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Introduction
The Fourier transform was invented precisely to solve linear partial differential equations

of continuum mechanics. For example, consider the linear Schrödinger equation:

i
∂ψ

∂t
+

1

2

∂2ψ

∂x2
= 0 , ψ(x, 0) = ψ0(x) .



Asymptotic Methods for Integrable Systems in Nonlinear Wave Theory ICTP Trieste: June 19, 2009

Introduction
The Fourier transform was invented precisely to solve linear partial differential equations

of continuum mechanics. For example, consider the linear Schrödinger equation:

i
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∂t
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∂2ψ

∂x2
= 0 , ψ(x, 0) = ψ0(x) .

The fundamental commutative diagram:

ψ0(x)

exp (it∂x/2)

ψ(x, t)
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∂ψ
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∂x2
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Introduction
The Fourier transform was invented precisely to solve linear partial differential equations

of continuum mechanics. For example, consider the linear Schrödinger equation:

i
∂ψ

∂t
+

1

2

∂2ψ

∂x2
= 0 , ψ(x, 0) = ψ0(x) .

The fundamental commutative diagram:

ψ0(x)

exp (it∂x/2)

ψ(x, t)

Fourier Transform
ψ̂0(k)

exp
(
−itk2/2

)

ψ̂(k, t)
Inverse Fourier Transform



Asymptotic Methods for Integrable Systems in Nonlinear Wave Theory ICTP Trieste: June 19, 2009

Introduction
The Fourier transform was invented precisely to solve linear partial differential equations

of continuum mechanics. For example, consider the linear Schrödinger equation:

i
∂ψ

∂t
+

1

2

∂2ψ

∂x2
= 0 , ψ(x, 0) = ψ0(x) .

The fundamental commutative diagram:

ψ0(x)

exp (it∂x/2)

ψ(x, t)

Fourier Transform
ψ̂0(k)

exp
(
−itk2/2

)

ψ̂(k, t)
Inverse Fourier Transform

We obtain a closed-form integral formula for the solution of the initial-value problem.
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Introduction

But we are not finished. Information must be extracted from the integrals. Classical tools

for asymptotic analysis of integrals:

• Laplace’s method.
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Introduction

But we are not finished. Information must be extracted from the integrals. Classical tools

for asymptotic analysis of integrals:

• Laplace’s method.

• Method of steepest descent.

• Method of stationary phase.

These methods provide an avenue toward the analysis of several kinds of limits of physical

interest:

• Long time (scattering, diffraction theory).

• Rough data (Gibbs phenomenon).

• Short waves (geometrical optics, weak dispersion).
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Introduction

Some nonlinear wave equations can be treated similarly thanks to the inverse scattering

transform. Consider the defocusing nonlinear Schrödinger equation:

i
∂ψ

∂t
+

1

2

∂2ψ

∂x2
− |ψ|2ψ = 0 , ψ(x, 0) = ψ0(x) .
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Nonlinear semigroup
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Some nonlinear wave equations can be treated similarly thanks to the inverse scattering

transform. Consider the defocusing nonlinear Schrödinger equation:

i
∂ψ

∂t
+

1

2

∂2ψ

∂x2
− |ψ|2ψ = 0 , ψ(x, 0) = ψ0(x) .

Here the commutative diagram is:

ψ0(x)

Nonlinear semigroup

ψ(x, t)

Scattering Transform
r0(k) (reflection coefficient)
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(
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)

r(k, t)
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Introduction

Some nonlinear wave equations can be treated similarly thanks to the inverse scattering

transform. Consider the defocusing nonlinear Schrödinger equation:

i
∂ψ

∂t
+

1

2

∂2ψ

∂x2
− |ψ|2ψ = 0 , ψ(x, 0) = ψ0(x) .

Here the commutative diagram is:

ψ0(x)

Nonlinear semigroup

ψ(x, t)

Scattering Transform
r0(k) (reflection coefficient)

exp
(
−itk2/2

)

r(k, t)
Inverse Scattering Transform
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Introduction

Some nonlinear wave equations can be treated similarly thanks to the inverse scattering

transform. Consider the defocusing nonlinear Schrödinger equation:

i
∂ψ

∂t
+

1

2

∂2ψ

∂x2
− |ψ|2ψ = 0 , ψ(x, 0) = ψ0(x) .

Here the commutative diagram is:

ψ0(x)

Nonlinear semigroup

ψ(x, t)

Scattering Transform
r0(k) (reflection coefficient)

exp
(
−itk2/2

)

r(k, t)
Inverse Scattering Transform

We obtain a procedure (less explicit, perhaps) for solving the initial-value problem.
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To understand the solution of nonlinear wave equations by inverse-scattering, we may

seek nonlinear analogues of the classical methods of analysis for integrals.
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Introduction

To understand the solution of nonlinear wave equations by inverse-scattering, we may

seek nonlinear analogues of the classical methods of analysis for integrals.

This presentation is a survey of some of these nonlinear methods. We concentrate on

three example problems, and in each case we compare the procedure and results with

corresponding linear problems.

Back to outline.
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Long-Time Asymptotics for Dispersive Waves

Consider

i
∂ψ

∂t
+

1

2

∂2ψ

∂x2
− |ψ|2ψ = 0 , (Defocusing Cubic Schrödinger)

subject to the initial condition

ψ(x, 0) =


1 , |x| ≤ 1 ,

0 , |x| > 1 .
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We are interested in the asymptotic behavior of ψ(x, t) as t→ +∞.
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Corresponding Linear Problem

Consider for a moment instead the linear problem

i
∂ψ

∂t
+

1

2

∂2ψ

∂x2
= 0 , (Linear Schrödinger)

subject to the same piecewise-constant initial condition. We are interested in the

asymptotic behavior of ψ(x, t) as t→ +∞. By Fourier transforms, the solution of this

initial-value problem is

ψ(x, t) =

Z ∞
−∞

sin(2z)

πz
e
−2i(zx+z2t)

dz := lim
L→∞

Z L

−L

sin(2z)

πz
e
−2i(zx+z2t)

dz .
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Method of Stationary Phase

Long-time asymptotics: method of stationary phase (Stokes and Kelvin). Set x = vt.

Phase function I(z) := −2(zv + z2). Points z0 of stationary phase satisfy I ′(z0) = 0,

so only one stationary phase point: z0 = −v/2. Note I(z0) = v2/2 and

I ′′(z0) = −4, so the stationary phase formula is:

ψ(vt, t) = t
−1/2

r
2

π

sin(v)

v
e
itv2/2−iπ/4

+O(t
−1

) , as t→ +∞.

A plot of the leading term of

t|ψ(vt, t)|2. Note that the

amplitude of the long time limit

is essentially a rescaled version of

the Fourier transform of the initial

data. This is the classical far-field

diffraction phenomenon. -10 -5 0 5 10
v
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Some Observations

The proof of the stationary phase formula of Stokes and Kelvin is based upon the

following steps:



Asymptotic Methods for Integrable Systems in Nonlinear Wave Theory ICTP Trieste: June 19, 2009

Some Observations

The proof of the stationary phase formula of Stokes and Kelvin is based upon the

following steps:

1. Estimation of nonlocal parts of the integral (away from z0). Integration by parts.



Asymptotic Methods for Integrable Systems in Nonlinear Wave Theory ICTP Trieste: June 19, 2009

Some Observations

The proof of the stationary phase formula of Stokes and Kelvin is based upon the

following steps:

1. Estimation of nonlocal parts of the integral (away from z0). Integration by parts.

2. Approximation of local part of the integral (near z0).

(a) Exact parametrization z = z(s) to obtain a quadratic exponent e±is
2
.



Asymptotic Methods for Integrable Systems in Nonlinear Wave Theory ICTP Trieste: June 19, 2009

Some Observations

The proof of the stationary phase formula of Stokes and Kelvin is based upon the

following steps:

1. Estimation of nonlocal parts of the integral (away from z0). Integration by parts.

2. Approximation of local part of the integral (near z0).
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controlled by integration by parts.
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Some Observations

The proof of the stationary phase formula of Stokes and Kelvin is based upon the

following steps:

1. Estimation of nonlocal parts of the integral (away from z0). Integration by parts.

2. Approximation of local part of the integral (near z0).

(a) Exact parametrization z = z(s) to obtain a quadratic exponent e±is
2
.

(b) Approximation of the integrand e±is
2
g(s) by an analytic function e±is

2
g(0). Error

controlled by integration by parts.

(c) Rotation of contour by ±π/4 radians to turn rapid oscillation into exponential

decay (steepest descent).
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Nonlinear Analysis
Corresponding limit for the nonlinear problem was considered by Ablowitz and Segur, and

also by Zakharov and Manakov. Formal expansion:

ψ(vt, t) ∼ t−1/2

 
α(v) +

∞X
n=1

2nX
k=0

(log(t))k

tn
αnk(v)

!
e
itv2/2−iν(v) log(t)

, t→∞ .

All coefficients determined in terms of α by direct substitution. Goal: rigorously

determine α(v) in terms of initial data. Key observations:

• In (Segur & Ablowitz, 76), |α(v)| is related to the initial data via trace formulae.

• In (Zakharov & Manakov, 76), the leading term is used to motivate a WKB analysis of

the scattering problem, and the phase arg(α(v)) is determined.

• In (Its, 81), a key role in the analysis is identified for an “isomonodromy” problem for

parabolic cylinder functions.

• In (Deift & Zhou, 93) a universal scheme for obtaining these results is obtained as a

“steepest descent method” for Riemann-Hilbert problems.
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Nonlinear Analysis

The solution of the defocusing cubic Schrödinger equation is based on inverse-scattering

for the self-adjoint Zakharov-Shabat operator:

1. Viewing the initial data as a “potential”, obtain from the ZS problem the corresponding

“reflection coefficient” r(z), z ∈ R. For our initial data:

r(z) := ie
−2iz e2i

√
z2−1 − e−2i

√
z2−1

(z −
√
z2 − 1)e2i

√
z2−1 − (z +

√
z2 − 1)e−2i

√
z2−1

.

From r(z), form the “jump matrix” v(z; x, t), z ∈ R:

v(z; x, t) =

 
1− |r(z)|2 −r(z)∗e−2i(xz+tz2)

r(z)e2i(xz+tz2) 1

!
.

2. Solve a Riemann-Hilbert problem.
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Riemann-Hilbert Problem

Seek M(z; x, t) satisfying:

1. M(z; x, t) is analytic for z ∈ C \ R.

2. M(z; x, t)→ I as z →∞.

3. For z ∈ R, M+(z; x, t) = M−(z; x, t)v(z; x, t).

M+(z; x, t)

M−(z; x, t)
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Riemann-Hilbert Problem

Seek M(z; x, t) satisfying:

1. M(z; x, t) is analytic for z ∈ C \ R.

2. M(z; x, t)→ I as z →∞.

3. For z ∈ R, M+(z; x, t) = M−(z; x, t)v(z; x, t).

M+(z; x, t)

M−(z; x, t)

Then

ψ(x, t) = 2i lim
z→∞

zM12(z; x, t) .
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Deift-Zhou Steepest Descent Technique

Set x = vt. Factorize jump matrix v(z; x, t) two ways:

v(z; vt, t) =

„
1 −r(z)∗eitI(z)
0 1

«„
1 0

r(z)e−itI(z) 1

«
,

and

v(z; vt, t) =

0BBB@
1 0

r(z)e−itI(z)

1− |r(z)|2
1

1CCCA
0BB@

1− |r(z)|2 0

0
1

1− |r(z)|2

1CCA
0BBB@

1 −
r(z)∗eitI(z)

1− |r(z)|2

0 1

1CCCA .

Here I(z) = −2(zv + z2) (same phase function as in the linear theory).

z0 <(iI(z)) > 0

<(iI(z)) < 0

<(iI(z)) < 0

<(iI(z)) > 0
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Noncommutative Steepest Descent

Explicitly transform M(z; vt, t)→ N(z; vt, t):

N := M

 
1 −r(z∗)∗eitI(z)
0 1

!
 

1− |r(z)|2 −r(z)∗eitI(z)

r(z)e−itI(z) 1

!
−
+

N := M

N := M
N := M

0BBB@1
r(z∗)∗eitI(z)

1− r(z)r(z∗)∗

0 1

1CCCA

N := M

0BBB@
1 0

r(z)e−itI(z)

1− r(z)r(z∗)∗
1

1CCCA

N := M

 
1 0

−r(z)e−itI(z) 1

!



Asymptotic Methods for Integrable Systems in Nonlinear Wave Theory ICTP Trieste: June 19, 2009

Noncommutative Steepest Descent

Jump conditions satisfied by N(z; vt, t):

 
1 −r(z∗)∗eitI(z)
0 1

!
0BB@

1− |r(z)|2 0

0
1

1− |r(z)|2

1CCA +
−

+
−

+
−

+
−

+
−

0BBB@1 −
r(z∗)∗eitI(z)

1− r(z)r(z∗)∗

0 1

1CCCA

0BBB@
1 0

r(z)e−itI(z)

1− r(z)r(z∗)∗
1

1CCCA

 
1 0

r(z)e−itI(z) 1

!
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Noncommutative Steepest Descent

Set O(z; vt, t) = N(z; vt, t)f(z)−σ3. Jump conditions for O(z; vt, t):

0BBB@
1 0

f(z)2r(z)e−itI(z)

1− r(z)r(z∗)∗
1

1CCCA

+
−

+
−

+
−

+
−

 
1 −f(z)−2r(z∗)∗eitI(z)
0 1

!

 
1 0

f(z)2r(z)e−itI(z) 1

!
0BBB@1 −

f(z)−2r(z∗)∗eitI(z)

1− r(z)r(z∗)∗

0 1

1CCCA

Note: f(z) := exp

 
1

2πi

Z z0

−∞

log(1− |r(s)|2)
s− z

ds

!
.
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Noncommutative Steeepest Descent

Rescale: w2 = 2t(z − z0)
2. Set P(w; vt, t) := O(z; vt, t). Jumps for P:

 
1 0

Ke−iπγeiw
2
wγ +O(t−1/2) 1

!

+
−

+
−

+
−

+
−

 
1 −K∗e−iw

2
w−γ +O(t−1/2)

0 1

!
 

1 0

Keiw
2
wγ +O(t−1/2) 1

!
 

1 −K∗e−iπγe−iw
2
w−γ +O(t−1/2)

0 1

!

Note: f(z)2 = f2
0 (z − z0)

γ(1 +O(z − z0)), K = f2
0r(z0)e

itv2/2(2t)−γ/2.
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Model Problem

Propose a model Riemann-Hilbert problem for P̃(w; vt, t) with jumps:

 
1 0

Ke−iπγeiw
2
wγ 1

!

+
−

+
−

+
−

+
−

P̃(w; vt, t)→ I

 
1 0

Keiw
2
wγ 1

!
 

1 −K∗e−iw
2
w−γ

0 1

!

 
1 −K∗e−iπγe−iw

2
w−γ

0 1

!

Solved explicitly in terms of parabolic cylinder functions. Isomonodromy approach.
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Error Analysis

Consider the error in using this model: E(w; vt, t) := P(w; vt, t)P̃(w; vt, t)−1. While

not known explicitly, the error satisfies a Riemann-Hilbert problem:

1. E(w; vt, t) is analytic for w ∈ C \X (X is the contour).

2. E(w; vt, t)→ I as w →∞.

3. For w ∈ X, E+(w; vt, t) = E−(w; vt, t)vE(w; vt, t).

Note that vE = P̃−vPv−1

P̃
P̃−1
− = I +O(t−1/2). Key fact:

vE = I +O(t
−1/2

) implies E(w; vt, t) = I +O(t
−1/2

w
−1

) = I +O(t
−1
z
−1

) .
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Error Analysis

For z along the imaginary axis (for example),

M(z; vt, t) = N(z; vt, t)

= O(z; vt, t)f(z)σ3

= P(w; vt, t)f(z)σ3

= E(w; vt, t)P̃(w; vt, t)f(z)σ3 .

With (using classical asymptotics for parabolic cylinder functions)

P̃12(w; vt, t) = w
−1
p̃(vt, t) +O(w

−2
) = (2t)

−1/2
z
−1
p̃(vt, t) +O(t

−1
z
−2

) ,

we arrive at ψ(vt, t) = 2i(2t)−1/2p̃(vt, t) +O(t−1).

Back to outline.
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Short-time Asymptotics for Dispersive Waves with Rough Data

Consider once again the nonlinear problem

i
∂ψ

∂t
+

1

2

∂2ψ

∂x2
− |ψ|2ψ = 0 , (Defocusing Cubic Schrödinger)

subject to the initial condition

ψ(x, 0) =


1 , |x| ≤ 1 ,

0 , |x| > 1 .

We are now interested in the asymptotic behavior of ψ(x, t) as t ↓ 0.
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Corresponding Linear Problem

Again we study first the linear problem

i
∂ψ

∂t
+

1

2

∂2ψ

∂x2
= 0 , (Linear Schrödinger)

subject to the same piecewise-constant initial condition. We are interested in the

asymptotic behavior of ψ(x, t) as t ↓ 0. Recall the explicit solution

ψ(x, t) =

Z ∞
−∞

sin(2z)

πz
e
−2i(zx+z2t)

dz := lim
L→∞

Z L

−L

sin(2z)

πz
e
−2i(zx+z2t)

dz .
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Asymptotic Analysis: Gibbs Phenomenon

The limit t ↓ 0 cannot be uniform near x = ±1 because ψ(x, t) is smooth for t > 0.

Choose a contour C :∞e3πi/4 →∞e−iπ/4 (for t > 0) with z = 0 to the left of C.

Then, with

x = 1 + t
1/2
s ,

we split up the integrand and get

ψ(1 + t
1/2
s, t) =

Z
C

e
−2i(zt1/2s+z2t) dz

2πiz
−
Z
C

e
−2i(z(2+t1/2s)+z2t) dz

2πiz
.

z = 0

C



Asymptotic Methods for Integrable Systems in Nonlinear Wave Theory ICTP Trieste: June 19, 2009

Error Bound

We want to neglect the second term: using the change of parameter

z = ty − z∗ , z∗ :=
1

t
+

s

2t1/2
,

we have Z
C

e
−2i(z(2+t1/2s)+z2t) dz

2πiz
= e

2itz2∗
Z
y(C)

e−2iy2/t dy

y − 1− t1/2s/2
,
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Error Bound

We want to neglect the second term: using the change of parameter

z = ty − z∗ , z∗ :=
1

t
+

s

2t1/2
,

we have Z
C

e
−2i(z(2+t1/2s)+z2t) dz

2πiz
= e

2itz2∗
Z
y(C)

e−2iy2/t dy

y − 1− t1/2s/2
,

= e
2itz2∗

Z
y(C)

O(1)e
−2iy2/t

dy ,
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Error Bound

We want to neglect the second term: using the change of parameter

z = ty − z∗ , z∗ :=
1

t
+

s

2t1/2
,

we have Z
C

e
−2i(z(2+t1/2s)+z2t) dz

2πiz
= e

2itz2∗
Z
y(C)

e−2iy2/t dy

y − 1− t1/2s/2
,

= e
2itz2∗

Z
y(C)

O(1)e
−2iy2/t

dy ,

= O(t1/2) ,

(steepest descent over y = 0) as t ↓ 0.
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Leading Term

Thus, we have

ψ(1 + t
1/2
s, t) =

Z
C

e
−2i(zt1/2s+z2t) dz

2πiz
+O(t

1/2
) ,

Rescaling the integration parameter by z = t−1/2w we arrive at

ψ(1 + t
1/2
s, t) = F (s) +O(t

1/2
) , F (s) :=

Z
C

e
−2i(sw+w2) dw

2πiw
.

Steepest descent: F (s)→ 0 (exponentially small) as s→∞eiπ/4. Also,

F
′
(s) = −

1

π

Z
C

e
−2i(sw+w2)

dw = −
eis

2/2

π

Z
C

e
−2i(w+s/2)2

dw = −
eis

2/2−iπ/4
√

2π
.
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Leading Term

Consequently,

F (s) =
e−iπ/4
√

2π

Z ∞eiπ/4
s

e
iz2/2

dz =
1

2
Erfc

 
se−iπ/4
√

2

!
,

where Erfc(x) :=
2
√
π

Z ∞
x

e
−τ2

dτ . Pictures of real and imaginary parts:

-10 -5 0 5 10
s
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A kind of Gibbs phenomenon.
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Nonlinear Analysis

Recall the solution technique: seek M(z; x, t) satisfying:

1. M(z; x, t) is analytic for z ∈ C \ R.

2. M(z; x, t)→ I as z →∞.

3. For z ∈ R, M+(z; x, t) = M−(z; x, t)v(z; x, t).

M+(z; x, t)

M−(z; x, t)
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Nonlinear Analysis

Recall the solution technique: seek M(z; x, t) satisfying:

1. M(z; x, t) is analytic for z ∈ C \ R.

2. M(z; x, t)→ I as z →∞.

3. For z ∈ R, M+(z; x, t) = M−(z; x, t)v(z; x, t).

M+(z; x, t)

M−(z; x, t)

Then

ψ(x, t) = 2i lim
z→∞

zM12(z; x, t) .
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Nonlinear Analysis

For the nonlinear analysis (DiFranco & McLaughlin, 05), the key observations are:

1. For t small, v(z; x, t) is close to v(z; x, 0) uniformly for z in bounded subsets of R.

2. The Riemann-Hilbert problem with jump v(z; x, 0) has a known solution M(z; x, 0)

(Jost functions for the initial data).

3. While approximation by v(z; x, 0) is good for bounded z, as z becomes large,

v(z; x, 0)→ I.

This suggests the construction of a model for M(z; x, t).
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Model and Error

For some α > 0 the model M̃(z; x, t) for M(z; x, t) is defined by the diagram:

M̃(z; x, t) := M(z; x, 0)

M̃(z; x, t) := I

|z| = t−α

The error is E(z; x, t) := M(z; x, t)M̃(z; x, t)−1.
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Error Analysis

Set x = 1 + t1/2s and w = tαz. With F(w; 1 + t1/2s, t) := E(z; 1 + t1/2s, t), jump

conditions for F are (uniform for s bounded):

I +O(tα)

I +O(t1−2α)I +O(tα) I +O(tα)

|w| = 1

I +O(tα)

Optimal scaling α = 1/3. Solve in a Hölder space by a Neumann series. Result:

ψ(1 + t
1/2
s, t) =

1

2
Erfc

 
se−iπ/4
√

2

!
+O(t

1/2
) . (Compare with linear case.)

Back to outline.
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Semiclassical Asymptotics for Modulationally Unstable Dispersive
Waves

Consider now

i~
∂ψ

∂t
+

~2

2

∂2ψ

∂x2
+ |ψ|2ψ = 0 , (Focusing Cubic Schrödinger)

with initial condition ψ(x, 0) = A(x)eiS(x)/~. This is equivalent to the first-order

system
∂ρ

∂t
+

∂

∂x
(ρu) = 0 ,

∂u

∂t
+ u

∂u

∂x
−
∂ρ

∂x
=

~2

2

∂

∂x

"
1

2ρ

∂2ρ

∂x2
−
„

1

2ρ

∂ρ

∂x

«2
#
,

for ρ(x, t) := |ψ(x, t)|2 and u(x, t) := ~=(log(ψ))x, subject to the initial conditions

ρ(x, 0) = A(x)2, u(x, 0) = S′(x).

This is a problem with a strong (for small ~) modulational instability.
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Linearized Problem

Linearize about a constant state. For ρ(0) > 0 and u(0) constants, set

ρ = ρ
(0) · (1 + A) , u = u

(0)
+ B ,

and drop all nonlinear terms in A and B to obtain

∂A

∂t
+ u

(0)∂A

∂x
+
∂B

∂x
= 0 ,

∂B

∂t
+ u

(0)∂B

∂x
− ρ(0)∂A

∂x
= ~2∂

3A

∂x3
.
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Linearized Problem

Go to a moving frame: y = (x− u(0)t)/
p
ρ(0):

∂A

∂t
+

1p
ρ(0)

∂B

∂y
= 0 ,

∂B

∂t
−
q
ρ(0)

∂A

∂y
=

~2

ρ(0)
p
ρ(0)

∂3A

∂y3
.

Cross differentiate, set ε = ~/ρ(0):

∂2A

∂t2
+
∂2A

∂y2
+ ε

2∂
4A

∂y4
= 0 ,

∂2B

∂t2
+
∂2B

∂y2
+ ε

2∂
4B

∂y4
= 0 .
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Classical Steepest Descent Analysis for Linearized Problem

Study uεtt + uεxx + ε2uεxxxx = 0 with uε(x, 0) = f(x) and uεt(x, 0) = 0:

uε(x, t) =

Z
ε2k2≤1

f̂(k) cosh(kt
p

1− ε2k2)e
ikx
dk

+

Z
ε2k2>1

f̂(k) cos(kt
p
ε2k2 − 1)e

ikx
dk .

Assume f̂ ∈ L1(R). Then by dominated convergence, for each real x and t fixed,

lim
ε→0

Z
ε2k2>1

f̂(k) cos(kt
p
ε2k2 − 1)e

ikx
dk = 0 .

Therefore, the interesting asymptotics of uε(x, t) are carried by

U
ε
(x, t) :=

Z
ε2k2≤1

f̂(k) cosh(kt
p

1− ε2k2)e
ikx
dk .
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Classical Steepest Descent Analysis for Linearized Problem

Change the variable of integration by k = s/ε. Thus

U
ε
(x, t) =

1

2

Z 1

−1

e
th+(s;c)/ε

F (s; ε) ds+
1

2

Z 1

−1

e
th−(s;c)/ε

F (s; ε) ds ,

where

c =
x

t
, h±(s; c) := ics± s

p
1− s2 , F (s; ε) :=

1

ε
f̂

„
s

ε

«
.
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Classical Steepest Descent Analysis for Linearized Problem

(s1, y1)

s

y

y2 = 1− s2

z1

z2

(s2, y2)

Remove square roots by stereographic

projection:

z =
s

1 + y
, s

2
+ y

2
= 1 ,

s =
2z

1 + z2
, y =

1− z2

1 + z2
.

Therefore, U
ε
(x, t) =

1

2

Z 1

−1

e
tH+(z;c)/ε

G(z; ε) dz +
1

2

Z 1

−1

e
tH−(z;c)/ε

G(z; ε) dz,

where

H±(z; c) :=
2(ic± 1)z + 2(ic∓ 1)z3

(1 + z2)2
, G(z; ε) :=

2

ε
·

1− z2

(1 + z2)2
f̂

„
2

ε
·

z

1 + z2

«
.
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Classical Steepest Descent Analysis for Linearized Problem

Assume f(x) = e−|x| and thus f̂(k) =
1

2πi

»
1

k − i
−

1

k + i

–
. Then,

G(z; ε) =
1

πi
·
1− z2

1 + z2

»
1

2z − iε(1 + z2)
−

1

2z + iε(1 + z2)

–
.

Note the symmetries:

G(z
∗
; ε) = G(z; ε)

∗
, G(−z; ε) = G(z; ε) ,

H±(z
∗
;−c) = H±(z; c)

∗
, H±(−z; c) = −H±(z; c) , H±(z;−c) = −H∓(z; c) .

From these it follows that

U
ε
(−ct, t) = U

ε
(ct, t) , U

ε
(ct, t) = <

„Z 1

−1

e
tH+(z;c)/ε

G(z; ε) dz

«
.

Thus, it suffices to analyze the exponent H+(z; c) for c ≥ 0.
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Classical Steepest Descent Analysis for Linearized Problem

Poles of F (s; ε) at s = ±iε: Res
s=±iε

F (s; ε) ds = ±
1

2πi
.

This implies four poles in the z-plane, two near z =∞ and two near z = 0:

z = ±iε/2 +O(ε3). By conformal invariance of residues,

Res
z=±iε/2+O(ε3)

G(z; ε) dz = Res
s=±iε

F (s; ε) ds = ±
1

2πi
.

Furthermore, if δ < |z| < M is any fixed annulus, the asymptotic behavior

G(z; ε) = ε
1− z2

2πz2
+O(ε

3
)

holds uniformly as ε→ 0. Deformation of the contour from z = 0 thus will produce

residues, but we may then use the asymptotic formula for G(z; ε) in the integrand. Note

also:

H+(±iε/2 +O(ε
3
)) = ∓ε(c∓ i) +O(ε

3
) .
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Steepest Descent Contours

Determine the best location for the contour of integration. Landscape plots for

<(H+(z; c)):

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2

c = 0 c = 1 c = 2
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Steepest Descent Contours

Determine the best location for the contour of integration. Landscape plots for

<(H+(z; c)):

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1
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c = 5/2 c = 2
√

2 c = 3
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Steepest Descent Contours

Determine the best location for the contour of integration. Landscape plots for

<(H+(z; c)):
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1

2

-2 -1 0 1 2
-2

-1

0

1
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c = 5 c = 10 c = 1000
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Results of Linear Analysis
Steepest descent analysis of the Fourier integral representation for U ε(ct, t) shows that:

• If t > 0 and 0 ≤ c < 2
√

2, then a saddle point zc dominates (angle of passage is

θc) and the solution is rapidly oscillatory and exponentially large:

U ε(ct, t) = ε
3/2

˛̨̨̨
˛1− z2

c

z2
c

˛̨̨̨
˛ et<(H+(zc;c))/εq

2πt|H ′′+(zc; c)|

×
"
cos

 
t

ε
=(H+(zc; c)) + θc + arg

 
1− z2

c

z2
c

!!
+O(ε)

#
.

• If t > 0 and c > 2
√

2, then a residue dominates, and

U
ε
(ct, t) = e

−ct
cos(t) +O(ε) = e

−x
cos(t) +O(ε) .

Note that the function e−x cos(t) is an exact solution of Laplace’s equation in x and t.
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Results of Linear Analysis

The positive quadrant of the (x, t)-plane:

Oscillatory and exponentially large

t

x

x = 2
√

2t

Harmonic

Note that:

• The harmonic limit is a strong limit.

• The exponentially large and oscillatory behavior precludes even a weak limit.
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Nonlinear Problem

Consider the nonlinear problem with

initial data ψ(x, 0) = 2 sech(x).

Equivalent to the Satsuma-Yajima

“N -soliton” with N = 2/~.

Images from (Miller & Kamvissis,

98) and (Lyng & Miller, 07).

Weak limits evidently exist in

oscillatory regions (bounded

amplitude).
0.0 0.5 1.0 1.5 2.0

x
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2.0

t

N=5
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Nonlinear Problem

Consider the nonlinear problem with

initial data ψ(x, 0) = 2 sech(x).

Equivalent to the Satsuma-Yajima

“N -soliton” with N = 2/~.

Images from (Miller & Kamvissis,

98) and (Lyng & Miller, 07).

Weak limits evidently exist in

oscillatory regions (bounded

amplitude).
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Nonlinear Problem

Consider the nonlinear problem with

initial data ψ(x, 0) = 2 sech(x).

Equivalent to the Satsuma-Yajima

“N -soliton” with N = 2/~.

Images from (Miller & Kamvissis,

98) and (Lyng & Miller, 07).

Weak limits evidently exist in

oscillatory regions (bounded

amplitude).
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Nonlinear Problem

Consider the nonlinear problem with

initial data ψ(x, 0) = 2 sech(x).

Equivalent to the Satsuma-Yajima

“N -soliton” with N = 2/~.

Images from (Miller & Kamvissis,

98) and (Lyng & Miller, 07).

Weak limits evidently exist in

oscillatory regions (bounded

amplitude).
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Nonlinear Analysis

Once again, we have a Riemann-Hilbert

problem of inverse scattering. No

jump discontinuity — instead 2N poles

(soliton eigenvalues) with homogeneous

conditions on residues.

Riemann-Hilbert problem: seek m(z)

meromorphic with simple poles at the

soliton eigenvalues such that

1. m(z)→ I as z →∞.

2. At pole zk in the upper half-plane, the residue of the first column of m(z) is proportional

to the value of the second column of m(z).

3. m(z∗)∗ = σ2m(z)σ2.
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Nonlinear Analysis

Interpolation method (Kamvissis,

McLaughlin, & Miller, 03): find an

explicit simultaneous local solution

of all the residue conditions in the

upper half-plane: m̃(z). Then

introduce a new unknown M(z) by:

M(z) = m(z)m̃(z)−1

M(z) = m(z)

M(z) = m(z)

M(z) = m(z)σ2m̃(z∗)∗−1σ2

• Local solution m̃(z) constructed by analytic interpolation of auxiliary spectral data

(norming constants) at the soliton eigenvalues.

• Poles of m(z) swapped for jump discontinuities of M(z).



Asymptotic Methods for Integrable Systems in Nonlinear Wave Theory ICTP Trieste: June 19, 2009

Nonlinear Analysis

Next step: “stabilize” the Riemann-Hilbert problem for M(z) in the limit N →∞.

Consider a problem of potential theory: choose the curve surrounding the eigenvalues to

have “minimal weighted capacity”:

• The choice of this special curve is again a nonlinear analogue of the classical method

of steepest descent for integrals.

• The extremal measure realizing the minimal capacity has arcs of support, and gaps.

The number of support arcs is related to the genus of Riemann theta functions involved

in the asymptotic solution.

This leads to a complete theory of the primary caustic curve, a phase transition from

genus zero to genus two.
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Nonlinear Analysis

Surprisingly, further analysis of the secondary caustic curve (Lyng & Miller, 07) requires

the use of multiple local solutions:

M(z) = m(z)

M(z) = m(z)m̃1(z)−1

M(z) = m(z)σ2m̃1(z∗)∗−1σ2

M(z) = m(z)m̃2(z)−1

M(z) = m(z)σ2m̃2(z∗)∗−1σ2

M(z) = m(z)
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Nonlinear Analysis

Important challenges remain:

1. Making the determination of the caustic curves computationally efficient.

2. Extending the procedure to more general initial data. Some generalized Satsuma-Yajima

potentials considered by (Tovbis, Venakides, & Zhou, 04).

3. Greatest challenge: analysis with nonanalytic initial data.

Return to outline.
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Conclusion

Here are the main points to keep in mind:

• There is a growing toolbox of nonlinear asymptotic methods in direct analogy with the

classical methods for approximation of exponential or oscillatory integrals.
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Conclusion

Here are the main points to keep in mind:

• There is a growing toolbox of nonlinear asymptotic methods in direct analogy with the

classical methods for approximation of exponential or oscillatory integrals.

• These methods may be applied to study asymptotic aspects of initial-value problems

for nonlinear integrable wave equations just as Fourier integrals may be analyzed for

analogous linear problems.
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Conclusion

Here are the main points to keep in mind:

• There is a growing toolbox of nonlinear asymptotic methods in direct analogy with the

classical methods for approximation of exponential or oscillatory integrals.

• These methods may be applied to study asymptotic aspects of initial-value problems

for nonlinear integrable wave equations just as Fourier integrals may be analyzed for

analogous linear problems.

• While in some cases the results exhibit behavior that is analogous to linear behavior, in

other cases the same kind of methods predict strongly nonlinear behavior that has no

linear analogue (solitons).
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Conclusion

Here are the main points to keep in mind:

• There is a growing toolbox of nonlinear asymptotic methods in direct analogy with the

classical methods for approximation of exponential or oscillatory integrals.

• These methods may be applied to study asymptotic aspects of initial-value problems

for nonlinear integrable wave equations just as Fourier integrals may be analyzed for

analogous linear problems.

• While in some cases the results exhibit behavior that is analogous to linear behavior, in

other cases the same kind of methods predict strongly nonlinear behavior that has no

linear analogue (solitons).

Thank You!

Back to outline.


