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Strongly disordered magnets and 
superconductors.

1. Very brief summary of common theoretical models (aka preconceived ideas). 
2. Experimental evidence: disordered films versus Josephson arrays.  
3. Summary: plausible and implausible models for the SI transition in disordered films
4. Bethe lattice model and its solution: qualitative picture of the SI transition. 
5. Conclusions. 
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Alternative scenarios of 
superconductor-insulator transitions

• Fermi model (suppression of fermion pairing 
by Coulomb interaction. 

• Bose model (preformed Cooper pairs)
Competition between Coulomb repulsion and Cooper pair 
hopping

Competition between disorder and Cooper pair hopping



Fermionic model of superconductor-
insulator transition

• Disorder increases Coulomb interaction and thus decreases the pairing 
interaction (sum of Coulomb and phonon attraction). In perturbation 
theory:
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If ( D)<0 – attraction is gone and superconductivity disappears (Finkelstein 1987)

No reason for ‘superconducting’ gap above Tc sensitive to magnetic fields. 



Bose model (preformed Cooper pairs)

• Competition between Coulomb repulsion and Cooper pair hopping:

Duality charge-vortex: both charge-charge and vortex-vortex interaction 
are Log(R) in 2D. 

Vortex motion generates voltage: V= 0 jV
Charge motion generates current: I=2e jc
At the self-dual point the currents are equal Q=V/I=h/(2e)2=6.5k .

M. Fisher 1990
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In superconducting films have cores 

Josephson arrays (no vortex cores) 



Superconductor-Insulator: 
experimental evidence

First look: critical behavior as 
predicted by boson duality  
(Haviland, Liu, Goldman 1989, 1991)

Quantum critical behavior as a function of
magnetic field (Kapitulnik 2008).
Activation dependence of the resistance
above transition are difficult to reconcile
with fermionic scenario.



Superconductor-Insulator: 
experimental evidence

Direct evidence for the gap above the transition (Chapelier, 
Sacepe). Activation behavior does not show  gap suppression at 
the critical point as a function of the disorder (Sahar, Ovaduyahu, 
1992)!

If duality arguments are correct, the transport close to 
the transition is carried by Cooper pairs/vortices with 
very small gap



Superconductor-Insulator: 
experimental evidence

First look: critical behavior as predicted by boson 
duality  (Haviland, Liu, Goldman 1989, 1991)

If duality arguments are correct, the same behavior 
should be observed in Josephson arrays…

At zero field simple Josephson arrays
show roughly the critical behavior.
However, the critical R is not
universal. (Zant and Mooji, 1996)
and critical value of EJ/Ec differs.



Superconductor-Insulator: 
experimental evidence

If Josephson/Coulomb model is correct, the same 
behavior should be observed in Josephson arrays…

At non-zero field simple Josephson
arrays show temperature independent
resistance with values that change by
orders of magnitude. (Zant and Mooji,
1996)

Disordered films (Kapitulnik)
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Superconductor-Insulator: 
experimental evidence

If Josephson/Coulomb model is correct, the same 
behavior should be observed in Josephson arrays… 

BUT IT IS NOT

At non-zero field Josephson arrays of
more complex (dice) geometry show
temperature independent resistance
in a wide range of EJ/Ec. (Pannetier
and Serret 2002)

Disordered films (Kapitulnik)



Josephson Arrays
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Josephson Arrays
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More realistic Hamiltonian:
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 - capacitance matrix   - Josephson energy 

( ) - induced charge (static and fluctuating)
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( ) - static flux due to area scatter and flux noise
( ) - static scatter of Josephson energies and their time dependent

fluctuations.  
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Films vs Arrays: summary

• Fermionic mechanism of superconductor-insulator transition is not
a likely scenario for most disordered films displaying SI (InO, TiN)

• Quantum critical point behavior is not observed in magnetic field
behavior in Josephson arrays (where it was actually expected).
Instead there is a wide regime of T-independent resistance that
varies in value by many orders.

• Quantum critical behavior is observed in films.

Conclusion:
Superconductor-insulator transition is not driven by Coulomb vs.

Josephson competition.



Bose model (preformed Cooper pairs)
• Competition between Cooper pairing and disorder, i.e. no Coulomb 

interaction. (Ma and Lee, 1985, Kapitulnik and Kotliar 1985)
Potential disorder does not affect the superconductivity provided that 
Tc » L=1/ o

D – level spacing in the volume of localization.

For  Tc « L« D local pairing is still possible leading to parity gap:
all low lying excitations are Cooper pairs localized in fractal eigenstates of 
localization problem (Feigelman, Kravtsov and others). 

Superconductor-insulator transition happens when boson hopping Mij
between these states is comparable to the spread of the individual 
energies. Model Hamiltonian: 
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In the insulating phase the transport is via Cooper pair hopping. What is the gap? 



Why no Coulomb? 
• Speculation: large screening by electrons  away  but close to the Fermi surface (i.e. large 

dielectric constant of the host insulator)  

Density of states of TiN clusters (V. Anisimov)

Large DOS close to Fermi energy

Unstable Fermi level position (similar to Efros-Shklovski)



Toy model of superconductor-insulator transition 
driven by disorder with purely attractive interaction 

and strong preformed pairing.  

• In the basis of exact single particle states . Close to insulator-metal 
transition localized single particle states are large and have many overlaps. 

• Leave out single particle states (spin representation):

• What general properties of the quantum transition in the models in 
random field? Applies also to strongly disordered magnets (paramagnet-
ferromagnet transition).   
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Toy model of superconductor-insulator transition 
driven by disorder with purely attractive interaction 

and strong preformed pairing.  

• Because number of neighbors is large the loops can be neglected. The model
on Bethe lattice is believed to reproduce the main features of the transition
and phases on both sides (formally we ignore small 1/Z effects but keep
1/Log(Z):
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Toy model of superconductor-insulator transition 
driven by disorder with purely attractive interaction 

and strong preformed pairing.  

• Because number of neighbors is large the loops can be neglected. The model
on Bethe lattice is believed to reproduce the main features of the transition
and phases on both sides (formally we ignore small 1/Z effects but keep
1/Log(Z):
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Questions to ask (“ask me no questions, i'll give 'ee no lies”):
• Nature of the phases on both sides of the transition at T=0: what are the

main properties of the disordered phase?
a. Homogeneity of the ordered phase.
b. Local level broadening in the disordered phase.
c. Critical value of g.

• Temperature dependence of the transition in the vicinity of T=0 (phase
diagram).



Model solution 1: cavity equations.
Main idea: cavity equations. 
Introduce effective field that simulates the effect of spins at higher levels:
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Roughly  - this approximation is sufficient to get the transition temperature to O(1/K): 
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If averaged over uniform distribution of we get usual BCS-like equation: 

2 2

2 2
0

Tanh hd hh g
Th

that tells us that Tc >0 for any g>0. 



Model solution 2: equation for Tc.
To find Tc we need to find when infinitely small field applied at the boundary leads to 
large field in the center:
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That is whether Z=exp(fN) with f>0 (“magnet” or “superconductor” ) or f<0 (paramagnet)?

Non-trivial physics is due to the fact that Z is not necessarily self-averaging quantity!
Consider higher moments:
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The moments diverge at T=g/K which becomes higher than ‘average’ Tc=exp(-1/g).



Model solution 3: equation for Tc.
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Z=exp(fN) with f>0 (“magnet” or “superconductor” ) or f<0 (paramagnet, non-supercond)?

Non-trivial physics is due to the fact that Z is not necessarily self-averaging quantity!
For T<g/K Z is not self-averaging and typical Ztyp=expN<f> might be different from <Z>.
Typical lattice shows the transition when <f> > 0. 
To find average <f> use replica trick:
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Solve the problem for n replicas and continue to n=0. Similar problems were solved in 
the context of directed polymer physics (Derrida and Spohn).
Replica symmetric solution (i.e. all replicas are independent) gives the BCS-like result. 
However at low T(g) replica symmetry breaks down.



Model solution 4: equation for Tc in 
one step RSB. 
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Assumption that all paths are 
independent leads the same result 
as before:
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Model solution 5: equation for Tc in 
one step RSB. 
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Phase diagram of Bethe lattice model

Local gap 
develops in rare cases

RS breaking point

Quantum 
critical point

Superconductor
Insulator



Phase diagram of Bethe lattice model

Critical value of the interaction corresponding to quantum critical point.



Properties of the insulating phase.

• Perturbation theory estimate.
Relaxation rate of the central spin with low is due to its coupling 
to the boundary spins: 

which is dominated by the spins with the energies ~g/K. 
1. For g<1 the probability to find one such neighbor is g<1, so 

probability to find the chain of length N of such spins is gN«1. 
2. 1D spin chain can be mapped onto the non-interacting fermions in 

random potential, in this problem all states are localized. 
• Conclusion: all levels retain zero width in the insulating phase at 

T=0. 
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Conclusions

1. Properties of the disordered superconducting films exhibiting SI transition ask for a
different model than Josephson arrays.

2. Good candidate is the model with no Coulomb repulsion (equivalent to magnet in
random field)

3. Solution of magnet in random field on Bethe lattice shows formation of a very
inhomogeneous (non-self averaging) phase at low T close to quantum critical
point.

4. Insulating phase is characterized by zero level width at T=0.


