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Introduction



Splitting methods for ODEs
Consider the initial value problem
u' = f(u) + g(u), u(0) given

Splitting the vector field

vi=1f(v), = v(t) =g (v(0))
w'=g(w), = w(t)=gf (w(0))
Lie—Trotter splitting (Trotter 1959)
u(h) ~ ¢l o (u(0))

Strang—Marchuk splitting (1968)

f
u(h) = @l 0 o o Glfl, (u(0))
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Error analysis — the linear case

Initial value problem
u' = Au + Bu, u(t) = e B y(0)
Error analysis: bounds for
HetAetB —et(A+B)}’ < CtPtt

» Taylor series expansions
» Baker-Campbell-Hausdorff formula (1905/06)

eAetB =eCt) (C(s,t) = sA+tB+ %t[A, Bl + ...

expansion in terms of commutators

Hairer, Lubich, Wanner: Geometric Numerical Integration
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Error analysis — the nonlinear case

Calculus of Lie derivatives
u'= ), D =Y, f(u)
J
gives the representation

o (ug) = exp(tDr)Id (up)

Grobner's permutation lemma (1960)

ol o o1 = exp(tDy) exp(tD,)Id
back to the BCH-formula

Hairer, Lubich, Wanner: Geometric Numerical Integration
Hundsdorfer, Verwer: Numerical Solution of Time-Dependent ADR Egs.

Sanz-Serna, Calvo: Numerical Hamiltonian Problems
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Why using splitting methods?

» geometric numerical integration
properties of the exact flow are conserved

» partial differential equations
quest for efficient solvers
splitting of dimensions
one large system — many smaller systems (in parallel)
splitting of physical phenomena (time scales)
advection, diffusion, reaction
simpler subsystems

» exact integrators for the single flows are available
(non)linear Schrodinger egs., diffusion-reaction egs.
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Splitting methods for PDEs

enormous amount of literature, starting in the 1950's

LOD schemes (locally one dimensional, fractional step
methods): Samarskii, Yanenko, Marchuk, ...

ADI schemes (alternating direction implicit):

Douglas, Peaceman, Rachford, ...

in this talk: abstract point of view
evolutionary PDE = ODE in an abstract Banach space
Trotter, Sheng, Schatzman, Descombes, Lubich, Jahnke, Faou, ...

Hundsdorfer, Verwer: Numerical Solution of Time-Dependent
Advection-Diffusion-Reaction Equations
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Outline

Introduction

Error analysis based on semigroups

High order exponential splitting methods
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Convergence analysis

Error analysis based on semigroups
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Linear problem setting

Consider the abstract evolution equation
u'=Lu=(A+ B)u

where L, A and B are of the form

» E:D(E)CH—H
» linear and unbounded

» maximal dissipative, I.e.,
Re(Eu,u) <0 and R(/I—E)=H

E generates an analytic semigroup of contractions
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Linear problem setting, example

Example  Elliptic operator on Q C R¢

Lu= Au+ Bu
s d
— Z D; (ai(x) D;u) + Z Dj (aj(x) Dju)
i=1 j=s+1
» H = LQ(Q)

» 2, >0o0n Q and boundary conditions
» a; >00n Q and a;, =0 on 0N
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Splitting, examples

Four typical examples of splitting methods S,ug ~ e™uq

» Lie—Trotter splitting (1959)
Sp= (I — hB) (I — hA)~!
» Peaceman—Rachford splitting (1955)
Sy — (1 - £B) (1 + BAY(I — £4) (1 + 26)
» Exponential Lie splitting
S, — ehBehA
» Strang splitting (1968)

1 1
S, = e3MAchBozhA
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Typical convergence analysis

Telescopic identity
(Slr: o enhL)u0 _ ZS;"l—j—l(Sh o ehL)ethuO

Stability ||S7| < C for0<nh<T
difficult in a general Banach space framework
simple situations:
maximal dissipative operators in Hilbert spaces
relatively bounded operators [|[A7*B|| < C for0<a<1

Consistency
Orders require regularity assumptions on initial data / solution
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Main goals

Devise and employ an abstract framework which
» allows to prove optimal convergence orders
» allows splitting into unbounded operators

» includes elliptic operators on bounded
domains with nonperiodic b.c.

today: concentrate on linear parabolic problems

Many results generalize to
Co groups (linear Schrodinger eq. with unbounded potential)
nonlinear parabolic problems
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Convergence of the Lie splitting

Consider u' ' =1Lu, L=A+B

Theorem

If, under the above assumptions,
i. D(L?) C D(AB)ND(A)
1. Ug € D(Lz)

then the Lie splitting is first order convergent,

2
|(Sh —e™)uoll < Ch Y || wol|

Jj=0

Note ug € D(L**¢) is sufficient if L is sectorial

Hansen, A.O., Numer. Math. (2008)
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Proof

Telescopic identity
n—1

(Slr: . enhL)UO _ ng—j—l(sh . ehL)ethu0

j=0
Step | Stability
L, A, B are dissipative
= I = AL (1~ ABY, [l < L

= [ISll and [/ < 1

Step Il Consistency
Sp—eht = h? bd.op. 1> O
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Operator calculus

Let \g:=eht, ¢ =hL

For j > 1 define the corresponding ¢-functions

h :
1 _ =1
A== [ e E_T_qr
/ /0 (—1)!

One obtains the recurrence relation
A= 14 0N
i = T LA+

and, e.g.,
A — A1 = h()\l — )\2)L

i.e., one gains one power of h on D(L).
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Operator calculus, cont.

Further introduce
a=hA b=~hB
a=(I—a), f=(—b)"

The corresponding ;-function aq
a=14+ac; = o=«

Is particularly simple. Observe that

»  aa = Qa

» | =a— ax

» [OBba = [Bab+ fbaa — faab on D(B)
because (Bb = fba — fbac = pab — Baab
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Sh—ehLZﬁCV—)\o



Sy, —e = Ba— 1)



Sy, —e = Ba— 1)
— ﬁa — (ﬁ — bﬁ)(oz — aOé))\o



Consistency

Sh—ehL:ﬁCk—)\o
= Ba — (6 — bB)(a — aa) A
= ﬂa(/ — )\0) -+ (ﬁoza + Bba — ﬂba&))\o
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Consistency

Sh—ehL:ﬁOf—)\o
= Ba — (6 — bB)(a — aa) A
= ﬂag(/ — )\0) -+ (ﬁoza + Bba — ﬂba&))\o
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Consistency

Sp—e = Ba— )\
= Ba — (6 — bB)(a — aa) A
= Ba(l — X\g) + (Baa + Bba — Bbaa) )\
= —fBall + (Baa+ Bba — Bbaa) g
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Consistency

Sp—e = Ba— )\
= Ba — (6 — bB)(a — aa) A
= Ba(l — X\g) + (Baa + Bba — Bbaa) )\
= —fal) + (Baa+ Bba — Bbaa) g
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Consistency

Sp—e = Ba— )\
= Ba — (6 — bB)(a — aa) A
= Ba(l — X\o) + (Baa + Bba — Bbaa) g
= —fal) + (Baa+ Bba — Bbaa) g
= —Bal) + (Baa+ Bab + fbac — faab — Bbaa) Ao
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Consistency

Sp—e = Ba— )\
= Ba — (8 — bB)(a — aa)Xo
= Ba(l — X\o) + (Baa + Bba — Bbaa) g
= — [l + (Baa+ Bba — Bbaa) g
= —falA; + (Baa+ Bab+ Bbac — faab — Fbac) Ao
= Bal(Ng — A1) — BaabAg
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Consistency

Sp—e = Ba— )\
= Ba — (8 — bB)(a — aa)Xo
= Ba(l — X\o) + (Baa + Bba — Bbaa) g
= — [l + (Baa+ Bba — Bbaa) g
= —Bal) + (Baa+ Bab + fbaa — faab — Bbaa) Ao
= Bal(Ng — A1) — BaabAg
= Bal?(A1 — X2) — Baabg
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Consistency

Sp—e = Ba— )\
= Ba — (8 — bB)(a — aa)Xo
= Ba(l — X\o) + (Baa + Bba — Bbaa) g
= — [l + (Baa+ Bba — Bbaa) g
= —Bal) + (Baa+ Bab + fbaa — faab — Bbaa) Ao
= Bal(Ng — A1) — BaabAg
= Bal?(A1 — A2) — Baabg
= h*Sp((M — A2)L* — ABe"™)
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Consistency

Sp—e = Ba— )\
= Ba — (8 — bB)(a — aa)Xo
= Ba(l — X\o) + (Baa + Bba — Bbaa) g
= — [l + (Baa+ Bba — Bbaa) g
= —Bal) + (Baa+ Bab + fbaa — faab — Bbaa) Ao
= Bal(Ng — A1) — BaabAg
= Bal?(A1 — A2) — Baabg
= h*Sp((M — A2)L> — ABle™)
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Consistency

Sp—e™ = Ba— )\
= Ba — (8 — bB)(a — aa)Xo
= Ba(l — \g) + (Baa + Bba — Bbaca) g
= — [l + (Baa+ Bba — Bbaa) g
= —Bal) + (Baa+ Bab + fbaa — faab — Bbaa) Ao
= Bal(Ng — A1) — BaabAg
= Bal?(A1 — A2) — Baabg
= h*Sp((M — A2)L> — ABle™)
= h*Sp((A1 — Ao)L® — AB(I — L) %e"™ (1 = L)?) O
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Further results

» First order convergence for exponential Lie splitting.
Rules for commutation involve (higher) ¢-functions.

» Second order convergence for Peaceman—Rachford and
Strang splitting.

» Many more methods can be analyzed.
E.g., a second order splitting method for the Heston
model in finance, involving cross derivatives.

» Extension to nonautonomous problems.

» Non-stiff order conditions are sufficient for exponential
splitting in the stiff case (under appropriate regularity
assumptions). Hansen, A.O., Math. Comp. (2009)
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High order splitting methods

High order splitting methods
for analytic semigroups exist
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Exponential splitting

Consider the abstract evolution equation
u'=Lu=(A+ B)u, u(0) = g

and its approximate solution via an exponential splitting
method
u, = Sfug ~ e"™uy = u(nh).

A single time step of length h is given by the operator

S
S, = H e VhALOhB  _ (shA OshB | \y1hA 61hB
Jj=1
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An order barrier for analytic semigroups?

Common belief: Splitting methods for analytic semigroups are
of second order at most.

» Splitting schemes with real coefficients necessarily have at
least one negative coefficient whenever p > 3.

» One can not make use of such schemes as the semigroups
are not well defined for negative times t.

However, there are plenty of schemes of order p > 3 with
complex coefficients with positive real parts.
— analytic semigroups

Sheng (1989), Blanes, Casas (2005)
Hansen, A.O. (2008), Castella, Chartier, Descombes, Vilmart (2008)
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A family of third order methods with three stages

Five order conditions in six unknowns; take, e.g. 0o = x as a
free parameter. System can be solved analytically.

x  Re(r)=Re )
0.7 + Re(y) 0.8
O Re()
061 O Re(d) 06
O Re(,) oal
05F
+ 02 -
£ 04r S
a >
T g 0
X 03F g
= 02
02t
01F
O | | | |
0 0.1 02 03 04 05
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A particular case

, resulting In

A particular case is obtained for y = %

Wp(2) = o (7180)08 (118 m s (14030 ma, (34142

It only requires, in average, the evaluation of four semigroup
actions instead of the normal six.

Suzuki (1990)
“It should be noted the scheme [involving negative time steps] cannot be
applied to a diffusion operator ..."

Bandrauk (1990), Chambers (2003), Prosen, PiZorn (2008)
Hamiltonian problems, Schrodinger equation

Hansen, A.O. (2008)
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Composition methods

The following lemma is the key for constructing high order
splitting methods.

Lemma

Let S, be a one step method of classical order q. If
o14...+0m=1 and oIt .. . +09t =0,

then the composition method S, _p...S.,n IS at least of
classical order g + 1.

If the composition is symmetric, i.e., if 0,,_y11 = o, for all £,
then the order of the resulting scheme is even.

Suzuki (1990), Yoshida (1990), McLachlan (1995)
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Two term compositions

We have 0y = 0 and 0o = 1 — 0. Solve

+1
om0 o (2)T o
1—o0o

By taking logarithms

o 142

ol
l1—0o q+1

log

we easily derive that all solutions are given by

. (20 +1
1 sm( h 7T) (—ﬂ<€<ﬂ—1 If g even
o= —+i "@H for { 27 T2 |
2 2+2cos<q+17r) \—%1383%1 if g odd.

Coefficients with the smallest arguments (angles) for ¢ = 0.
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Two term compositions, cont.
Consider the two term compositions
®p(k,2) = g, 0k — 1,2) Oy, n(k —1,2), k> 1,

where ®,,(0,2) = e2"BeMe2B is the Strang splitting.

Theorem

Let 1 < k < 4. Then the exponential splitting schemes
d,(k,2) with above coefficients are of order p = k + 2. O

The optimal coefficients have the arguments:

Sp | Pr(0,2) Pp(1,2) Dp(2,2) Du(3,2) Py(4,2)
%, 0° 30° 52.50° 70.50° 85.50°
p 2 3 4 5 6
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Symmetric four term compositions

Starting again from the Strang splitting ®,(0,4) we consider
Op(k,4) = &y, n(k—1,4)D,, ,n(k —1,4)
o on(k —1,4) D, n(k —1,4), k>1,

with coefficients o, ; and oy 2.
By eliminating o, » we obtain the order condition (g = 2k)

o + (2 o 0 or Py 1.

The solutions with minimal arguments are then

. s
Uklzl‘H Sm<2k+1) Ok2 = Ok,1 o= s
| 4 4+4cos< z ) | | 2(2k+1)
2k +1
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Symmetric four term compositions, cont.

Consider the compositions ®,(0,4) = e2MBeMe2mB and

Op(k,4) = Py, n(k —1,4) Dy, ,n(k — 1, 4)
o n(k —1,4) Dy, n(k—1,4), k> 1.

Theorem

Let 1 < k < 6. Then the exponential splitting schemes
®,(k,4) are of order p = 2k + 2. O

The optimal coefficients have the arguments:

5h (Dh(]_74) cI>h(274) cI>h(374) cI>h(4'74) ¢h(574) ¢h(674)
%, 30° 48° 60.86° 70.86° 79.04° 85.96°
p 4 6 8 10 12 14
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Convergence — analytic framework
Consider
u' = Lu=(A+ B)u, u(0) = wy,
where the operators L, A and B have the following properties:

» They are linear and (possibly) unbounded with domain in
a Banach space X;

» They generate analytic semigroups for parameters in the
sector
T,={zcC:lagzl <}, ¢e(0,7/2]

» A and B satisfy the stability bounds
HeZAH < ew|z| and HeZBH < ew|z|

for some w > 0 and all z € 2.
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Convergence for analytic semigroups

Theorem

Under the above (and certain regularity) assumptions, consider
an exponential splitting method S, of classical order p, with all
its coefficients ~y; and 0; in the sector 2, C C. Then

H(S,Q7 — e”hL)uoH < Ch”, 0<nh<T,

where the constant C can be chosen uniformly on bounded
time intervals and, in particular, independent of n and h.

Proof. Under our assumptions, the classical order conditions
Imply convergence. []

Hansen, A.O., Math. Comp. (2009)
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Numerical examples

Dimension splitting of the elliptic operator L = A+ B, where

S d
Au=Y Di(aiDu) and Bu= Y D;(aDju).
=1 Jj=s+1

In the examples below: s =1, d = 2.
Discretization in space with standard finite differences

(AAXU)i,j _ 3i+1/2,j(Ui+1,j — Ui,j) — 3/-1/2,j(Ui,j — Ui—l,j)

(Bx)?
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Periodic boundary conditions

[|lerror]|

6 Periodic Experiment
10 SRR
4
3
10°
2
1
10
10 2t
A ¥, (113)
10} +
x @ (12
¥ @, (13)
107" NN
10" 10 107 10"

U/ = D1(3D1U) -+ Dz(aDQU),
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Q =T°

(x1, %) € [0,1)

a(x1,x2) = sin(2mx) sin(2mxy) + 2

up(x1, x2) = sin(27xy ) sin(27x2)

T/h| W, &, ®u(1,2) 4(1,3)
16 | 2.77 202  2.78 3.02
32 | 282 200 282 3.29
64 | 2.87 200 291 3.70
128 | 294 200 297 3.90
256 | 2.97 2.00  2.99 3.03
512 | 2.93 2.00  2.95 0.21
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Degenerate case

[lerror]|

10

10

10

10

10

10

10

-10

-12

-14

U/ = D1(3D1U) -+ Dz(aDzu), Q) = (O, 1)2

Degenerate Experiment

¥, (1/3)

(12) |
- (13)

% x + D
. o 6 e

10

10 10 107
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a(x1,x2) = 16x3(1 — x1)x2(1 — x2)

up(x1, x2) = sin(3mxy) cos(3mxz)

T/h| W, &, ®u(1,2) 4(1,3)
16 | 296 199  2.96 3.72
32 | 299 200 299 3.46
64 | 2.99 200  2.99 3.48
128 | 299 200  3.00 3.73
256 | 3.00 2.00  3.00 3.90
512 | 3.00 2.00  3.00 3.97

Operator splitting methods for evolution equations



Dirichlet boundary conditions

[lerror]|

107
10
10
10
10

10

10

-11

10

U/ = D1(3D1U) -+ Dz(aDzu),

Dirichlet Experiment

-10 |

¥, (1/3) 7

(12) -
,(13)

SIS L

10

10 10 107
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Q = (0,1)°

a(x1,x2) = 16x1(1 — x1)x2(l — x2) + 1

up(x1,x2) = ¢ exp(—

1

1

X1(1—X1) o X2(1—X2)>

T/h| W, &, ®u(1,2) 4(1,3)
16 | 228 1.88 227 2.27
32 | 228 193 227 2.28
64 | 228 195 2.8 2.30
128 | 230 1.97  2.30 2.35

256 | 2.34 1.98  2.34 2.49

512 | 2.43 1.99 247 2.83
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Neumann boundary conditions

U/ = D1(3D1U) -+ Dz(aDzu), Q) = (O, 1)2

Neumann Experiment

107" e a(x1,x2) = 16x1(1 — x1)x2(1 — x2) + 1

o ug(xi,x2) = ¢ eXP<—X1(11_X1) — Xz(ll_)Q))

107 T/h v, O Du(1,2)  Pp(L,3)
_ 16 | 1.80 171  1.83 1.73
5 322 | 172 174 173 1.68

o 64 | 168 173  1.68 1.66

| ¥, 128 | 1.70 170  1.66 1.69
o F 0, (12) 256 | 1.81 1.60  1.69 1.84
ol 512 | 1.98 171  1.88 2.34

10~ 107 h 1072 10"
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Error localization
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Errors at time T = 0.1 for ®,(1,3), with h = T /512, when
applied to the Dirichlet (left) and Neumann (right) problems.

The full order of convergence is obtained in subdomains
bounded away from the boundary.

Lubich, A. O. (1995)
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Conclusions and outlook

Framework for analyzing convergence of splitting methods.

» Semigroup theory.

» Optimal orders under appropriate regularity assumptions.
» High-order splitting for parabolic problems.

» Composition methods up to order 14.

» Order reduction for Dirichlet and Neumann b.c.
Full order of convergence away from boundaries.
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