

2036-1

International Workshop: Quantum Chromodynamics from Colliders to Super-High Energy Cosmic Rays

25 - 29 May 2009

The LHC & cosmic/rays physics at the highest'gpgti kgu

David d'Enterria CERN - European Laboratory for Particle Physics Geneva Switzerland The LHC & cosmic-rays physics at the highest energies*

Int. Workshop on QCD from colliders To Super-High-Energy Cosmic Rays

Trieste, May 25 – 29, 2009

David d'Enterria

ICREA, ICCUB – Barcelona

(*) DdE, R.Engel, T.McCauley, T.Pierog: arXiv:0806.0944 [astro-ph]

Overview

- Ultra-High-Energy (UHE) Cosmic-Rays (CR) via extended air-showers
- Cosmic-Ray MCs uncertainties
- LHC forward detectors
- LHC measurements (I): total p-p cross-section
- LHC measurements (II): high-density QCD effects
- LHC measurements (III): forward particle, energy flow

UHE cosmic-rays via extended air-showers (I)

Cosmic-ray spectrum:

Only indirect measurements (EAS) above E_{lab} ~100 TeV using the atmosphere as a "calorimeter"

CR energy & mass determined via hadronic Monte Carlo's:

Primary interactions dominated by forward & soft QCD interactions.

MCs tuned with accelerator data: Uncertain O(10⁶) extrapolations from SppS,Tevatron to GZK limit.

UHE cosmic-rays via extended air-showers (II)

Determination of E,mass of cosmic rays depends on description of primary UHE QCD (p+N,O Fe+N,O) interactions.

Hadronic MCs (QGSJET,DPMJet,Sybill, NEXUS/EPOS ...) tuned with accelerator data

Cosmic-ray MCs: model uncertainties

Wide range of predictions in basic MC ingredients !

Yet, EAS description more robust: x-section & multiplicity partially compensate ...

Cosmic-rays: energy & mass uncertainties

Beyond 10^{17} eV uncertainties in MCs \Rightarrow CR identity & energy.

QGSJET, SIBYLL: UHECR mass is in between p & Fe

EPOS-dev: UHECR mass compatible with pure Fe

Hadronic MCs: Calibration & tuning at the LHC

LHC measurements of forward particle in p-p, p-A, A-A at E_{lab}~100 PeV [CRs: p-Air,α-Air,Fe-Air] will strongly constrain EAS Monte Carlos.

1. LHC forward detectors

LHC experiments: (p_{τ},η) acceptance

Particle production at the LHC over $\Delta \eta \sim 2 \times \ln(\sqrt{s})/m_p \sim 20$

All phase-space virtually covered (1st time in a collider) !

The LHC experiments

The LHC experiments: zoom at IP5

CMS+TOTEM forward detectors

David d'Enterria (ICREA & ICC-UB)

CMS+TOTEM forward detectors

TOTEM-T1,T2 (CSC/GEM telescopes):

Tracking over $3.1 < |\eta| < 4.7, 5.3 < |\eta| < 6.7$

CASTOR (W/Q-fiber calo):

Calorimetry over 5.1 < $|\eta|$ < 6.6

ZDC (W/Q-fiber calo):

Neutral calorimetry for $|\eta| > 8.3$

- **TOTEM** (Si Roman Pots): Proton taggers at ±147, ±220 m
- **FP420** (Si trackers, timing): Proton tracking at ±420 m

The LHC experiments: zoom at IP1

ATLAS forward detectors

- LUCID (Cerenkov Tubes, 17m): Cerenkov hits over 5.4 < |η| < 6.1</p>
- ZDC (W/Q-fiber calo, 140m): Neutral calorimetry over |η| > 8.3
- ALPHA (Sci-Fi RPs): Proton taggers at ±240 m
- FP220,FP420 (Si trackers, timing): Proton tracking at ±220, 420 m

LHC-forward experiment

LHC-f (±140m in ATLAS tunnel): UHECR-oriented detector.

(smallest LHC experiment: ~20 people)

Sci-fiber/W calo + Si-strip detector: n,γ detection for $|\eta| > 8.3$

ATLAS-ZDC will replace LHCf after 1st low-luminosity run.

The LHC experiments: zoom at IP2, IP8

ALICE & LHCb forward detectors

Forward muon spectrometers:

Good capabilities for fwd. heavy-Q, QQ, gauge bosons measurements: (low-x PDFs)

LHC measurements (I): Total p-p cross section

Types of proton-proton collisions

Total cross-sections at the LHC:

 $\sigma_{tot} = \sigma_{el} + \sigma_{in}$

 $\sigma_{in} = \sigma_{parton} + \sigma_{SD} + \sigma_{DD} + \sigma_{DPE}$

~60% of the time a "hard" collision occurs

~25% of the time the protons scatter elastically

~10% of the time single diffraction occurs

~1% of the time double diffraction occurs

~1% of the time central (exclusive) diffraction occurs

Pomeron-induced processes

Diffractive/Elastic scattering is ~40% p-p σ_{tot} at the LHC !
 Proton(s) intact (scattered at low angles: p taggers), rapidity-gap(s):

Total p-p cross section, elastic scattering

- Non-computable from 1st-principles QCD, but ...
- Constrained by fundamental QM relations: Froisart bound, optical th., dispersion relations.
- Extrapolations vary by $\frac{+10}{-20}$ %.

TOTEM goal: ~1% precision

special run/optics: various β^* , low lumi.

Diffractive processes

Soft diffraction (*X* = anything):

- npQCD: gap survival probab., multi-parton ints., total σ

Hard diffraction (X = jets, W's, Z's, Higgs, ...):

- hard processes calculable in pQCD
- detailed info on proton structure: dPDFs & GPDs
- discovery physics (!)

Rich programme accessible with forward detectors & leading proton taggers/trackers

LHC measurements (II): high-density QCD effects

Low-x gluon PDF

- Most of our current knowledge of low-x gluons comes indirectly from F₂ "scaling violations": $\frac{\partial F_2(x,Q^2)}{\partial \ln(Q^2)} \approx \frac{10\alpha_s(Q^2)}{27\pi} xg(x,Q^2)$
- Large uncertainties below x~10⁻² at moderate Q²:

J. Rojo *et al.* arXiv:0808.1231

Low-x PDFs evolution

Q² - DGLAP (k_T -order'd emission): $F_2(Q^2) \sim \alpha_s \ln(Q^2/Q_0^2)^n$, $Q_0^2 \sim 1$ GeV² [LT,coll.factoriz.]

- **X BFKL** (p_L -ordered emission): $F_2(x) \sim \alpha_s \ln(1/x)^n$ [uPDFs, k_T -factoriz.]
- Linear equations single parton radiation/splitting <u>cannot work</u> at low-x

- (i) Too high gluon density: nonlinear gluongluon fusion balances branchings
- (ii) pQCD (collinear & k_T) factorization
 assumptions invalid (HT, no incoherent parton scatt.)
- (iii) Violation of unitarity even for Q²>>Λ²
 (too large perturbative cross-sections)

Low-x in UHE cosmic-rays (p-Air, Fe-Air)

Implications for extended air showers

Low-x PDF at the LHC (proton)

■p-p @ 14 TeV :

(i) At y=0, x=2p_T/ \sqrt{s} ~10⁻³ (domain probed at HERA,Tevatron). Go fwd. for x<10⁻⁴

(ii) Saturation momentum: $Q_s^2 \sim 1 \text{ GeV}^2$ (y=0), 3 GeV² (y=5)

(iii) Very large perturbative cross-sections:

Low-x PDF at the LHC (nucleus)

PbPb @ 5.5 TeV, pPb @ 8.8 TeV:

(i) Very high $\sqrt{s} \Rightarrow$ Bjorken x=2p₁/ \sqrt{s} ~30-45 times lower than AuAu,dAu @ RHIC !

K.Eskola et al. JHEP 0807 (08)102

(ii) Saturation momentum enhanced ($A^{1/3} \sim 6$) : $Q_s^2 \sim [5 \text{ GeV}^2]e^{(0.3y)}$

(iii) Very large perturbative cross-sections.

Example I: Forward jets in CMS (3 < η | < 6.6)

[S.Cerci, DdE arXiv:0812.2665]

■ Forward jets (E_T~20-100 GeV) sensitive to low-x PDFs:

Jets in HF (3< $|\eta|$ <5) probe: $x_2 \sim 10^{-4}$

Jets in CASTOR (5.1<|η|< 6.6): x₂~10⁻⁵

Example II: Forward QQ in ALICE (2.5 $< |\eta| < 4$)

■ J/ψ measurement in μ-spectrometer: xg(x) in the proton at $x_2 \sim 10^{-5}$:

 $d\sigma/dy J/\psi$: NLO CEM w/ varying PDFs

Example III: γ^* ,Z,W in LHCb (2 < η < 5)

Impact of 1 fb⁻¹ LHCb data for forward $\gamma^*(M = 14 \text{ GeV})$, W,Z production on the gluon distribution uncertainty:

■ LHCb: Forward W,Z (lepton) with 1% uncertainty (LHCb note 2007-114) QCD-CRs, Trieste, 25/05/2009 33/41 David d'Enterria (ICREA & ICC-UB)

LHC measurements (III): particle, energy flows

proton-proton @ $\sqrt{s} = 14 \text{ TeV}$

Energy rapidity densities (dE/dη), dominated by soft QCD: underlying event, multi-parton interactions, fragmentation, ...

[full η]

[CASTOR calorimeter region]

DdE, R.Engel, T.McCauley, T.Pierog: arXiv:0806.0944 [astro-ph]

proton-Pb @ $\sqrt{s} = 8.8 \text{ TeV}$

Particle ($dN/d\eta$) & energy ($dE/d\eta$) rapidity densities:

Pb-Pb @ √s = 5.5 TeV

Particle ($dN/d\eta$) & energy ($dE/d\eta$) rapidity densities:

[full η]

DdE, R.Engel, T.McCauley, T.Pierog: arXiv:0806.0944 [astro-ph]

Pb-Pb @ √s = 5.5 TeV

Leading particle (dN/dxF) in ZDCs/LHCf calorimeter region:

DdE, R.Engel, T.McCauley, T.Pierog: arXiv:0806.0944 [astro-ph]

Cosmic-rays "exotic" events

■ E~10¹⁵-10¹⁷ eV cosmic-rays "Centauro" events:

(i) anomalous number of (N~0) electromagnetic secondaries (strangelets"?
(ii) forward "long-flying" (i.e. non-interacting) component (DCCs"?

Figure 2.5: Diagram of the number of hadrons and hadronic energy fraction: Chacaltaya events with the total visible energy greater than 100 TeV [38]: (\circ) Centauro, (\times) Mini-Centauro, (\bullet) others; (\star) C-K [36].

CMS-CASTOR ($|\eta|$ =5-6.6, longitudinal segmentation) aims at this studies.

Summary: forward instrumentation @ LHC

Summary: from LHC-QCD to UHE cosmic-rays

Backup slides

proton-Pb @ $\sqrt{s} = 8.8 \text{ TeV}$

(*) DdE, R.Engel, T.McCauley, T.Pierog: arXiv:0806.0944 [astro-ph]

Example III: Low-p_T charm in ALICE ($|\eta| < 1$)

LHCb: forward open charm/bottom.

Example IV: γ^* in LHCb (2 < η < 5)

Drell-Yan forward μ :

(trigger on low-p muons: p>8GeV, p_T >1GeV)

Sensitive to low-x <u>quark</u> densities

Need to deal with large QCD (& QED) bckgd.

Pomeron-induced processes

Diffract./Elastic scatt. (~40% p-p σ_{tot}): p intact (Roman Pots), rapidity gap(s). Colourless exchange with vacuum quantum-numbers:

- $\succ \sigma_{tot}, \rho$: Test fundamental QM relations (Froisart bound, optical th., dispersion relat)
- Soft diffraction (X = anything): Dominated by soft QCD \rightarrow SD, DPE vs. s, t, M_x provide valuable info of non-perturb. QCD. Contributions to pile-up p-p events.
- Hard diffraction (X = jets, W's, Z's ...): Calculable (in principle) in pQCD → Info on proton structure (dPDFs,GPDs), multi-parton interactions, discovery physics (DPE Higgs, beyond SM)

Hard diffraction

■ Hard diffraction calculable using QCD factorization theorem, e.g. ... ■ Diffractive dijet cross section = dPDF $\otimes \sigma_{parton-parton} \otimes S_{gap-survival}$

- Diffractive PDFs: probability to find a parton of given x under condition that proton stays intact (measured at HERA).
- Gap survival S: probability to fill rapidity gap with hadrons from extra rescatterings

Experimental probes of gluon PDF ($\gamma^{(*)}$ p,pp, $\gamma^{(*)}$ A,AA)

Perturbative processes:

