

2036-9

International Workshop: Quantum Chromodynamics from Colliders to Super-High Energy Cosmic Rays

25 - 29 May 2009

Forward Physics Topics from RHIC to the LHC

Sebastian White

Brookhaven National Laboratory
New York
USA

FORWARD PHYSICS TOPICS FROM RHIC TO THE LHC

Sebastian White, Brookhaven National Lab

TOPICS

- Forward Detectors
- Event Characterization
- Luminosity Determination
- Inclusive forward particle production
- Spin Dependent Asymmetries @ RHIC
- Coherence in EM processes
- Central Exclusive Production at the Higgs scale

PHENIX COVERAGE

forward:

BBC $(3.0 < |\eta| < 3.9)$

(charged)

MPC,ZDC

(calorimeters, neutral)

di-leptons the strong Central arm : $0<|\eta|<0.35$ e-pair Suit---> Muon arm : $1.2<|\eta|<2.4$ μ -pair

PHENIX Zero Degree Calorimeter

Measures large x_F neutrons Large acceptance for "spectator neutrons" in Heavy Ion collisions Shower max. detector for asymmetries

- •Scintillator strip layer (SMD) used to measure pt of neutrons and azimuthal angle
- •no coordinate readout for photons

ATLAS coverage

ATLAS ZDC fully integrated in TDAQ May '09

Tunnel 1-2

- measures high energy gamma and neutral hadrons
- hottest detector at the LHC
- unique in fine gained shower pos'n measurement->direct photon, pi0

pre- and post-irradiated fibers to 28 Gigarad

Tunnel 8-1

8 PMT * 7 time slices in ATLAS L1calo

05/24/09 Sebastian White 6

ATLAS Forward Detector Suite

LUCID: ATLAS LUminosity using Čerenkov Integrating Detector

ALFA: tracker to measure absolute Luminosity for pp by elastic scattering in CNI region to ~3%.

+ Minimum Bias Trigger scintillators (MBTS)

+Beam Conditions Monitor(BCM)

All used in conjunction with ZDC to measure and monitor Luminosity

Event Characterization in HI and pp

- Directed flow in distribution of forward neutrons in Hevy ion collisions defines reaction plane
- L(b) vs. b known a priori $\frac{\int_0^b b' db'}{a''} \Leftrightarrow \%Centrality$
- ZDC neutron multiplicity determines by

in polarized p beam running at PHENIX spin orientation given by ~8% spin dependent asymmetry in n distribution

05/24/09

Sebastian White

Luminosity determination from beam scans: more forward->higher quality

machine based luminosity

$$L = \frac{3f_{rev}\gamma N_b N^2}{2 \varepsilon \beta^*}$$

$$N_b = 56; N = 1 \times 10^9;$$

$$\varepsilon = 15 \text{ to } 40\pi n \text{m};$$

$$\beta^* = 1 - 10 \text{m}$$

horizontal scan determines beam size (lower curve is ZDC)

Absolute Luminosity from physics cross section

A.Baltz &SNW sigma(ZDC)=10.3b ->dL/L~5% w. 4 hrs. of data. Same calculated for LHC.

05/24/09

Inclusive neutron production in PHENIX

p_T acceptance assumes ISR result

Integrated p_T area: $0 < p_T < 0.11x_F \text{ GeV/c}$ at each x_F point.

Cross section consistent with the ISR data; No evidence for violation of x_F scaling at higher energy.

Leading neutrons at RHIC energy are also described by the OPE model. 10

Leading neutron A_N in PHENIX

Future measurement : A_N measurements at various \sqrt{s}

$$x_F = p_L/p_{L(max)} = E_n \cos \theta_n/E_p \sim E_n/E_p$$

 $p_T = E_n \sin \theta_n \sim x_F E_p \theta_n$

- p_T is approximately proportional to the incident proton energy. \rightarrow p_T -dependent A_N
- We have measured finite asymmetries at s=62, 410 and 500 GeV
- We already measured significant A_N in all.

Tuesday, May 26, 2009

Compare to calculated Asymmetry

B.Z. Kopeliovich, I.K. Potashnikov, I. Schmidt and J.Soffer arXiv:0807.1449

- Asymmetry calculated with one pion exchange model.
- calculated asymmetry is smaller than observed.
 - –PHENIX kinematic region : x_F =0.6-0.8, and θ < 2 mrad.
 - –possibly due to other reggeon exchanges. (e.g. a₁ exchange)
 - -testable with neutron p_t dist.

$$\frac{d\sigma}{dp_t^2} \stackrel{?}{?} \rightarrow \frac{1}{(p_t^2 + m_\pi^2)^2}$$

Potential Uses of neutron tagging in ATLAS and PHENIX

neutron tag selects pion component in the proton and hence $\[\frac{1}{d} \]$ application in 2009 PHENIX pp data on W+/- at $\[\sqrt{s} = 500 GeV \]$ ATLAS , PHENIX Drell-Yan

pp-> n+n+X potential measurement of pi+pi+ scattering at high energy

Used throughout in EM interactions of heavy ions. Significant fraction of cross sections include a second (soft) photon exchange which produces a beam energy neutron at 0 degrees. This is needed for triggering.

Other forward inclusive Production

 ATLAS ZDC granularity opens possibility to measure Lambda, Gamma, pi0, etc. at large x_F

EM Production: The Equivalent Photon Approximation

"On the theory of Collisions between Atoms and electrically Charged particles" E.Fermi translated by M.Gallinaro and SNW

$$E_{trans} = \frac{q \times b}{(b^2 + v^2 t^2)^{3/2}}$$

Expand in harmonics:

$$E_{trans} = \sum a_n^2 Cos(\frac{2\pi n \times t}{T})$$

 \Rightarrow A "field of light" with intensity a_n^2 at frequency n/T

For resonant excitation all a_n ineffective except at resonant frequency.

Sebastian White

Cross sections

Equivalent field of light is calculated for each impact parameter.

But Impact parameter unmeasurable (i.e. ~10⁻¹⁰ meters)

->calculate an equivalent radius

$$\pi \rho^2 = 2\pi \int b \times P(b) \times db = \sigma$$

 \rightarrow cross section (σ)

Units:

1 barn= 10^{-24} cm²

1barn/atom->~1 interaction for typical target

05/24/09

Examples:

Gold+Gold->e⁺e⁻+Gold+Gold

= 33,000 barns

Proton-proton Interaction

~0.1 barns

Diffractive Higgs@LHC Sebastian White

=10⁻¹⁴ barn

Other Applications of Equivalent Photon Approximation(1)

- N.Bohr (1914), C. von Weizsacker and E.Williams(1934, generalization to ultrarelativistic case)
- The power of coherence: beamstrahlung in electron-proton colliders(V.Serbo et al. 1996). Coherent radiation off

~10 9 proton bunch (l~ 1cm)

<u>Coherence condition:</u>

EPA(2)

 The effect of coherence is significant in collisions with composite targets

```
    Single photon process
    ->(Z<sub>nucleus</sub>*q<sub>e</sub>)<sup>2</sup>
    Two photon
    ->(Z<sub>nucleus</sub>*q<sub>e</sub>)<sup>4</sup>
```

• The price of coherence is the limit on momentum transfer,

$$\Delta q < hc/(2\pi R_{nucleus})$$
 or $\lambda > target size$

• In high energy (colliding) beams the minimum

$$\Delta$$
q is boosted by $2\gamma_{beam}^2$, where γ =Lorentz factor -> @LHC (2.75 TeraVolt/nucleon, Pb beam):

28 MeV->400 TeV

05/24/09

Sebastian White

EPA(3): Vector meson photoproduction

measures gluon distribution in proton or nucleus

PHENIX low statistics run:

 Quasi-elastic J/Psi + high mass γγ->e⁺e⁻ continuum

 ATLAS will also measure Upsilon with high statistics
 trigger->ee+gap+ZDC

"Central Exclusive Production"

05/24/09

ee pt distribution (Mee> 2GeV)

Comparison to models including incoherent part

PHENIX Run 7 data will increase statistics by 3

could implement recoil neutron cut to select incoherent

extension to forward muons interesting

05/24/09

Sebastian White

21

EPA(4)-mechanisms of beam loss at the LHC

Mutual Coulomb Dissociation(A. Baltz, SNW)

Coherent Pair Production (various)

("photon flux")²

Zq_e

Zq_e

Sepastion venice

"inverse positron annihilation" (Breit-Wheeler)

gamma e+

EPA(5)-Equivalent W Approximation

Dominant Higgs production if M_H ≥ 300 GeV (Dawson):

05/24/09

EPA(6): Measuring the structure of Protons and Nuclei

"Probing Small x parton densities in Ultraperipheral AA and pA

collisions"(Strikman, Vogt, SNW)

Structure 🛱 Distribution of partons(=quarks, gluons) inside proton- similar to EPA

05/24/09

Sebastian White

Coverage with UPC in ATLAS

05/24/09

Inelastic Diffraction

- Glauber (1955)- deuteron "free dissociation"
- Feinberg & Pomeranchuk('56)

Collisionless excitation to unbound n,p

$$d = \sum c_n \Psi_n, \Psi_n = \text{Scattering basis states}$$

Calculated as a correction to deuteron stripping

- Measured in PHENIX
- "Diffraction Dissociation-50 Years Later"-SNW

05/24/09

Sebastian White

PHENIX Measurement of deuteron Dissociation

At RHIC energies electromagnetic dissociation becomes significant part of d+Au->n+p+Au since both calculable -> basis for luminosity of PHENIX dAu data

neutron energy in d+Au->n+p+Au (6% tail from inelastic)

Luminosity @ constant current

Proton diffraction dissociation

• Large coherence peak for λ >R_{proton}

K.Goulianos('83)

- •Observed for p, π ,K, high energy γ 's and nuclei
- • σ ~ $A^{1/3}$ -> peripheral interaction
- •Responsible for K_L regeneration in particle physics

05/24/09

Sebastian White

Diffraction(e-nucleus analogy)

• Diffractive electroproduction

Diffractive Higgs production

05/24/09

non-diffractive

non-diffractive

Sebastian White

The ATLAS detector

- dimensions ~1/2 Notre Dame de Paris
- weight ~ Eiffel tower
- A 100 MegaPixel detector with 40MHz frame rate
 - -(~ 1 million CD's/10sec)
- 80% of pixels in first~ 30 cm.
- Trigger filters data in real time(1GHz->200Hz)
 - –Data reduced to ~7km high stack of CD's/year

05/24/09

Higgs-> $Z^0Z^0+...$ Z^0 ->e+e-, $\mu^+\mu^-$

05/24/09

ATLAS FP : A Search for New Physics Using Forward Proton Detectors

Central Exclusive Dijet @Tevatron

pp->p+JetJet+p

Supports exclusive H⁰ prediction of Khoze, Martin & Ryskin

05/24/09

Sebastian White

Acceptance for Higgs: a) 420+420 b) 420+220

Central Exclusive Higgs Production

Central Exclusive Higgs production pp \rightarrow p H p : >3 fb (SM) $^{\sim}$ 10-100 fb (MSSM)

High Rate (20 MhZ) Very Fast timing (10 Picosecond) critical to the success of CEP Higgs measurement (see e.g. Cox and Pilkington)

a) -> b): pile-up background rejection with ToF system

Fast Timing Principles developed in FP420

- Particles pass through Cerenkov radiator-> prompt light pulse(unlike scintillator)
- •Photons are nearly along particle path for gas radiator: $\tan\theta_{C}^{\sim}V(n^2-1)$ so very small transit spread
- •Light peaked in UV- $N(\lambda)^{\sim} (1-1/(n^2(\lambda)))/\lambda^2$
- •For simple thin quartz radiator $\sigma_t^2 = \sigma_{RADIATOR}^2 + \sigma_{PMT}^2 \sim 1.7*\ell(cms.) + 25/\ell$ picosec so optimum at length ~ 1-2 cms

Quartz Radiator

Better suited for pixels

Achieved σ_t =40 psec/bar with PHOTONIS Planacon PMT

Gas Radiator

Better for light spread and collection bad for segmentation Achieved σ_t =13 psec with Hamamatsu R3809U MCP-PMT

Pre-production Hybrid photodetector

"A 10 picosecond time of flight detector using APD's", SNW et al.

Deep diffused avalanche photodiode Sebastian White

MS.One 10.00826 IT 10.0pepts
650 picosecond risetime (β's)

<u>Summary</u>

- Forward detectors with capabilities beyond those of RHIC and Tevatron experiments have been built and commissioned for the LHC- despite the very difficult challenges imposed by radiation, rates and mometum compaction
- forward detectors increasingly important for new physics

the ATLAS detector

Handling antimatter(Sony Pictures)

