Critical asymptotics for Toeplitz determinants

Tom Claeys
(joint work with A. Its and I. Krasovsky)
Trieste

June 2009

Outline

- Toeplitz determinants
- Szegő and Fisher-Hartwig asymptotics
- Critical asymptotics and Painlevé V
- Toeplitz determinants and orthogonal polynomials
- 2d Ising model

Toeplitz matrix = matrix which is constant along diagonals

$$\begin{pmatrix} c_0 & c_{-1} & c_{-2} & \dots & c_{-n+1} \\ c_1 & c_0 & c_{-1} & \ddots & \vdots \\ c_2 & c_1 & \ddots & \ddots & c_{-2} \\ \vdots & \ddots & \ddots & c_0 & c_{-1} \\ c_{n-1} & \dots & c_2 & c_1 & c_0 \end{pmatrix}$$

- Toeplitz determinant is the determinant of a Toeplitz matrix
- Asymptotics for Toeplitz determinants when the size of the matrices tends to infinity?

- lacksquare Consider a weight $f(e^{i\theta})$ on the unit circle C_1
- Fourier coefficients

$$c_k = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) e^{-ik\theta} d\theta$$

- Fourier series $f(e^{i\theta}) \sim \sum_{j=-\infty}^{+\infty} c_j e^{ij\theta}$
- Toeplitz determinant for weight/symbol *f*

$$D_n(f) = \det(c_{j-k})_{j,k=0}^{n-1}$$

- If the weight $f(\theta)$
 - ▶ is "smooth"
 - has no zeros
 - has a continuous logarithm (winding number 0 around the origin)
- Szegő's strong limit theorem: as $n \to \infty$,

$$\ln D_n(f) = n(\ln f)_0 + \sum_{k=1}^{\infty} k(\ln f)_k (\ln f)_{-k} + o(1),$$

with

$$(\ln f)_k = \frac{1}{2\pi} \int_0^{2\pi} \ln f(e^{i\theta}) e^{-ik\theta} d\theta.$$

Fisher-Hartwig singularities

- Two types of weights for which Szegő asymptotics are not valid
 - jump discontinuities

Example

$$f(e^{i\theta}) = (2 - 2\cos\theta)^{\alpha} e^{i\beta(\theta - \pi)} e^{V(e^{i\theta})},$$

with Re
$$\alpha > -\frac{1}{2}$$

► Fisher-Hartwig singularity at 1

for
$$0 < \theta < 2\pi$$
,

Fisher-Hartwig singularities

■ For weights with one Fisher-Hartwig singularity with parameters α (root) and β (jump),

$$\ln D_n(f) = nV_0 + \sum_{k=1}^{\infty} kV_k V_{-k} - (\alpha - \beta) \sum_{k=1}^{\infty} V_k - (\alpha + \beta) \sum_{k=1}^{\infty} V_{-k} + (\alpha^2 - \beta^2) \ln n + \ln \frac{G(1 + \alpha + \beta)G(1 + \alpha - \beta)}{G(1 + 2\alpha)} + o(1),$$

as $n \to \infty$, where G is Barnes' G-function, and

$$V_k = \frac{1}{2\pi} \int_0^{2\pi} V(e^{i\theta}) e^{-ik\theta} d\theta.$$

(Fisher-Hartwig '68, Widom '73, Ehrhardt-Silbermann '97, Basor-Ehrhardt '01, Deift-Its-Krasovsky '08)

- Asymptotics are known for
 - Szegő weights (smooth, not winding around the origin)
 - Fisher-Hartwig weights (jump and root type singularities)
- asymptotic behavior is different in those two cases
- What happens if we deform the weight in such a way that a Szegő weight turns into a Fisher-Hartwig weight?
 - ▶ transition in asymptotic expansion where $\mathcal{O}(\ln n)$ -term appears and $\mathcal{O}(n)$ -term disappears

weight

$$f(z) = (z - e^t)^{\alpha + \beta} (z - e^{-t})^{\alpha - \beta} z^{-\alpha + \beta} e^{-i\pi(\alpha + \beta)} e^{V(z)},$$

with V analytic and $t \geq 0$

- f analytic on C with winding number zero around the origin for t>0
- f has a singularity at 1 for t = 0,

$$f(e^{i\theta})=(2-2\cos\theta)^{\alpha}e^{i\beta(\theta-\pi)}e^{V(e^{i\theta})}, \ \ \text{for} \ 0<\theta<2\pi,$$

■ Asymptotics as $n \to \infty$ for Toeplitz determinant with weight

$$f(z) = (z - e^t)^{\alpha + \beta} (z - e^{-t})^{\alpha - \beta} z^{-\alpha + \beta} e^{-i\pi(\alpha + \beta)} e^{V(z)}$$

► Szegő asymptotics for t > 0 fixed,

$$\ln D_n(t) = nV_0 + nt(\alpha + \beta) + \mathcal{O}(1), \text{ as } n \to \infty$$

► Fisher-Hartwig asymptotics for t = 0,

■ what happens if $t \to 0$ simultaneously with $n \to \infty$ (double scaling limit)?

$$f(z) = (z - e^t)^{\alpha + \beta} (z - e^{-t})^{\alpha - \beta} z^{-\alpha + \beta} e^{-i\pi(\alpha + \beta)} e^{V(z)}$$

■ Result *(TC-Its-Krasovsky)*: If $\alpha > -\frac{1}{2}$ and Re $\beta = 0$,

$$\ln D_n(t) = nV_0 + \sum_{k=1}^{\infty} kV_k V_{-k} - (\alpha - \beta) \sum_{k=1}^{\infty} V_k - (\alpha + \beta) \sum_{k=1}^{\infty} V_{-k}$$
$$+ (\alpha + \beta) nt + (\alpha^2 - \beta^2) \ln n + \ln \frac{G(1 + \alpha + \beta)G(1 + \alpha - \beta)}{G(1 + 2\alpha)}$$
$$+ \int_0^{2nt} w(x) dx + \mathcal{O}(t) + o(1),$$

lacktriangledown w is a solution to the system

$$xu_{x} = xu - 2v(u - 1)^{2} + (u - 1)[(\alpha - \beta)u - \beta - \alpha],$$

$$xv_{x} = uv[v - \alpha + \beta] - \frac{v}{u}(v - \beta - \alpha),$$

$$w = -v - \frac{1}{x} \left[\alpha^{2} - \beta^{2} - 2\alpha v + 2v^{2} - \frac{v}{u}(v - \alpha - \beta) - uv(v - \alpha + \beta)\right]$$

• w is real analytic on $(0, +\infty)$, and it has the asymptotics

$$w(x)=-rac{lpha^2-eta^2}{x}+\mathcal{O}(e^{-cx}), \qquad ext{as } x o +\infty, \ w(x)=\mathcal{O}(1)+\mathcal{O}(x^{2lpha}), \qquad ext{as } x\searrow 0.$$

lacktriangle if u and v solve the differential system, then u solves the Painlevé V equation

$$u_{xx} = \left(\frac{1}{2u} + \frac{1}{u-1}\right)u_x^2 - \frac{1}{x}u_x + \frac{(u-1)^2}{x^2}\left(Au + \frac{B}{u}\right) + \frac{Cu}{x} + D\frac{u(u+1)}{u-1},$$

with

$$A = \frac{1}{2}(\alpha - \beta)^2$$
, $B = -\frac{1}{2}(\alpha + \beta)^2$, $C = 1 + 2\beta$, $D = -\frac{1}{2}$.

$$\ln D_n(t) = nV_0 + \sum_{k=1}^{\infty} kV_k V_{-k} - (\alpha - \beta) \sum_{k=1}^{\infty} V_k - (\alpha + \beta) \sum_{k=1}^{\infty} V_{-k}$$
$$+ (\alpha + \beta) nt + (\alpha^2 - \beta^2) \ln n + \ln \frac{G(1 + \alpha + \beta)G(1 + \alpha - \beta)}{G(1 + 2\alpha)}$$
$$+ \int_0^{2nt} w(x) dx + \mathcal{O}(t) + o(1),$$

- special case 1: $n \to \infty$, $t \to 0$ in such a way that $nt \to 0$
 - ► terms $(\alpha + \beta)nt$ and $\int_0^{2nt} w(x)dx$ vanish FH asymptotics
- special case 2: $n \to \infty$, $t \to 0$ in such a way that $nt \to \infty$
 - ► divergent part of $\int_0^{2nt} w(x) dx$ kills $(\alpha^2 \beta^2) \ln n$ — Szegő asymptotics

■ Consistency of $\mathcal{O}(1)$ -term with the Szegő asymptotics leads to the identity

$$\lim_{s \to +\infty} \left[\int_0^s w(x)dx + (\alpha^2 - \beta^2) \ln s \right]$$

$$= -\ln \frac{G(1 + \alpha + \beta)G(1 + \alpha - \beta)}{G(1 + 2\alpha)}.$$

■ Extension to complex *t*?

Expansion is valid for $|argt| < \frac{\pi}{2}$ if contour of integration does not contain poles of w

- what if Im $\alpha \neq 0$ and/or Re $\beta \neq 0$?
 - $w(x; \alpha, \beta)$ is not real for x > 0
 - w can have poles on $(0, +\infty)$
 - asymptotic expansion holds only if we integrate over a pole-free contour
 - \rightarrow expansion not valid if 2nt is a pole of $w(x; \alpha, \beta)$
 - poles correspond to Toeplitz determinants approaching 0
 - ightarrow different choices of integration contour \longrightarrow expansion picks up residue of w
 - - \longrightarrow different branches of $\ln D_n$

Relation between Toeplitz determinants and orthogonal polynomials

- lacksquare let $f(e^{i\theta})$ be positive on the unit circle and in L^2
- OPs determined uniquely by conditions

$$\frac{1}{2\pi} \int_0^{2\pi} p_n(e^{i\theta}) p_m(e^{-i\theta}) f(\theta) d\theta = \delta_{nm},$$

or

$$\frac{1}{2\pi i} \int_C p_n(z) p_m(\bar{z}) f(z) \frac{dz}{z} = 0,$$

Heine's formula: determinant formula for orthogonal polynomials

$$p_n(z) = \sqrt{\frac{1}{D_{n+1}(f)D_n(f)}} \begin{vmatrix} c_0 & c_{-1} & c_{-2} & \dots & c_{-n} \\ c_1 & c_0 & c_{-1} & \ddots & \vdots \\ c_2 & c_1 & \ddots & \ddots & c_{-2} \\ \vdots & \ddots & \ddots & c_0 & c_{-1} \\ 1 & z & \dots & z^{n-1} & z^n \end{vmatrix}$$

Hint for Proof:

1. p_n is polynomial of degree n (expansion by last row),

$$p_n(z) = \sum_{j=0}^n a_j z^j$$

By residue argument, Fourier series and row expansion,

$$\frac{1}{2\pi i} \int_{C} p_{n}(z) \bar{z}^{k} f(z) \frac{dz}{z} = \sqrt{\frac{1}{D_{n+1}(f)D_{n}(f)}} \begin{vmatrix} c_{0} & c_{-1} & c_{-2} & \dots & c_{-n} \\ c_{1} & c_{0} & c_{-1} & \ddots & \vdots \\ c_{2} & c_{1} & \ddots & \ddots & c_{-2} \\ \vdots & \ddots & \ddots & \ddots & c_{0} & c_{-1} \\ c_{k} & c_{k-1} & \dots & c_{k-n+1} & c_{k-n} \end{vmatrix}$$

As a consequence, we have

$$\kappa_n(f) = \sqrt{\frac{D_n(f)}{D_{n+1}(f)}}, \qquad D_n(f) = \prod_{j=0}^{n-1} \kappa_j(f)^{-2},$$

where $\kappa_j > 0$ is leading coefficient of orthonormal polynomial p_j

- asymptotics as $n \to \infty$ for p_n, κ_n are known in many cases
- \blacksquare unfortunately $\kappa_0, \kappa_1, \ldots$ are also needed

General approach to obtain asymptotics for Toeplitz determinants for weight f

Step 1: deform weight f smoothly to a weight for which Toeplitz determinant is known (e.g. uniform weight),

$$f_t(z), \qquad f_1(z) = f, \qquad f_0(z) = 1$$

- Step 2: try to find differential identity for $\frac{d}{dt} \ln D_n(f_t)$ in terms of $p_n, p_{n-1}, \ldots, p_{n-k}$ and $\kappa_n, \kappa_{n-1}, \ldots, \kappa_{n-j}$
- Step 3: find asymptotics for orthogonal polynomials as $n \to \infty$, uniform in t
- Step 4: integrate differential identity from 0 to 1

Step 2: differential identity

■ Since $D_n(f_t) = \prod_{j=0}^{n-1} \kappa_j(f_t)^{-2}$, we have

$$\frac{d}{dt}\ln D_n(f_t) = -2\sum_{j=0}^{n-1} \frac{\kappa_j'(f_t)}{\kappa_j(f_t)}$$

- ► Write $\frac{\kappa_j'(f_t)}{\kappa_j(f_t)} = \frac{1}{4\pi i} \int_0^{2\pi} \frac{\partial}{\partial t} \left(p_j(z) p_j(\bar{z}) \right) f_t(z) \frac{dz}{z}$
- Use Christoffel-Darboux formula

$$\sum_{j=0}^{n-1} p_j(z) p_j(\bar{z}) = -n p_n(z) p_n(\bar{z}) + z \left(p_n(\bar{z}) p_n'(z) - p_n(z) p_n'(\bar{z}) \right)$$

Step 2: differential identity

■ We obtain

$$\frac{d}{dt} \ln D_n(f_t) = 2n \frac{\kappa'_n}{\kappa_n} + \frac{1}{2\pi} \int_C \frac{\partial}{\partial t} \left(p_n(\bar{z}) p'_n(z) - p_n(z) p'_n(\bar{z}) \right) f_t(z) dz$$

- asymptotics for OPs are now (in principle) sufficient to obtain asymptotics for Toeplitz determinants
- depending on the deformation, it might be possible to simplify the differential identity

Step 3: asymptotics for OPs

- this is the main difficulty
- for large classes of weights, asymptotics can be found using the Riemann-Hilbert approach

Step 4:

Insert the asymptotic expansions in the differential identity and integrate

Applied to our transition between Szegő and FH

Step 1: deformation of weight:

$$f_t(z) = (z - e^t)^{\alpha + \beta} (z - e^{-t})^{\alpha - \beta} z^{-\alpha + \beta} e^{-i\pi(\alpha + \beta)} e^{V(z)}$$

- weight is complex, so orthogonal polynomials do not necessarily exist
- we know asymptotics for $\ln D_n(0)$ (Fisher-Hartwig) and for $\ln D_n(t_0)$ (Szegő)
 - \blacktriangleright we can integrate from 0 or from t_0

- Step 2: differential identity in terms of orthogonal polynomials
 - Let $\{p_k, \hat{p}_k, k = 0, 1, ...\}$ be an orthonormal system of polynomials (both with leading coefficient χ_k) satisfying

$$\frac{1}{2\pi i} \int_{C_1} p_k(z) \hat{p}_m(z^{-1}) f(z) \frac{dz}{z} = \delta_{km}, \qquad k, m = 0, 1, .$$

- ▶ if f is real, $p_k = \hat{p}_k$ are the usual orthogonal polynomials on the unit circle
- for complex f, existence of polynomials is not guaranteed

Step 2: differential identity

$$\frac{d}{dt}\ln D_n(t) = \beta n - \frac{\cosh t}{\sinh t} \frac{\alpha^2 - \beta^2}{2} + \alpha \beta - \beta^2 - \frac{\alpha + \beta}{2} V'(e^t) + \frac{\alpha - \beta}{2} V'(e^{-t})$$
$$- \frac{\alpha + \beta}{2} \left(\frac{n}{2} + \frac{\alpha - \beta}{2}\right) F(0, e^t) + \frac{\alpha - \beta}{2} \left(\frac{n}{2} + \frac{\alpha - \beta}{2}\right) F(0, e^{-t})$$
$$+ \frac{\cosh t}{\sinh t} \frac{\alpha^2 - \beta^2}{4} F(e^t, e^{-t}),$$

where

$$F(x,y) = \text{Tr} \left[Y(x)\sigma_3 Y(x)^{-1} Y(y)\sigma_3 Y(y)^{-1} \right],$$

$$Y(z) = \begin{pmatrix} \chi_n^{-1} p_n(z) & p_n^{-1} \int_{C_1} \frac{p_n(\xi)}{\xi - z} \frac{f(\xi) d\xi}{2\pi i \xi^n} \\ -\chi_{n-1} z^{n-1} \hat{p}_{n-1}(z^{-1}) & -\chi_{n-1} \int_{C_1} \frac{\hat{p}_{n-1}(\xi)^{-1}}{\xi - z} \frac{f(\xi) d\xi}{2\pi i \xi} \end{pmatrix}$$

Y is solution of the Riemann-Hilbert problem for orthogonal polynomials

- Step 3: asymptotics for orthogonal polynomials
 - Riemann-Hilbert problem for orthogonal polynomials
 - asymptotic analysis of the RH problem
 - this is the step where the Painlevé V equation appears

Final step:

- integrate (asymptotics for) differential identity from 0 to t
- insert known FH asymptotics for $\ln D_n(0)$
- \blacksquare this leads to asymptotics for $\ln D_n(t)$

Remark:

- lacktriangle if Painlevé V function w has a pole at x
 - ► OPs do not necessarily exist (not even for large n) if $2nt \rightarrow x$
 - ▶ Toeplitz determinants approach 0 if $n \to \infty$ and $t \to 0$ such that $2nt \to x$

2d Ising model

2d Ising model

- lacktriangle rectangular lattice of size $m \times n$
- \blacksquare assign a spin (± 1) to each point of the lattice
 - spin configuration
- probability measure on configurations:

$$\mathbb{P}(\sigma \in A) = Z(T)^{-1} \sum_{\sigma \in A} e^{-E(\sigma)/T},$$

$$E(\{\sigma\}) = -\sum_{j=-\mathcal{M}}^{\mathcal{M}-1} \sum_{k=-\mathcal{N}}^{\mathcal{N}-1} (\gamma_1 \sigma_{jk} \sigma_{jk+1} + \gamma_2 \sigma_{jk} \sigma_{j+1k}), \ 0 < \gamma_1 < \gamma_2,$$

$$Z(T) = \sum_{\{\sigma\}} e^{-E(\{\sigma\})/T}$$

2d Ising model

- 2-point correlation function is given as Toeplitz determinant for a certain weight (depending on T, γ_1 , γ_2)
- phase transition for critical value of $T = T_c$ (Onsager, McCoy-Wu)
 - ▶ long range order → long range disorder
 - ▶ magnetization $\neq 0 \longrightarrow$ magnetization 0
 - corresponding Toeplitz determinant has symbol of the form

$$f(z) = (z - e^t)^{\alpha + \beta} (z - e^{-t})^{\alpha - \beta} z^{-\alpha + \beta} e^{-i\pi(\alpha + \beta)} e^{V(z)}$$

with
$$\alpha=0$$
 and $\beta=-\frac{1}{2}$

▶ $t \rightarrow 0$ corresponds to $T \nearrow T_c$