



2036-16

#### International Workshop: Quantum Chromodynamics from Colliders to Super-High Energy Cosmic Rays

25 - 29 May 2009

Cross section measurements with cosmic ray experiments

Ivan De Mitri University of Salento & Istituto Nazionale di Fisica Nucleare Lecce Italy

# Cross section measurements with cosmic ray experiments



### Ivan De Mitri



University of Salento and Istituto Nazionale di Fisica Nucleare Lecce, Italy





Quantum Chromodynamics from Colliders to Super-High Energy Cosmic Rays ICTP, Trieste, May 2009

## Compilation of total cross sections





# The (high energy physicist) atmosphere The target !



"Standard" atmosphere :

 $X_v = X_0 \exp(-h/h_0)$ 

 $X_0 \approx 1030 \text{ g/cm}^2$ 

 $h_0 \approx 6.4 - 8.4 \text{ km}$ 

$$\sigma_{p-Air} \sim 300 \text{ mb} @ E \sim 1-100 \text{ TeV}$$
  
 $\Lambda_p \sim 80 \text{ g/cm}^2 \qquad \Lambda_{Fe} \sim 2-3 \text{ g/cm}^2 \qquad \Lambda_{rad} \sim 37 \text{ g/cm}^2$ 

$$\begin{array}{c} X_{0} \sim 13\Lambda_{p} \sim 28 \ \Lambda_{rad} \\ X_{v} \sim \Lambda_{p} \quad \Leftrightarrow \quad h \sim 18 km \end{array}$$

# **EAS** Components

- <u>Soft</u>: p, n, π, e, γ,...
- <u>Hard</u>: μ, ν
- <u>Čerenkov light</u> (mainly produced by electrons)
- Fluorescence light





## Shower particle tracks: proton

muons

electrs

hadrons neutrs







J.Oehlschlaeger, R.Engel, FZKarlsruhe





#### Approximate threshold value

(it depends on specific detector features and location)



#### Data Analysis flowchart in a "typical" EAS experiments





# **Measurements on Air Showers**



## **Measuring the shower profile: The FD**

•The passage of charged particles in an EAS through the atmosphere ionizes and excites N molecules. This excitations produces isotropical UV fluorescence emission (properly "luminescence" or "scintillation")

•Air fluorescence studied (early 60's) by Los Alamos Sc. Lab. as a method for detecting the yield on nuclear explosions in atmospheric tests.

•Emission spectrum studied by A. Bunner (PhD thesis, 1967), a student of Rossi and Greisen (formerly in Manhattan Project).



# FD: the beginning...

Excitation of the nitrogen molecules and their radiative dexcitation . Collisional quenching 1967 First full-scale experiment by Greisen's group at Cornell





1976 Fluorescence Detector realized by Utah University and installed at Volcano Ranch, New Mexico





# The Fly's Eye experiment



1981 The University of Utah Cosmic Ray group (G.Cassiday and coworkers) constructed Fly's Eye, a full-scale observatory based on the Volcano Ranch prototype basic design.

The experiment was located in the West Desert of Utah, within the US Army Dugway Proving Ground (DPG), 160 km southwest of Salt Lake City.

(Baltrusaitis et al., 1985)





#### **Better reconstruction (geometry)**



# Measuring the shower profile with air Fluorescence Detectors



... and the experiment resolution has to be taken into account

# Measure the shower profile with air Fluorescence Detectors

For sufficiently large  $X_{max}$  values and fixed energy  $X_{max}$ 

$$P(X_{\text{max}}) \propto e^{-\Lambda}$$

However  $\Lambda = \mathbf{k} \lambda_{int}$  mainly because of collision inelasticity, shower fluctuations and detector resolution.



 $\sigma_{n-Air}$  (mb) = 2.4 10<sup>4</sup> /  $\lambda_{int}$ (g/cm<sup>2</sup>)

The factor k is determined by simulations and depends on:

- hadronic interactions
- detector features and location (atm. depth)
- actual set of experimental observables
- analysis cuts
- energy, ...

Then:

QCD from Colliders to Super HECR

## The Fly's Eye result

VOLUME 52, NUMBER 16

#### PHYSICAL REVIEW LETTERS

16 April 1984

#### Total Proton-Proton Cross Section at $s^{1/2} = 30 \text{ TeV}$

 R. M. Baltrusaitis, G. L. Cassiday, J. W. Elbert, P. R Gerhardy,
 S. Ko, E. C. Loh, Y. Mizumoto, P. Sokolsky, and D. Steck University of Utah, Salt Lake City, Utah 84112 (Received 16 January 1984)

We have measured the proton-air inelastic cross section at  $s^{1/2} = 30$  TeV by observing the distribution of extensive-air-shower maxima as a function of atmospheric depth. This distribution has an exponential tail whose slope is  $\lambda = 72 \pm 9$  g cm<sup>-2</sup> which implies that  $\sigma_{p-air}^{inel} = 530 \pm 66$  mb. Using Glauber theory and assuming that the elastic-scattering slope param ter *b* is proportional to  $\sigma_{pp}^{tot}$ , we infer a value of  $\sigma_{pp}^{tot} = 120 \pm 15$  mb which lies between a lo and a  $\log^2 s$  extrapolation of the total *pp* cross section as measured at lower energies.





# **The HiRes experiment**

- HiRes1: atop Five Mile Hill
- 21 mirrors, 1 ring

- HiRes2: Atop Camel's Back Ridge
- 12.6 km SW of HiRes1.
- 42 mirrors, 2 rings



The two telescopes are 12.6 km apart







# **HiRes: Measured shower profile**



K.Belov

# **HiRes: Measuring the cross section**

A suitable deconvolution procedure, allows the extraction of  $\lambda_{int}$  from data:

$$P(X_{\text{max}}) = P(X_0) \otimes P(X_{\text{rise}})$$

The data from december 1999 till november 2005 were analyzed.

After taking into account the effect of heavier primaries, the result is:

$$\sigma_{inel}^{p-air} = 460 \pm 14(stat) + 39(sys) - 26(sys)$$
  
at E = 10<sup>18.5</sup> eV.

By assuming an asymptotic log<sup>2</sup>(s) behaviour of  $\sigma_{pp}$  cross section, a value of (107.3 ±1.2) mb is foreseen for LHC



## **The AUGER experiment**



# **The AUGER experiment**



QCD from Colliders to Super HECR

# **The AGASA experiment**





Use the shower frequency vs (sec $\theta$  -1)

$$I(\theta) = I(0) \cdot e^{-\frac{h_o}{\Lambda}(\sec(\theta) - 1)}$$

for fixed energy (N $\mu$ ) and shower age (Ne).

#### Warning

Shower to shower fluctuations may seriously compromise the experimental sensitivity to the p-air cross section

#### Inelastic *p*-Air Cross Section at Energies between 10<sup>16</sup> and 10<sup>18</sup> eV Estimated from Air-Shower Experiments

T. Hara, Y. Hatano, N. Hayashida, M. Honda, K. Kamata, K. Kasahara, T. Kifune, Y. Mizumoto,<sup>(a)</sup> M. Nagano, G. Tanahashi, and S. Torii

Institute for Cosmic Ray Research, University of Tokyo, Tanashi, Tokyo 188, Japan

and

#### S. Kawaguchi

#### Faculty of General Education, Hirosaki University, Bunkyocho, Hirosaki 036, Japan (Received 15 March 1983)

The inelastic cross section of p-air collisions  $[\sigma_{in}(p-air)]$  between  $10^{16}$  and  $10^{18}$  eV is estimated by the observation of extensive air showers at Akeno. The flux of air showers at different zenith angles is analyzed with both a fixed muon number and a fixed electron number.  $\sigma_{in}(p-air)$  increases with energy as  $290 \times E_{lab}^{0.06 \pm 0.01}$  mb ( $E_{lab}$  in teraelectron-volts) up to  $10^{18}$  eV with the assumptions of Feynman scaling in the fragmentation region and at least 10% of the primary particles being protons.





## **EAS-TOP**

On top of Gran Sasso, L'Aquila 2000 m a.s.l. 820 g·cm<sup>-2</sup> 1989-2000

Hadrons (iron/streamer tube calorimeter)

E.M. (scintillator counters)

- Low Energy μ (E<sub>μ</sub> > 1 GeV)
   Atmospheric Čerenkov Imaging
- Atmospheric Cerenkov Imaging
  H.E. µ (E > 1.3 TeV) (MACRO & LVD)





QCD from Colliders to Super HECR

I.De Mitri: Cross section measurements with CR experiments

#### PHYSICAL REVIEW D 79, 032004 (2009)

## Measurement of the proton-air inelastic cross section at $\sqrt{s} \approx 2$ TeV from the EAS-TOP experiment

M. Aglietta,<sup>1,2</sup> B. Alessandro,<sup>2</sup> P. Antonioli,<sup>3</sup> F. Arneodo,<sup>4</sup> L. Bergamasco,<sup>2,5</sup> M. Bertaina,<sup>2,5</sup> A. Castellina,<sup>1,2</sup> E. Cantoni,<sup>1,5</sup> A. Chiavassa,<sup>2,5</sup> B. D'Ettorre Piazzoli,<sup>6</sup> G. Di Sciascio,<sup>6,\*</sup> W. Fulgione,<sup>1,2</sup> P. Galeotti,<sup>2,5</sup> P. L. Ghia,<sup>1,†</sup> M. Iacovacci,<sup>6</sup> G. Mannocchi,<sup>1,2</sup> C. Morello,<sup>1,2</sup> G. Navarra,<sup>2,5</sup> O. Saavedra,<sup>2,5</sup> A. Stamerra,<sup>5,‡</sup> G. C. Trinchero,<sup>1,2</sup> P. Vallania,<sup>1,2</sup> S. Vernetto,<sup>1,2</sup> and C. Vigorito<sup>2,5</sup>

(EAS-TOP Collaboration)

|                                        | -                                                  |                                                    |               |                                              |                                                |                                         |               |
|----------------------------------------|----------------------------------------------------|----------------------------------------------------|---------------|----------------------------------------------|------------------------------------------------|-----------------------------------------|---------------|
| High energy hadronic interaction model | $\lambda_{\rm int}^{\rm sim}$ [g/cm <sup>2</sup> ] | $\lambda_{\rm obs}^{\rm sim}$ [g/cm <sup>2</sup> ] | k             | $\lambda_{\rm obs}^{\rm exp}  [{ m g/cm^2}]$ | $\lambda_{\rm int}^{\rm exp} \ [g/{\rm cm}^2]$ | $\sigma_{p\text{-air}}^{\text{inel}}$ [ | [mb]          |
| SIBYLL 2.1                             | $59.4\pm0.1$                                       | $69.9 \pm 1.4$                                     | $1.18\pm0.02$ | $84.7\pm5.0$                                 | $71.8\pm4.5$                                   | 336 ±                                   | 21            |
| QGSJET II                              | $60.3\pm0.1$                                       | $68.5 \pm 1.4$                                     | $1.14\pm0.02$ | $80.2\pm4.3$                                 | $70.7\pm4.2$                                   | 341 ±                                   | : 20          |
|                                        |                                                    |                                                    |               |                                              |                                                |                                         | $\overline{}$ |

| The Ne-N $\mu$ method was used | $\sigma_{p\text{-air}}^{\text{inel}} = 338 \pm 21_{\text{stat}} \pm 19_{\text{syst}} - 29_{\text{syst(He)}} \text{ mb.}$ |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------|

| Experiment | SIBYLL 2.1                                     |                                                       | QGSJET II                                  |                                                       | QGSJET II <sub>HDPM</sub>                      |                                                   |  |
|------------|------------------------------------------------|-------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|------------------------------------------------|---------------------------------------------------|--|
|            | $(\sigma_{p-\text{air}}^{\text{inel}} = d$     | $406 \pm 1 \text{ mb})$                               | $(\sigma_{p-\text{air}}^{\text{inel}} =$   | $400 \pm 1 \text{ mb})$                               | $(\sigma_{p-\text{air}}^{\text{inel}} = 1)$    | $367 \pm 1 \text{ mb})$                           |  |
| Analysis   | $\sigma_{p-\mathrm{air}}^{\mathrm{inel}}$ [mb] | $\Delta \sigma_{p-\mathrm{air}}^{\mathrm{inel}}$ [mb] | $\sigma_{p-\text{air}}^{\text{inel}}$ [mb] | $\Delta \sigma_{p-\mathrm{air}}^{\mathrm{inel}}$ [mb] | $\sigma_{p-\mathrm{air}}^{\mathrm{inel}}$ [mb] | $\Delta \sigma_{p\text{-air}}^{\text{inel}}$ [mb] |  |
| SIBYLL 2.1 |                                                |                                                       | $419\pm12$                                 | $+19\pm12$                                            | $372 \pm 13$                                   | $+5 \pm 13$                                       |  |
| QGSJET II  | $393\pm11$                                     | $-13 \pm 11$                                          |                                            |                                                       | $361 \pm 12$                                   | $-6 \pm 12$                                       |  |

## **The ARGO-YBJ experiment**



High Altitude Cosmic Ray Laboratory @ YangBaJing,Tibet, China Site Altitude: 4,300 m a.s.l., ~ 600 g/cm<sup>2</sup>

## The ARGO-YBJ physics goals

### Cosmic ray physics:

spectrum and composition (E<sub>th</sub> few TeV), study of the shower space-time structure,

#### p-Air cross section measurement,

anti-p / p ratio at TeV energies,

. . . . .

### **VHE** *γ***-Ray Astronomy**:

search for point-like (and diffuse) galactic and extra-galactic sources at few hundreds GeV energy threshold

- Search for GRB's (full GeV / TeV energy range)
- Sun and Heliosphere physics

## through the...

# Observation of *Extensive Air Showers* produced in the atmosphere by primary $\gamma$ 's and nuclei

## **The ARGO-YBJ detector**



# **EAS** reconstruction

Event Rate ~ 4 kHz for  $N_{hit}$  >20 High space/time granularity detailed study on the + Full coverage **EAS space/time structure** + High altitude with unique capabilities ິຍ 180 Ê ≻ 70 160 60 140 50 120 100-80 60 30 40 20 20-0  $\gamma^{70}_{(m)}^{60} 50_{40}^{30}_{30}^{20}_{20}_{10}^{10}$ 10 70 X (m) 10 70 20 10 X (m)

#### 3-D view of a detected shower

#### Top view of the same shower



- Size of the deficit  $\Rightarrow$  angular resolution
- Position ⇒ pointing accuracy
- West displacement  $\Rightarrow$  Energy calibration (Geomagnetic bending  $\approx 1.57^{\circ}$  / E (TeV))
- Antiprotons should give a shadow on the opposite side (measure the pbar/p flux ratio)

# The proton-air cross section measurement

Use the shower frequency vs (sec $\theta$  -1)

$$I(\theta) = I(0) \cdot e^{-\frac{h_o}{\Lambda}(\sec(\theta) - 1)}$$

for fixed energy and shower age.

However  $\Lambda = \mathbf{k} \lambda_{int}$  mainly because of collision inelasticity, shower fluctuations and detector resolution.

It is determined by simulations and depends on:

- hadronic interactions
- detector features and location (atm. depth)
- actual set of experimental observables
- analysis cuts
- energy, ...

Then:

 $\sigma_{p-Air}$  (mb) = 2.4 10<sup>4</sup> /  $\lambda_{int}$ (g/cm<sup>2</sup>)



# Data selection

#### Event selection based on:

- (a) "shower size" on detector, N<sub>strip</sub> (strip multiplicity)
- (b) core reconstructed in a fiducial area (64 x 64 m<sup>2</sup>)
- (c) constraints on Strip density (> 0.2/m<sup>2</sup> within  $R_{70}$ )

and shower extension ( $R_{70} < 30m$ )

**N**<sub>strip</sub> is used to get defferent E sub-samples



# Full Monte Carlo simulation:

Corsika showers

QGSJET I and II, SYBILL int. models GEANT detector simulation



R<sub>70</sub> (m)

# **Experimental data**



Wheather effects, namely the atmospheric pressure dependence on time, have been shown to be at the level of 1 %

 $h_0^{MC} = 606.7 \text{ g/cm}^2 (4300 \text{ m a.s.l. standard atm.})$   $h_0^{MC} / h_0 = 0.988 \pm 0.007 ( \leftrightarrow 4200 \text{ m a.s.l.})$ 

# Heavy primaries contribution

Hoerandel AP 19 (2003) 193 taken as reference.

JACEE and RUNJOB for the evaluation of systematic error

$$\frac{dN}{dE} = \Phi(E) = \Phi_Z^0 \cdot \left(\frac{E}{TeV}\right)^{-\gamma_Z}$$

198

J.R. Hörandel / Astroparticle Physics 19 (2003) 193-220

| Table 1<br>Absolute fi | ux $\Phi_{7}^{0}$ ((m <sup>2</sup> sr s | $(TeV)^{-1}$ ) at $E_0 = 1 TeV$ | V/nucleus and s | pectral index y | 7 of cosmic-ray | $v \text{ elements } \sim 10^3$ |
|------------------------|-----------------------------------------|---------------------------------|-----------------|-----------------|-----------------|---------------------------------|
| Ζ                      |                                         | $\Phi_Z^0$                      | $-\gamma_z$     | Z               |                 | $\phi_z^0$ E                    |
| 1ª                     | н                                       | $8.73 \times 10^{-2}$           | 2.71            | 47°             | Ag              | 4.54 2                          |
| 2ª                     | He                                      | $5.71 \times 10^{-2}$           | 2.64            | 48°             | Cd              | 6.30                            |
| 3 <sup>b</sup>         | Li                                      | $2.08 \times 10^{-3}$           | 2.54            | 49°             | In              | 1.61 LL                         |
| 4 <sup>b</sup>         | Be                                      | $4.74 \times 10^{-4}$           | 2.75            | 50°             | Sn              | 7.15 o10 <sup>2</sup>           |
| 5 <sup>b</sup>         | в                                       | $8.95 \times 10^{-4}$           | 2.95            | 51°             | Sb              | 2.03 単 10                       |
| 6 <sup>b</sup>         | С                                       | $1.06 \times 10^{-2}$           | 2.66            | 52°             | Te              | 9.10                            |
| 7 <sup>b</sup>         | N                                       | $2.35 \times 10^{-3}$           | 2.72            | 53°             | I               | 1.34 8                          |
| 8 <sup>b</sup>         | 0                                       | $1.57 \times 10^{-2}$           | 2.68            | 54°             | Xe              | 5.74 🔀                          |
| 9ь                     | F                                       | $3.28 \times 10^{-4}$           | 2.69            | 55°             | Cs              | 2.79                            |
| 10 <sup>b</sup>        | Ne                                      | $4.60 \times 10^{-3}$           | 2.64            | 56°             | Ba              | 1.23                            |



# The ARGO-YBJ results

$$k = k_0 k_{det} \qquad \sum_{k_0 \simeq \frac{1}{1 - \langle (1 - K_{in})^{\gamma - 1} \rangle}} k_{det} \simeq 1.15 \div 1.45$$

Apart from the boundaries of the covered energy region (systematic effects)



| $\Delta N_{strip}$ | Log(E/eV)      | $k_{QGSJET-I}$           | $k_{QGSJET-II.03}$       | $k_{SIBYLL-2.1}$         | k                        |
|--------------------|----------------|--------------------------|--------------------------|--------------------------|--------------------------|
| $500 \div 1000$    | $12.6 \pm 0.3$ | $1.98 \pm 0.06 \pm 0.05$ | $1.84 \pm 0.14 \pm 0.05$ | $1.87 \pm 0.08 \pm 0.04$ | $1.93 \pm 0.05 \pm 0.06$ |
| $1500 \div 2000$   | $13.0 \pm 0.2$ | $1.59 \pm 0.03 \pm 0.04$ | $1.75 \pm 0.12 \pm 0.04$ | $1.76 \pm 0.06 \pm 0.04$ | $1.63 \pm 0.03 \pm 0.08$ |
| $3000 \div 4000$   | $13.3 \pm 0.2$ | $1.69 \pm 0.05 \pm 0.03$ | $1.63 \pm 0.13 \pm 0.03$ | $1.72 \pm 0.05 \pm 0.03$ | $1.70 \pm 0.03 \pm 0.04$ |
| $5000 \div 8000$   | $13.6 \pm 0.2$ | $1.74 \pm 0.05 \pm 0.03$ | $1.97 \pm 0.17 \pm 0.04$ | $1.91 \pm 0.05 \pm 0.03$ | $1.84 \pm 0.03 \pm 0.10$ |
| > 8000             | $13.9 \pm 0.3$ | $2.04 \pm 0.06 \pm 0.05$ | $2.23 \pm 0.19 \pm 0.05$ | $2.01 \pm 0.05 \pm 0.05$ | $2.03 \pm 0.04 \pm 0.10$ |

| Г                  |                                    |                     | nrXiv:0904.4198                                  |                              |
|--------------------|------------------------------------|---------------------|--------------------------------------------------|------------------------------|
|                    | Correction due to He contamination |                     |                                                  |                              |
| $\Delta N_{strip}$ | , _                                | η                   | $\sigma_{p-air} (\mathrm{mb})$                   | $\sigma_{p-p} (\mathrm{mb})$ |
| $500 \div 100$     | 00 1.00 :                          | $\pm 0.04 \pm 0.01$ | $272 \pm 13 \pm 9$                               | $43 \pm 3 \pm 5$             |
| $1500 \div 20$     | 00 1.00 :                          | $\pm 0.03 \pm 0.01$ | $295 \pm 10 \pm 14$                              | $48 \pm 3 \pm 6$             |
| $3000 \div 400$    | 00 0.99 :                          | $\pm 0.04 \pm 0.01$ | $318 \pm 15 \pm 8$                               | $54 \pm 4 \pm 6$             |
| $5000 \div 800$    | 00 0.98 :                          | $\pm 0.04 \pm 0.03$ | $322 \pm 15 \pm 20$                              | $56 \pm 4 \pm 7$             |
| > 8000             | 0.95 :                             | $\pm 0.04 \pm 0.04$ | $318 \pm 15 \pm 21$                              | $54 \pm 4 \pm 8$             |
|                    |                                    |                     |                                                  |                              |
| QCD from Col       | lliders to Super HECR              | I.De Mitri          | : Cross section measurements with CR experiments | 38                           |

# The proton-air cross section



# The total p-p cross section



# Summary

- Many possible approaches in a wide energy region
- Results suggest asymptotic log<sup>2</sup>(s) behaviour of the cross section
- Errors at large energies still large
- The CR composition and the uncertainties on interaction models are among the major sources of systematics
- Better situation after new inputs for interaction models from new accelerator experiments (LHCf,....)



#### Stay tuned ...

