

The Abdus Salam International Centre for Theoretical Physics

2040-7

Workshop: Eternal Inflation

8 - 12 June 2009

Precision Simulations of Bubble Collisions in Eternal Inflation

T. Giblin Perimeter Institute for Theoretical Physics Canada

Precision Simulations of Bubble Collisions in Eternal Inflation

Tom Giblin June 12, 2009 Abdus Salam International Center for Theoretical Physics Trieste, Italy

Easther, Giblin, Hui, Lim: arxiv:09xx.xxxx

Outline

- Goals and Aspirations
- Computational Strategy
- Models:
 - Two-minima model
 - Multiple vacua
 - Vacua-in-a-row
 - Extensions

+

Motivation

- Observational Signatures:
 - Signatures of Collisions
 - Gravitational Radiation
 - + ??

 Numerical methods (3+1 lattice simulations, preheating, turbulence, etc) applicable to *any* scalar field problem?

Prior Art

- Simulating first order phase transitions:
 - + Hawking, Moss, Stewart (1982)
 - Kosowksy, Turner, Watkins, Kamionkowski (1991, 1992, 1992, 1993)
- Observational Effects of Bubble Collisions:
 - + Chang, Kleban, Levi (2007, 2008)
 - + Aguirre, Johnson, Shomer (2007, 2007)
 - Eternal Inflation Bubble Simulations:
 - Aguirre, Johnson, Tysanner (2008)

Computational Strategy

- We use a (slightly) modified version of LATTICEEASY
 - Modifications to allow for higher resolution
- + Evolves scalar fields, ϕ_i , on a 3dimensional lattice,

$$\ddot{\phi}_i + 3\frac{\dot{a}}{a}\dot{\phi}_i - \frac{1}{a^2}\nabla^2\phi_i + \frac{\partial V(\phi)}{\partial\phi_i} = 0$$

Coupled to FRW gravity,

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho$$

Coleman De Luccia

$$V(\phi) = \frac{\lambda}{8} \left(\phi^2 - \phi_0^2\right)^2 + \epsilon \lambda \phi_0^3 (\phi + \phi_0) + \alpha \lambda \phi_0^4$$

We have:

+

* a potential with degenerate minima, U_0

a small symmetry breaking term

So we can (can we?) use the CDL instanton, "thin wall":

$$\phi'' + \frac{3}{\rho}\phi' = \frac{dU}{d\phi} \to \phi'' = \frac{dU_0}{d\phi}$$
$$\phi = \phi_0 \tanh\left[\frac{\sqrt{\lambda}\phi}{2}(\rho - R_0)\right] \quad R_0 = \frac{1}{\sqrt{\lambda}\phi_0}\phi_0$$

Conformal Diagrams

When you plot the energy density, you can see that most of the energy lies along the domain wall between the bubble and the bulk

Conformal Diagram: Energy Density

Conformal Diagram: Field Configuration

What about bubble collisions?

Interaction Plane

Conformal Diagram: Field Configuration

- Along the interaction plane, regions of spacetime are *classically* returned to the upper minima (pictured in beige here)
- This is reminiscent of...
 - Hawking, Moss, Stewart (1982)
 - Kosowsky, Turner (1993)

FIG. 1. The collision of two bubbles in the case $\alpha = 0$. The dashed region denotes the old, symmetric phase outside the bubbles which nucleate at x = b and x = -b on s = 0.

FIG. 2. Evolution of two identical vacuum bubbles. From left to right and top to bottom, t=36, 60, 72, and 96. The plots are 100 units in the r and z directions; each square is 2×2 dimensionless units.

Interaction Plane

 We also see some (although very little) energy being "radiated" toward the center of each bubble.

$$CDL$$
$$V(\phi) = \frac{\lambda}{4}\phi^2 \left(\phi^2 - \phi_0^2\right)^2 - \frac{\lambda\phi_0^4\phi\left(\phi - \frac{\phi_0}{2}\right)}{2} + \alpha\lambda\phi_0^6$$

+ We have:

- a potential with degenerate minima,
- a small symmetry breaking term

There are two transitions, so we have two CDL solutions:

$$R_1 = \frac{3}{2\sqrt{2\lambda}\phi_0^2\epsilon} \qquad R_2 = \frac{1}{2\sqrt{2\lambda}\phi_0^2\epsilon}$$

$$\phi = -\frac{\phi_0}{\sqrt{1+2e^{\sqrt{2\lambda}\phi_0^2(\rho-R_2)}}} \qquad \phi = \frac{\phi_0}{\sqrt{1+2e^{\sqrt{2\lambda}\phi_0^2(\rho-R_1)}}}$$

GUT-scale vacuum energy:

 $\alpha\lambda\phi_0^6\approx 10^{-20}m_{pl}^4$

+ Initial Bubble Radii, R_0 , some fraction of the Hubble Length:

 $\sqrt{\frac{8\pi}{3}} \frac{10^{-10}}{m_{pl}} \frac{R_1 + R_2}{2} \approx 0.1$

 $\epsilon \ll 1$

with the same suggestion

Almost-degenerate vacua:

The highest minimum

- We recover an (almost)expected picture
 - + Kleban et al (2007)
- But we still see regions
 where the field is in the highest energy metastable local minima

Generic quality?

- Even in the case of complicated potentials, the field can *classically* move into different metastable states
- * In both cases so far, the field had *already* been in that vacuum (just before the collision).
- + What if it's not?

We (basically) know the CDL solution

- We will start in the highest of the three potentials
 - We will nucleate two bubbles in the middle minima

A new way to form bubbles: Classical Transitions

- For (at least some) generic set of parameters, we seem to see regions of spacetime being moved via classical processes, not quantum
 - Due to proximity in field space?
 - * Related to tunneling rate??
- + How generic is this??

Future

- More bubbles (trivial extension)
 - * arbitrary configuration possible!
- How much energy is transported into the bubble? (metric stitching)
- More toy models
- + Use scalar fields as a source for gravitational radiation
 - + a la preheating
 - Couple these fields to massive/massless fields

Concluding Remarks

- We need to be careful when making dimensional reductions
 - energy flow orthogonal to line between colliding bubbles
- We need to understand where the field "can go" during a bubble collision
 - if there's a close lower energy minima in the vicinity...

