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Outline

Diffraction at colliders and in cosmic rays

RFT: quasi-eikonal approach
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Enhanced Pomeron graphs: elastic amplitude
AGK cuts: diffractive final states
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» Multi-Pomeron vertices



Diffraction - production of secondaries in narrow rapidity windows

multiple production projectile diffr.  target diffr.  double diffr.
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» diffraction in collider physics:

valuable information about interaction dynamics

clean experimental environment for new physics
(e.g. production of Higgs)

» diffraction in cosmic ray physics:

direct impact on air shower maximum

de3s Apidex



Strictly speaking, EAS physics is sensitive to non-diffractive
Interactions only

Detection: extensive air showers (EAS)

shower size N

Example: remove all events with less
than 10% energy loss in the 1st interaction
and use the rescaled cross section:
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Diffraction - microscopic picture

non-diffr. production virtual rescattering  diffraction

» Reggeon Field Theory (schematic):
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elementary parton cascades - Pomeron exchanges
intermediate states between Pomeron exchanges include inelastic

excitations: ;| Xi) (Xi| = |p)(p| + Lizp | Xi) (Xi]



Things get simplier in the multi-component (Good-Walker-like)
scheme - use elastic scattering eigenstates: | X;) — |))

» e.g., using eikonal vertices for Pomeron emission:
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X., - Pomeron exchange eikonal
CijasAisa - relative weights & strengths of the eigenstates

» important: for low mass excitations (M% < s):
CijasAi/a - independent of s
» Ms-dependence for LMD - usually PPR-asymptotics:
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High mass diffraction - Pomeron asymptotics = enhanced diagrams
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» sign-indefinite contributions
» higher orders - increasingly important with energy
» => all order resummation needed

Let us start with the resummation of 'net’-like graphs
(anything except Pomeron 'loops’):




Introduce 'net fan’ contributions via Schwinger-Dyson equation:

net




Sum of all irredicible contributions of non-loop enhanced diagrams
to elastic scattering amplitude:
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any diagram with n multi-Pomeron vertices is generated n
times by the 1st term and (n—1) times - by the 2nd

» generalization: replace single Pomerons by 2-point sequences
of Pomerons and Pomeron loops, e.g.




Final result:

(d)

» examples of graphs which can not be included in this scheme:
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One has to be more specific about the Pomeron eikonal and about
multi-Pomeron vertices

to judge the importance of neglected graphs
to verify the very convegence of the series

However, let us first discuss the structure of final states in general

» let us assume the validity of AGK cutting rules
» we start from AGK-cuts of 'net fans'; there are 2 kinds of cuts:

with 'fan’-like structure of cut Pomerons
with 'zigzag'-like structure of cut Pomerons
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Important observations:

» summary contribution of 'zigzag' cuts of 'net fans’ =0

» = only 'tree’-like final states contribute to Oi

» ‘zigzag -like final states have minor influence on the rap-gap
structure of the events

e.g., simpliest contributions do not generate rap-gaps:




Difffractive cuts of 'net fans’ (incomplete):

» = central diffraction (DPE) contributions (incomplete):

m>=2

» to calculate DPE cross section:

choose elastic channel in the cut plane
include rap-gap suppression factors (left & right from the cut)



What is the meaning on 'net fan’ contributions?

» compare inclusive and exclusive (certain structure of final
states) jet production:
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'fan’ diagrams - low-x PDFs as 'seen’ in DIS & inclusive
cross sections

‘net fans’ - 'reaction-dependent PDFs’ (without "soft’
production in parallel to the hard process):




Diffractive cuts of 'net fans’ - low-x diffractive PDFs

» rapidity gap survival factor includes:
elastic form factor - to suppress additional multiple
production processes ('eikonal’ suppression)

absorptive corrections due to rescattering on the target - to
suppress soft production in the same process

large hard scale (e.g., Higgs production) = smaller
corrections of the 2nd kind (reduced phase space)



When the approach is self-consistent?

» let us consider simple Pomeron pole amplitude:
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» clearly, no problem arises at moderate s and large b: enhanced
graphs provide small corrections

» = we have to investigate the 'dense’ limit: s — o0, b — 0

» well-behaving scheme proposed by Cardi / Kaidalov:

G(m,n) _ Gym+n—3



'Loop’ graphs - dissapear in the dense limit
(suppressed by exponential factors):
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» = one is left with 'net’-like graphs



Both 'net fan’ contributions and elastic scattering amplitude
approach at s — o, b — 0 the Kaidalov’s limit: renormalization of
the Pomeron intercept:
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» valid only for dp(0) > 1!
» for dp(0) < 1 - saturation solution; Oypt(S) — const at s — oo

» in particular, this is the case if one restricts himself with
triple-Pomeron vertex only!



Durham group:

Gmn) = mpGymtn3

» same 'dense’ limit (renormalization of the Pomeron intercept)
» one Pomeron is ‘'more equal’ than others
» = analysis of unitarity cuts - difficult

» diffraction cross sections - inconsistent with AGK rules



