

2040-5

Workshop: Eternal Inflation

8 - 12 June 2009

A bit about de Sitter

J.P. Van de Schaar

KdVI/ITP, University of Amsterdam

Netherlands

A bit about de Sitter

Jan Pieter van der Schaar KdVI/ITP, University of Amsterdam

Eternal Inflation workshop, June 10 2009, ICTP

+ | +

Introduction

QG/EFT in (quasi-) de Sitter is key to understanding eternal inflation

$$-X_0^2 + X_1^2 + X_2^2 + X_3^2 + X_4^2 = R^2$$

- No global timelike Killing vector
- Horizon, gravitational entropy
- Breakdown of EFT in de Sitter

N. Arkani-Hamed, S. Dubovsky, A. Nicolis, E. Trincherini and G. Villadoro, 0704.1814 [hep-th]

Free-falling observers: static coordinates

 $ds^{2} = -(1 - H^{2}r^{2})dt^{2} + (1 - H^{2}r^{2})^{-1}dr^{2} + r^{2}d\Omega^{2}$

$$T_{GH} = \frac{H}{2\pi}$$

$$S = \frac{A}{4G} \propto \frac{M_{Pl}^2}{H^2}$$

Wednesday, June 10, 2009

Outline

- De Sitter and black holes
- Tunneling and backreaction
- Complementarity in de Sitter
- Concluding remarks

de Sitter and Einstein, 1932

De Sitter and black holes

Similarities and differences: horizon physics

- Locally, near horizon: Rindler space
- Black hole: distinction infalling and external observers
- De Sitter: horizon is observer dependent (dS symmetry)
- Black holes evaporate: sharpens information paradox
- No S-matrix in de Sitter (observables?)
- Black hole singularity

However: horizon properties seem universal

$$T_H = rac{\hbar \kappa}{2\pi}$$
 $S_{BH} = rac{A}{4G\hbar}$

De Sitter vacua

Relation between the static and BD state:

$$ds^2 = -(1 - H^2r^2)dt^2 + (1 - H^2r^2)^{-1}dr^2 + r^2d\Omega^2$$

$$b_k|S\rangle = 0$$

$$T_{GH} = \frac{H}{2\pi}$$

 $|b_k|S\rangle = 0$ T_{GH} = $\frac{H}{2\pi}$ thermal to all other (outgoing) observers

Formal `lightlike observer' limit of static vacuum state: BD vacuum

$$ds^{2} = -dt^{2} + e^{2Ht}dx^{2} = \frac{1}{(H\eta)^{2}} \left(-d\eta^{2} + d\rho^{2} + \rho^{2}d\Omega^{2} \right)$$

$$u_k(\eta, \vec{x}) = N_k (1 + ik\eta) e^{-ik\eta + i\vec{k}\cdot\vec{x}}$$

$$\frac{\partial}{\partial \eta} u_k(\eta, \vec{x}) = -iku_k(\eta, \vec{x})$$

$$\frac{\partial}{\partial \eta} u_k(\eta, \vec{x}) = -iku_k(\eta, \vec{x})$$
$$\eta \to -\infty$$

Tunneling and backreaction

Applies universally (BH's and dS)

Painleve coordinates:

- Finite at horizon
- Planar flat slicing
- Stationary

$$ds^{2} = -(1 - H^{2}r^{2}) dt^{2} - 2Hr dr dt + dr^{2} + r^{2} d\Omega^{2}$$

$$\Gamma \sim \exp(-2 \text{ Im } I/\hbar) \left(\exp(\Delta S) = \exp\left[\frac{\pi}{G}(r_f^2 - r_i^2)\right] \right)$$

$$r_i = H^{-1}$$

$$\frac{e^{S_{\text{final}}}}{e^{S_{\text{initial}}}} = \exp(\Delta S)$$

s-waves only

After emission of the spherical shell: SdS spacetime

$$ds^2 = -(1-H^2r^2 - 2G\omega/r)dt^2 + (1-H^2r^2 - 2G\omega/r)^{-1}dr^2 + r^2d\Omega^2$$

$$G\omega H\ll 1$$

$$\left| \frac{\langle \text{out} | b_k b_{-k} | \text{BD}' \rangle}{\langle \text{out} | \text{BD}' \rangle} \right|^2 = e^{\Delta S(\omega_k)}$$
 Universal correction to BD

$$G\omega H\ll 1$$

$$\Gamma\approx \exp\left[-\frac{2\pi}{H}\omega\left(1+\frac{\omega H}{8\pi M_p^2}\right)\right]$$

M. Parikh, hep-th/0204107 B. Greene, M. Parikh and JPvdS, hep-th/0512243

Black hole complementarity

- I. Observer I jumps in carrying a single bit (spin)
- 2. At point A observer 2 reads the bit in the Hawking radiation
- 3. Observer 2 then jumps in to see same bit twice
- 4. At point B observer I sends the bit to observer 2
 - Unitarity $|\Psi_{\mathrm{out}}\rangle = S|\Psi_{\mathrm{in}}\rangle$
 - Linearity $|\Psi\rangle
 ightharpoonup |\Psi\rangle
 ightharpoonup$
 - Equivalence principle

Complementarity: violations should be unobservable

Entanglement and information

Information:
$$I = S_{\text{maximal}} - S_{\text{actual}}$$

Consider two subsystems of a total system in a pure state and let the smaller subsystem have a Hilbert space of dimension m<n, where n is the Hilbert space dimension of the other subsystem

$$S = -\text{Tr}\,\rho\,\log\rho$$

The entanglement entropy, averaged over all pure states, reads

$$\langle S \rangle = \sum_{k=n+1}^{k=mn} \frac{1}{k} - \frac{m-1}{2n}$$
 $\langle I_{m,n} \rangle = \ln m - \langle S \rangle \approx \frac{m}{2n}$

$$\langle I_{m,n} \rangle = \ln m - \langle S \rangle \approx \frac{m}{2n}$$

Typically the subsystem contains no information (thermal) until it reaches at least half the size of the whole system

$$t_r \approx G^2 M^3$$

Page, gr-qc/9305007

Complementarity in de Sitter

- I. Observer I jumps in carrying a single bit (spin)
- 2. At point A observer 2 reads the bit in the Hawking radiation
- 3. Observer 2 then jumps in to see same bit twice
- 4. At point B observer I sends the bit to observer 2
- Unitarity $|\Psi_{\mathrm{out}}\>
 angle = S |\Psi_{\mathrm{in}}\>
 angle$
- Linearity $|\Psi\rangle
 ightharpoonup |\Psi\rangle
 ightharpoonup$
- Equivalence principle

Observer 2 collects Hawking radiation, but before obtaining a single bit the (maximal) entropy of the collected radiation should at least be 1/2 the dS entropy [Page]

Observer 2:

$$S = \frac{A}{4G} \propto \frac{M_{Pl}^2}{H^2}$$

Maximal information storage

In de Sitter, the most entropic subsystem consists of the largest black hole that will fit, the Nariai solution.

In D dimensions this reads $\frac{A_{D-2}r_H^{D-2}}{AC}$ with $Hr_H = \left(\frac{D-3}{D-1}\right)^{1/2}$

$$\frac{A_{D-2}r_H^{D-2}}{4G}$$

with
$$Hr_H=\Big($$

$$\frac{S_{\text{subsystem}}}{S_{\text{dS}}} \le \left(\frac{D-3}{D-1}\right)^{(D-2)/2} < \frac{1}{e} = \frac{1}{3} \text{ in } D = 4$$

R. Bousso, hep-th/0205177

No observer will ever be able to register a single bit, because backreaction will have interfered. Saves complementarity, but applies more generally

M. Parikh and JPvdS, 0804.0231[hep-th]

Causal patch holography?

No observer in de Sitter can register even a single bit of information in the Hawking radiation

- Holography: all information stored in dS causal region
- Information might be there, but cannot be accessed
- Localized detectors have a finite number of states
- No information about the landscape can be retrieved through Hawking radiation (assuming asymptotic dS)

Final remarks

Be careful using EFT in an eternal inflation context

- Many black hole results/puzzles generalize to dS
- Crucial role played by backreaction
- Could imply breakdown of EFT, possibly at macroscopically large distance scales
- Fundamental obstruction to recover information
- Practical meaning of holography in causal region?