamic potential €2 due to ad-
dition of odd electron to the ground-state is

690& — £ﬂ1+1 — £ﬂ1-|-1 _ gm—l—l + gﬂ_'-'“?’1‘|‘1 —
9, —1
- _*ﬂ"{ﬂl—l—l - O(]/ )
& =& —5M; 2

Energy of two single-particle excitations due to depairing:

2‘&-P — g’m-l—l — sm - gﬂ“irﬂt — %(ﬂfﬂl - *ﬁ’f‘rﬂb—i—l) T O(V_l)

3 . .. 3) E.— Ep\"*&
(M) = 3¢—(d—d2) [~ Ap = g0t e/ t) :zE”( Eo

loc



P(M) distribution

PDeltaPnor2.eps
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Activation energy T, from Shahar-
Ovadyahu exp. and fit to theory

|
0.05

|
0.10

| I |
0.15 0.20

G"'(kFD(au)

|
0.25

|
0.30

| The fit was obtained with

single fitting parameter
A~ D.SAEQ

Example of consistent choice:

\ =0.05 Eo =a00K



Tunnelling conductance
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FI1. 30: (Color online ) Ensemble-averaged tunneling condue-
tance, Eq.(176), for several values of temperature below the

typ

typical local gap AFSF.



Critical temperature in the
pseudogap regime

MFA:

Me) =3 [ don(©)M(E - A0

Take the same 1), = 7);; = & ! tanh(&; /27)

but use M(w) specific for localized states

d

is large
loc g

MFA is good as far as Z ~ vol.L



Correlation function  M(w)

N by ..EF:E-.{I, L=20)

" wat No saturation at w <9, :
3 ‘\ M(w) ~ In2 (3, / w)

.l (Cuevas & Kravtsov 1997)

Superconductivity with
Tc <9, is possible

NC(w)

1 This region was not found
previously

Here “local gap”
30 Gauss, W=4, Etrﬁ.ﬁ. n'.-:F':l.ﬁ
, , . . exceeds SC gap :
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FIG. 2: (Color online) Correlation function M {w) for 3DAM
with Guassian disorder and lattice sizes I = 10, 14, 20 at the
mobility edge E = 5.5 (red, blue and black points) and at
the energy E' = 8 inside localized band (green points). Inset
shows -« values for L = 10.12.14.16.20.



Critical temperature in the
pseudogap regime

Me) =3 [ don(©)M(E - A0

) i = Nii = 5: ! t-z-l-]l]l(:f.i / QT):

We need to estimate L o~ rvod,. LEDL
R, ~ 2L, In % > Lioe 2 s re: M

R? =
: ZJ M,

T It is nearly constant in a s
very broad range of _~ oL

oL ? T.

Zeg = voT.Ry =




Virial expansion results:

1. versus Pseudogap
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FIG. 25: (Color online) Virial expansion results for T, (red
points) and typical pseudogap Ap  (black) as functions of Er.
The model with fixed value of the attraction coupling constant
g = 1.7 was used; pairing susceptibilities were calculated using
equations derived in Appendix B.
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FIG. 26: {Color online) Virial results for T, (red points), typi-
cal psendogap A p (black) and the corresponding level spacing
dr (green), as functions of Er on semi-logarithmic scale.

Transition exists even at o, >> T,



Single-electron states suppressed by pseudogap

'.Psw.fo Spia represewtafion }7= ;2}}. Si -3%%‘“ S':S;-+
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“Pseudospin” approximation

/o~ i'#"DTch Effective number of interacting neighbours

loc



Third Scenario

* Bosonic mechanism: preformed Cooper pairs +
competition Josephson v/s Coulomb — S| T in arrays

* Fermionic mechanism: suppressed Cooper attraction,
no paring—S M T

* Pseudospin mechanism: individually localized pairs
- S| T inamorphous media, fractal superconductivity
SIT occurs at small Z and lead to paired insulator



Average tunnelling conductance
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FIG. 31: (Color online) Ensemble-averaged tunneling DoS,
Eq.(181), for several values of temperature much below the
value of superconductive gap Ag. The latter is related to the
typical local gap ARF as Ap = 0.5ARF,
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FIG. 32: (Color online) Average tunnelling conductance in
superconductive state, for several values of temperature much
below the value of superconductive gap Ag = 0.5A%F.



Strong local pseudogap above T.:
experiment B.Sacepe et al

G(V) [a.u]

At T=Tc - almost fully developed gap but no coherence peak



Full Spectral Weight K(T)

KM =]2dwowT) Q<A

is usually (BCS) const across T. :
contributions from superconductive
response and from
cancel each other

Not valid for underdoped HTSC

K(T) Experiment:

D.Basov et al 1994

— Theory:
TNl S L.loffe & A.Millis 1999




Full Spectral Weight K(T)

E ﬂm-:l.r
K(T) = = [ Ro(w.T)dw+pu(T) = K(D)-+pu(D)
0
K2l.) - K(T.) 1. & 1 K({T.) gMy 1
H':T-t:' Ap - p,_,I:[I:I - I‘: N EE'EF

Him - HEDJ s

2
Ktot(T)A\ /




Qualitative features of
"Pseudogaped Superconductivity™:

« STM DoS evolution with T

* Nonconservation of full spectral
weight across T,

» Anomalous Nernst effect above T,



Nernst coeff. in a-InOx
P.Spathis, H. Aubin et al 2007

107 ¢ ' 7, ™1
; Dﬂ% —0— a_/B (B0)
107 o /B (USH)
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= 10 : 1 HTSC
[
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No way to describe InO, data by Gaussian fluctuations contrary to NbSi
case: M.Serbyn et al, Phys.Rev.Lett. 102, 067001 (2009)
K.Michaeli and A.Finkelstein arxiv:0902.2732

“Phase fluctuations” ? Where the amplitude comes from ?



S-1 Transition

* Hamiltonian of the pseudospin array:
_E: _Z E: I A Yy _uy
] i]

7 ~ voT.L¢

loc

At Z << 1 Insulating state is realized: localized pairs

How to desribe quantum phase transition ?

See talk by Lev loffe
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FIG. 25: {Color online) Virial expansion results for T,

(red
points) and typieal pseudogap Ap (black) as funetions of Er.
The model with fixed value of the attraction coupling constant
g = 1.7 was used; pairing susceptibilities were calculated using
equations derived in A ppendix B.
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FIG. 26: (Color online) Virial results for T, (red points), typi-
cal psendogap Ap (black) and the corresponding level spacing
8y, {green), as functions of Ep on semi-logarithmic scale.

PT )

FIG. 27: Distribution functions P(T.) obtained with virial
expanstion for different Fermi energies. All values of T, was
obtained here in the pseudospin approximation Ap 5 T.,



Conclusions

 Pairing of electrons on localized states leads to
hard gap and Arrhenius resistivity for 1e transport

« Pairing on nearly-critical states produces fractal
superconductivity with relatively high T, but very
small superconductive density

* Pseudogap behaviour is generic near
S-1 transition, with “insulating gap” exceeding T,



Major unsolved problems (theor)

1. Role of Coulomb enchancement near mobility
edge ? (this effect was treated by Finkelstein for
metal thin-film case)

2. How to include magnetic field into the “fractal”
scheme ?

3. Transition between pseudogap SC and
insulator. ' Why Cooper pair transport is
activated ?

4. Rectangular gap in local tunnelling ?
5. Size-dependence of SIT (Kowal-Ovadyahu 2007)



