

The Abdus Salam International Centre for Theoretical Physics

2035-1

Conference on Superconductor-Insulator Transitions

18 - 23 May 2009

Comparsion of superconductor-insulator transitions in different materials

V. Gantmakher Institute of Solid State Physics, RAS Moscow Russian Federation V.F. Gantmakher V.T. Dolgopolov Institute of Solid State Physics RAS 142432 Chernogolovka, Russia

Superconductor – insulator transitions in different materials

Trieste May 2009 **Bureaucratic classification**

- 1. Ultrathin films Bi, Be, Pb, Al, Ga, Ta
- 2. Materials with variable content InO, TiN, NbSi, MoGe, MoSi
- 3. High-T_c superconductors **BiSrCaCuO**, **YBaCuO**, **LaSrCuO**, **NdCeCuO**

Split transition : superconductor – normal metal – insulator

D.J. Bishop, E.G. Spencer, and R.C. Dynes, Solid St. Electron. **28**, 735 (1985)

Let quantum phase transition from superconducting ground state to nonsuperconducting at T = 0 in the disordered media be tuned by some control parameter

> It should be compared with Anderson normal-metal – insulator transition

> > What happens first ?

Variants of the (x,T) – phase diagram

2D

Bureaucratic classification

- 1. Ultrathin films Bi, Be, Pb, Al, Ga, Ta
- 2. Materials with variable content InO, TiN, NbSi, MoGe, MoSi
- 3. High-T_c superconductors **BiSrCaCuO**, **YBaCuO**, **LaSrCuO**, **NdCeCuO**

semiBureaucratic classification

- 1. Ultrathin films Bi, Be, Pb, Al, Ga, Ta
- 2. Materials with variable content InO, TiN, NbSi, MoGe, MoSi
- 3. High-T_c superconductors BiSrCaCuO, YBaCuO, LaSrCuO, NdCeCuO
- 4. Crossover from superconductor normal-metal to superconductor – insulator transition Ta, NbSi, MoGe, MoSi, NdCeCuO

Transitions into "bad" metals

A.Yazdani and A.Kapitulnik (1995) a-MoGe

J. A. Chervenak and J. M. Valles, Jr (2000) Bi/Sb

Ultra thin **Bi** films – transition induced by thickness changes

D.B. Haviland, Y. Liu, A.M. Goldman et al., Phys. Rev. Lett. **62**, 2180 (1989); **81**, 5217 (1998); Phys. Rev. B **47**, 5931 (1993)

TiN films, thickness 5 nm

Ultra thin **Be** films

E. Bielejec and Wenhao Wu, Phys. Rev. Lett. **88**, 206802 (2002)

A. Frydman, Physica C **391**, 189 (2003)

Three different phase transition diagrams

S - I transitions in High- T_c Superconductors

High-T_c superconductivity to arise the complicate anisotropic crystalline field is necessary

J.M. Valles, Jr., A.E. White, K.T Short, R.C. Dynes, J.P.Garno, A.F.J. Levi, M. Anzlowar, and K. Baldwin, Phys. Rev. B **39**, 11599 (1989)

Transition induced by underdoping

B. Beschoten, S. Sadewasser, G. Guntherodt, and C. Quitmann, Phys. Rev. Lett. **77**, 1837 (1996)

Field induced transition

Y. Ando, G.S. Boebinger, A. Passner, T. Kimura, and K. Kishio, Phys. Rev. Lett. **75**, 4662 (1995)

Friedel effect

Q. Li, M. Huecker, G.D. Gu, A.M. Tsvelik, and J.M. Tranquada, Phys. Rev. Lett 99, 067001 (2007)

V.N. Zverev, D.B. Shovkun, I.G. Naumenko, JETP Lett. 68, 332 (1998)

Two possible scenarios

Ultrathin **Bi** films – tunnel measurements

S.-Y. Hsu, J.A. Chervenak, and J.M. Valles, Jr., Phys. Rev. Lett. 75, 132 (1995)

Finite ξ of localized superconducting pairs

M.D. Steward Jr, A. Yin, J.M. Xu, and J.M. Valles Jr, Science **318**, 1273 (2007)

Negative magnetoresistance in InO films

V.F. Gantmakher, M.V. Golubkov, V.T. Dolgopolov, A.A. Shashkin, and G.E. Tsydynzhapov, JETP Lett. **71**, 473 (2000)

$$\boldsymbol{B}_{max} >> \boldsymbol{B}_{c} \qquad n^{1/3} \boldsymbol{a}_{B} \to n^{1/3} \boldsymbol{\xi}$$

G. Sambandamurthy, L.W. Engel, A. Johansson, and D. Shahar, Phys. Rev. Lett. **92**, 107005 (2004)

$$\xi = \xi(B - B_c, \varepsilon(B))$$

