

2036-12

International Workshop: Quantum Chromodynamics from Colliders to Super-High Energy Cosmic Rays

25 - 29 May 2009

Multiple Scattering & Collective Effects in pp Scattering at the LHC

Klaus Werner Laboratoire de Physique Subatomique et des Technologies Associees Nantes France

Multiple scattering and collective effects in pp scattering at the LHC

Klaus Werner <werner@subatech.in2p3.fr>

in collaboration with T. Pierog, S. Porteboeuf, T. Hirano, Y. Karpenko, M. Bleicher, S. Haussler

Contents

1	Airshower simulation with EPOS	0-2
2	Multiple Scattering in p-p collisions	0-13
3	Space-time considerations	0-23
4	Hydro evolution / freeze out	0-39
5	Results for pp	0-45

1 Airshower simulation with EPOS

Missing muons

Situation in 2006:

non of the existent models (QGSJET, SIBYLL) can consistently describe all cosmic ray airshower data,

in particular:

data show considerably more muon production compared to simulations.

Not obvious how to fix this problem without creating others

Starting to use EPOS as interaction model, is was found :

one gets significantly more muons,

\square without changing observables like X_{\max} too much

MUON PRODUCTION IN EXTENDED AIR SHOWER SIMULATIONS. Tanguy Pierog, Klaus Werner. Phys. Rev. Lett. 101, 171101 (2008).

Muon density MIA

Muon density AUGER

Why more muons in EPOS ?

... because EPOS produces more baryons

Baryon = no $\pi^0 \rightarrow$ no EM cascade \rightarrow chance to make muons

EPOS has been designed (and optimized) to understand ALL types of hadrons \rightarrow careful studies of baryon production *

* without thinking about CR applications

enormous amount of pp ($p\bar{p}$) data considered, at SPS, ISR, RHIC, TEVATRON

also πp , pA and πA

EPOS compared to other models:

□ similar concerning pions

□ big differences concerning baryons

More muons require more electrons

Increase muon number (without changing the electrons) \rightarrow contradiction with KASCADE ($N_{\rm muons}\text{-}$ $N_{\rm electron}$ correlation)

Solution: non-linear effects (considered for particle production) also for cross section calculations

Consequences for Xmax

2 Multiple Scattering in p-p collisions

At high energies one has certainly multiple scattering even in pp ($\sigma_{jet} > \sigma_{tot}$).

Inclusive cross sections:

quantum interference ("AGK cancellations") may help to provide simple formulas referred to as "factorization" (multiple scattering is "hidden")

LHC: very interesting observables beyond inclusive (multiplicity dependencies...):

one has to go beyond factorization and formulate a consistent multiple scattering theory

Interesting observations already at Tevatron ...

pp@1800GeV points: CDF curves EPOS

pp@1800GeV points: CDF curves EPOS

In EPOS:

high multiplicity is clearly related to multiple scattering

 However, multiple scattering also favours hard scatterings (just higher probability)

Multiple scattering approach

Possible solution: Gribov's Pomeron calculus,

 several "Pomerons" are exchanged in parallel

provides logarithmic increase of cross sections with energy

EPOS: Pomeron = parton ladder

nucleon

important: multiple exchange of parton ladders, with energy sharing

Squaring such graphs leads to "cut diagrams" \rightarrow handled by employing "cutting rule techniques"

Energy sharing requires Markov chain techniques

More details:

Parton-based Gribov-Regge Theory, H. J. Drescher, M. Hladik, S. Ostapchenko, T.Pierog, and K. Werner, Phys. Rept. 350 (2001) 93-289

Parton ladder splitting and the rapidity dependence of transverse momentum spectra in deuteron-gold collisions at RHIC, K. Werner, F.M. Liu, T. Pierog, hep-ph/0506232, Phys. Rev. C 74, 044902 (2006)

3 Space-time considerations

EPOS parton ladder

quasi longitudinal color field "flux tube"

gluons = transverse kinks

decay via pair production

in AA or central pp: many overlapping flux tubes

cannot decay independently

color fields / strings represent initial condition for hydro-evolution

Core-corona separation (in AA)

Consider strings at some $\tau = \tau_0$

separate high density volume areas (which constitute the **core**)

from low density areas (**corona**)

high pt string pieces count as corona

core: we include inwards moving corona segments

Only core used to compute initial conditions for hydrodynamical evolution

at τ_0 : from space and momentum four-vectors of string segments, we get

- \Box energy density $\varepsilon(\vec{x})$,
- \Box flow velocity $\vec{v}(\vec{x})$
- \square net flavor densities $f(\vec{x})$

H.J. Drescher, S. Ostapchenko, T. Pierog, and K.Werner, hep-ph/0011219, Phys.Rev.C65:054902,2002

$$T^{\mu\nu} = \frac{1}{\Delta V} \sum_{i \in \Delta V} \frac{p_i^{\mu} p_i^{\nu}}{p_i^0}$$
$$N_q^{\mu} = \frac{1}{\Delta V} \sum_{i \in \Delta V} \frac{p_i^{\mu}}{p_i^0} q_i$$

with

$$p = \int_{A}^{B} \left\{ \frac{\partial X(r,t)}{\partial t} dr + \frac{\partial X(r,t)}{\partial r} dt \right\}$$
$$X(r,t) = X_{0} + \frac{1}{2} \left[\int_{r-t}^{r+t} g\left(\xi\right) d\xi \right]$$

A, B: two neighboring points on X $g(r) = v_k$ for $r_{k-1} \le r \le r_k$, $1 \le k \le n$ $v_k = p_k/p_k^0$, $r_k = p_k^0/\kappa$ p_k = parton four-momentum

...back to pp

Be ν_{inel} the number of inelastic elementary scatterings.

The total charged multiplicity $n_{\rm ch}$ is certainly a monotonic (linear?) function of $\nu_{\rm inel}$.

Instead of centrality dependence as in AA,

here we study the $\nu_{\rm inel}$ or $n_{\rm ch}$ dependence of observables.

Core-corona approach in pp

Core-corona in AA:

separation of volume into (central) core and (peripheral) corona part

Completely different in pp:

separation of events into two classes: core and corona events

Energy density of central ($\nu_{\rm inel} \geq 14$) pp at LHC

AuAu@RHIC ridge structure in $\eta_s - \phi$ (coordinates)

high density flux tubes (covering many η_s units)

The fluxtubes are due to random "clusterings" of nucleons in nuclei

One flux tube is the result of merging many individual strings

Epos: initial energy density obtained from strings, not partons

The widths of the sub-flux in AuAu tubes are of the order of 2fm ... like the flux tubes for "central" pp scatterings!

Energy density comparable to AuAu@RHIC

 So maybe as well hydrodynamical expansion + statistical decay

□ We will do the corresponding simulation

How to verify ?

study "centrality dependence" of particle yields, spectra, ...

 $\square \text{ multiple scattering events should} \\ \text{exhibit long range} \\ y \text{ correlations} \\ \widehat{y \text{ correlations}} \\ \widehat{y \text{ correl$

coming from the η_s correlation of η_s the initial flux η_s

study particle yields, spectra, ... at forward rapidity as a function of the backward multiplicity

This should clearly exhibit the flux tube structure

4 Hydro evolution / freeze out

 \Box For $\tau > \tau_0$: 3D hydrodynamic evolution

- determine freeze out hypersurface and collective velocities
- □ particle production via Cooper-Frye formula
- □ hadronic cascade

Hydro code (1) - T. Hirano

□ T. Hirano, U. Heinz, D. Kharzeev, R. Lacey, Y. Nara, Phys.Rev.C77: 044909,2008, and T. Hirano, U.W.Heinz, D. Kharzeev, R. Lacey and Y. Nara, Phys. Lett. B 636 (2006) 299

□ EoS: Massless quarks and gluons, $p = \frac{1}{3}(\varepsilon - 4B)$, $B^{1/4} = 247.19$ MeV, $\mu_B = 0$ \circ 0.4 \models

Hydro code (2) - Yuri Karpenko (unpublished)

- \Box C++ code, coupled directly to EPOS
- $\hfill\square$ Code based on Godunov method
 - introducing finite cells and computing fluxes between cells using the (approximate) Riemann problem solution for each cell boundary.
- □ Use relativistic HLLE solver to solve Riemann problems
- □ To achieve more accuracy in time : the predictor-corrector scheme is used for the second order of accuracy in time, i.e. the numerical error is $O(dt^3)$, instead of $O(dt^2)$
- \Box To achieve more accuracy in space : to achieve the second order scheme, the linear distributions of quantities (conservative variables) inside cells are used. The conservative quantities are $(e + p * v^2)/(1 v^2)$, $(e + p) * v/(1 v^2)$.
- $\hfill\square$ The code is written in hyperbolic coordinates

Hydro code (3) - SPHERIO 4, Wei-Liang Qian

- Wei-Liang Qian, Rone Andrade, Frederique Grassi, Otavio Socolowski Jr., Takeshi Kodama, Yogiro Hama, Int.J.Mod.Phys.E16:1877-1882,2007
 coupled directly to EPOS EbE possible
- □ SPH (Smoothed Particle Hydrodynamics) technique. Physical quantities are written as N

$$f(\vec{x},t) = \sum_{i=1} f_i W(\vec{r} - \vec{r_i}(t))$$

 $\partial_\mu T^{\mu\nu} = 0$ & conservations laws lead to eqs. for $\vec{r_i}$.

□ EoS: Ideal gas of quarks and gluons, $m_u = m_d = 0, m_s = 120 \text{MeV}; B^{1/4} = 232 \text{MeV},$ $\mu_u = \frac{1}{3}\mu_B + \frac{1}{2}\mu_{I3}, \mu_d = \frac{1}{3}\mu_B - \frac{1}{2}\mu_{I3}, \mu_s = \frac{1}{3}\mu_B - \mu_S;$

hadron resonance gas, $\mu_h = B\mu_B + S\mu_S + I_3\mu_{I3}$

Final state hadronic rescatterings

- UrQMD, M. Bleicher et al., J. Phys. G25 (1999) 1859, H.
 Petersen, J. Steinheimer, G. Burau, M. Bleicher and H.
 Stocker, Phys. Rev. C78 (2008) 044901,
- EPOS coupling in collaboration with
 S.Haussler, M.Bleicher, S. Porteboeuf
- FO at some temperature (in the hadronic phase),
 FO hadrons & corona hadrons
 = initial condition for hadronic cascade

5 Results for pp

Real hydro calculation: work in progress...

 So far only "hydro-inspired" (parameterization of FO-flow)

Charged particle and lambda pt spectra: different shapes (as in AA)

to summarize

- Air shower simulations with EPOS: more muons, due to more baryon production, compared to conventional models. Smaller pA cross section (also necessary to be consistent with Kascade). Consequence: larger Xmax
- \square EPOS proton-proton collisions at LHC: Multiple scattering important \rightarrow high energy density flux tubes
- □ Flux tubes in pp@LHC very similar to in size and density to sub-flux tubes in AuAu@RHIC \rightarrow same collective behavior expected
- \square Flux tube picture also supported by "Ridge" phenomenon, and by v2 η dependence