

2038-13

Conference: From DNA-Inspired Physics to Physics-Inspired Biology

1 - 5 June 2009

Physics Point of View. Topology and Dimensionality Effects

Giovanni DIETLER EPFL, Institut de Physique de la Matiere Complexe CH-1015 Lausanne Switzerland

DNA from the Polymer Physics Point of View: Topology and Dimensionality Effects

Giovanni Dietler

Laboratoire de Physique de la Matière Vivante Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland giovanni.dietler@epfl.ch lpmv.epfl.ch ipsb.epfl.ch

Summary of the following publications

- Valle, Favre, De Los Rios, Rosa, Dietler, PRL, 88 (2005) 158105.
- Adamcik, Klinov, Witz, Sekatskii, Dietler, FEBS Lett., 580 (2006) 5671.
- Ercolini, Valle, Adamcik, Witz, Metzler, De Los Rios, Roca, Dietler, PRL, 98 (2007) 058102.
- Witz, Rechendorff, Adamcik, Dietler, PRL, 101 (2008) 148103.
- Witz, Rechendorff, Adamcik, Dietler, J. Chem. Phys., submitted

Statistical Properties of 2D double-stranded circular DNA

• Statistical Properties of 2D single-stranded circular DNA

Methods:

- Imaging of DNA by Atomic Force Microscopy
- I Tracing the DNA molecules
- ☑ Statistical Properties in 2 D:
 - ☑ End-to-End Distance
 - **d** Correlation Function
 - **d** Distributions

Analyzing DNA

Scaling of the radius of

Scaling of the internal End-to-end distance

 $A = \left\langle \left(\frac{\lambda_1 - \lambda_2}{\lambda_1 + \lambda_2} \right)^2 \right\rangle$ \mathbf{X}_7 \mathbf{X}_{10}

Scaling of the radius of

$$\langle R_G^2 \rangle = \frac{1}{N} \sum_{i=1}^N (r_i - r_{cm})^2 \sim L^{2\nu}$$

 $\langle \xi(s) \rangle = s^{\nu}$

Directional correlation

$$\langle \cos \theta(s) \rangle = e^{(-s/2\ell_p)}$$

$$\ell_p = 50 \ nm$$

Scaling of the internal End-to-end distance

SAW

$$\nu = 1$$
 in 1D
 $\nu = 0.75$ in 2D
 $\nu = 0.588$ in 3D
RW
 $\nu = 0.5$

$$A = \left\langle \left(\frac{\lambda_1 - \lambda_2}{\lambda_1 + \lambda_2} \right)^2 \right\rangle$$

Circle	A=0
Rod	A=1

2 D deposition of nicked dsDNA

Circular dsDNA in 2D

Witz et al., PRL, **101**, (2008) 148103.

Scaling of the radius of gyration

$$\langle R_G^2 \rangle = \frac{1}{N} \sum_{i=1}^N (r_i - r_{cm})^2 \sim L^{2\nu}$$

SAW

$$\nu = 1$$
 in 1D
 $\nu = 0.75$ in 2D
 $\nu = 0.588$ in 3D
RW
 $\nu = 0.5$

Scaling of the radius of gyration

$$\langle R_G^2 \rangle = \frac{1}{N} \sum_{i=1}^N (r_i - r_{cm})^2 \sim L^{2\nu}$$

Directional correlation

Scaling of the internal End-to-end distance

 $\langle \xi(s) \rangle = s^{\nu}$

Internal End-to-End Distance for Circular DNA

Scaling of the radius of gyratior

$\langle R_G^2 \rangle = \frac{1}{N} \sum_{i=1}^N (r_i - r_{cm})^2 \sim L^{2\nu}$

Directional correlation

 $\langle \cos \theta(s) \rangle = e^{(-s/2\ell_p)}$

 $\mathbf{X}_{\mathbf{5}}$

X9

 \mathbf{x}_4

 X_7

Scaling of the internal End-to-end distance

Bond Correlation Function

Scaling of the radius of gyration

$$\langle R_G^2 \rangle = \frac{1}{N} \sum_{i=1}^N (r_i - r_{cm})^2 \sim$$

Directional correlation

 $\langle \cos \theta(s) \rangle = e^{(-s/2\ell_p)}$

Scaling of the internal End-to-end distance

 $\langle \xi \rangle \sim L^{\nu}$

Bond Correlation Function of DNA mini-circles

The double Helix Determines the Shape of Small DNA Circles

Results for Circular DNA								
Theoretical Values		Rin	ng SAW 0.206	Ring RW 0.279		Bishop 1988		
Experimental Values								
Plasmid	mini 1		mini 2	pUC19	pSH1		pBR322	
A-value	0.083		0.13	0.28	0.299		0.265	
Length (L/l_p)	1.6		4.5	18	40-120		30	
				<pre>sites in the second secon</pre>				

2 D Properties of circular ssDNA : one length (sorry !)

AFM Images of ssDNA

Virion $\phi x 174$: 5386 bp 10 mM Tris-HCl buffer, pH 7.8

2 D deposition of ssDNA CH2-CH2----CH CH2-CH2----CH CH2-CH2----CH2 Graphite

Persistence Length from small s (approx lp)

- Correlation Function
- End-to-End Distance
- Ent-to-End Distance Distribution

Persistence Length

- Correlation Function
- End-to-End Distance
- End-to-End Distance Distribution

Persistence Length vs. salt concentration

Collaborators

Francesco Valle, ISMN CNR, Bologna

- Mélanie Favre, EPFL
- Jozef Adamcik, EPFL
- Erika Ercolini, EPFL
- Guillaume Witz, EPFL
- Kristian Rechendorff, EPFL

- Paolo De Los Rios, EPFL
- Ralf Metzler, TU Munich
- Joaquim Roca, Barcelona
- Andrzej Stasiak, Uni Lausanne
- Erwin Frey, LMU, Munich
- Bertrand Duplantier, Ecole Polytechnique, Paris
- Hirofumi Wada, Kyoto University,

Support:

Swiss National Science Foundation, Carlsberg Foundation &

Novartis Foundation

