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I. Colliders and Detectors

(A). High-energy Colliders:

To study the deepest layers of matter,

we need the probes with highest energies.
!p

E = hν
×

!p′

Two parameters of importance:

1. The energy: !p1

!p′1
!p2

!p′2

s ≡ (p1 + p2)
2 =

{

(E1 + E2)
2 in the c.m. frame !p1 + !p2 = 0,

m2
1 + m2

2 + 2(E1E2 − !p1 · !p2).

Ecm ≡
√

s ≈
{

2E1 ≈ 2E2 in the c.m. frame !p1 + !p2 = 0,√
2E1m2 in the fixed target frame !p2 = 0.



2. The luminosity:

. . . . . . . .
Colliding beam

n1 n2

t = 1/f

L ∝ fn1n2/a,

(a some beam transverse profile) in units of #particles/cm2/s

⇒ 1033 cm−2s −1 = 1 nb−1 s−1 ≈ 10 fb−1/year.

Current and future high-energy colliders:

Hadron
√

s L δE/E f #/bunch L
Colliders (TeV) (cm−2s−1) (MHz) (1010) (km)

Tevatron 1.96 2.1 × 1032 9 × 10−5 2.5 p: 27, p̄: 7.5 6.28

LHC 14 1034 0.01% 40 10.5 26.66

e+e−
√

s L δE/E f polar. L
Colliders (TeV) (cm−2s−1) (MHz) (km)

ILC 0.5−1 2.5 × 1034 0.1% 3 80,60% 14 − 33
CLIC 3−5 ∼ 1035 0.35% 1500 80,60% 33 − 53



(B). An e+e− Linear Collider

The collisions between e− and e+ have major advantages:

• The system of an electron and a positron has zero charge,

zero lepton number etc.,

=⇒ it is suitable to create new particles after e+e− annihilation.

• With symmetric beams between the electrons and positrons,

the laboratory frame is the same as the c.m. frame,

=⇒ the total c.m. energy is fully exploited to reach the highest

possible physics threshold.

• With well-understood beam properties,

=⇒ the scattering kinematics is well-constrained.

• Backgrounds low and well-undercontrol.

• It is possible to achieve high degrees of beam polarizations,

=⇒ chiral couplings and other asymmetries can be effectively explored.



Disadvantages

• Large synchrotron radiation due to acceleration,

∆E ∼
1

R

(

E

me

)4
.

Thus, a multi-hundred GeV e+e− collider will have to be made

a linear accelerator.

• This becomes a major challenge for achieving a high luminosity

when a storage ring is not utilized;

beamsstrahlung severe.



(C). Hadron Colliders
LHC: the next high-energy frontier

“Hard” Scattering

proton

underlying event underlying event

outgoing parton

outgoing parton

initial-state
radiation

final-state
radiation

proton

Advantages

• Higher c.m. energy, thus higher energy threshold:√
S = 14 TeV: M2

new ∼ s = x1x2S ⇒ Mnew ∼ 0.2
√

S ∼ 3 TeV.



• Higher luminosity: 1034/cm2/s ⇒ 100 fb−1/yr.

Annual yield: 1B W±; 100M tt̄; 10M W+W−; 1M H0...

• Multiple (strong, electroweak) channels:

qq̄′, gg, qg, b̄b → colored; Q = 0,±1; J = 0,1,2 states;

WW, WZ, ZZ, γγ → IW = 0,1,2; Q = 0,±1,±2; J = 0,1,2 states.

Disadvantages

• Initial state unknown:

colliding partons unknown on event-by-event basis;

parton c.m. energy unknown: E2
cm ≡ s = x1x2S;

parton c.m. frame unknown.

⇒ largely rely on final state reconstruction.

• The large rate turns to a hostile environment:

⇒ Severe backgrounds!

Our primary job !



• Path of the high-energy colliders:

The CERN LHC will open a new eta of HEP.



(D). Particle Detection:

The detector complex:

Utilize the strong and electromagnetic interactions

between detector materials and produced particles.

hadronic calorimeter

E-CAL

tracking

vertex detector

muon chambers

beam

pipe

( in B field )



What we “see” as particles in the detector: (a few meters)

For a relativistic particle, the travel distance:

d = (βcτ )γ ≈ (300 µm)(
τ

10−12 s
) γ

• stable particles directly “seen”:

p, p̄, e±, γ

• quasi-stable particles of a life-time τ ≥ 10−10 s also directly “seen”:

n,Λ, K0
L, ..., µ±, π±, K±...

• a life-time τ ∼ 10−12 s may display a secondary decay vertex,

“vertex-tagged particles”:

B0,±, D0,±, τ±...

• short-lived not “directly seen”, but “reconstructable”:

π0, ρ0,±... , Z, W±, t, H...

• missing particles are weakly-interacting and neutral:

ν, χ̃0, GKK...



† For stable and quasi-stable particles of a life-time

τ ≥ 10−10 − 10−12 s, they show up as



A closer look:

Theorists should know:

For charged tracks :∆ p/p ∝ p,

typical resolution : ∼ p/(104 GeV ).

For calorimetry :∆ E/E ∝
1√
E

,

typical resolution : ∼ (5 − 80%)/
√

E.



† For vertex-tagged particles τ ≈ 10−12 s,

heavy flavor tagging: the secondary vertex:

Typical resolution: d0 ∼ 30 − 50 µm or so

⇒ Better have two (non-collinear) charged tracks for a secondary vertex;

Or use the “impact parameter” w.r.t. the primary vertex.

For theorists: just multiply a “tagging efficiency” εb ∼ 40 − 60% or so.



† For short-lived particles: τ < 10−12 s or so,

make use of final state kinematics to reconstruct the resonance.

† For missing particles:

make use of energy-momentum conservation to deduce their existence.

pi
1 + pi

2 =
obs.
∑

f

pf+pmiss.

But in hadron collisions, the longitudinal momenta unkown,

thus transverse direction only:

0 =
obs.
∑

f

!pf T+!pmiss T .

often called “missing pT” (p/T ) or “missing ET” (E/T).



What we “see” for the SM particles
(no universality − sorry!)

Leptons Vetexing Tracking ECAL HCAL Muon Cham.
e± × !p E × ×
µ± × !p

√ √
!p

τ±
√
×

√
e± h±; 3h± µ±

νe, νµ, ντ × × × × ×
Quarks
u, d, s ×

√ √ √
×

c → D
√ √

e± h’s µ±

b → B
√ √

e± h’s µ±

t → bW± b
√

e± b + 2 jets µ±

Gauge bosons
γ × × E × ×
g ×

√ √ √
×

W± → +±ν × !p e± × µ±

→ qq̄′ ×
√ √

2 jets ×
Z0 → +++− × !p e± × µ±

→ qq̄ (b̄b)
√ √

2 jets ×



How to search for new particles?

Leptons
(e, µ)

Photons

Taus

JetsMissing ET
y98014_416dPauss rd

H→ WW→lνjj
H → ZZ→lljjZZH

H→WW→lνlν

H→WW→lνlν

→ →νν

H 
→

 Z
 Z

   
→

 4
 le

pt
on

s
*(

(

H γγ→

H ZZ→
0

n lept.+ x
∼g → n jets + E M

T
→ n leptons + X

q similar∼

H+→τν

0H, A , h0 0→ττ
(H  ) γγ→h0 0

g∼ → h + x0

χ   χ
∼ ∼0 +→

*( (

W'→lν

V,ρ    →WZTC
→ lνll

Z' → ll

unpredicted 
discovery

4l→

g, q →b jets + X∼ ∼

b- 
Jet-tag

W
H
→
lνbb

ttH
→
lνbb+X

––

H ll→ ττZZ→



Homework:

Exercise 1.1: For a π0, µ−, or a τ− respectively, calculate its decay

length for E = 10 GeV.

Exercise 1.2: An event was identified to have a µ+µ− pair, along with

some missing energy. What can you say about the kinematics of the system

of the missing particles? Consider both an e+e− and a hadron collider.

Exercise 1.3: A 120 GeV Higgs boson will have a production cross section

of 20 pb at the LHC. How many events per year do you expect to produce

for the Higgs boson with an instantaneous luminosity 1033/cm2/s?

Do you expect it to be easy to observe and why?



II. Basic Techniques

and Tools for Collider Physics

(A). Scattering cross section
For a 2 → n scattering process:

σ(ab → 1 + 2 + ...n) =
1

2s

∑

|M|2 dPSn,

dPSn ≡ (2π)4 δ4



P −
n

∑

i=1

pi



Πn
i=1

1

(2π)3
d3!pi

2Ei
,

s = (pa + pb)
2 ≡ P2 =





n
∑

i=1

pi





2

,

where
∑

|M|2: dynamics (dimension 4 − 2n);

dPSn: kinematics (Lorentz invariant, dimension 2n − 4.)

For a 1 → n decay process, the partial width in the rest frame:

Γ(a → 1 + 2 + ...n) =
1

2Ma

∑

|M|2 dPSn.

τ = Γ−1
tot = (

∑

f

Γf)
−1.



(B). Phase space and kinematics ∗

One-particle Final State a + b → 1:

dPS1 ≡ (2π)
d3!p1

2E1
δ4(P − p1)

.
= π|!p1|dΩ1δ

3(!P − !p1)
.
= 2π δ(s − m2

1).

where the first and second equal signs made use of the identities:

|!p|d|!p| = EdE,
d3!p

2E
=

∫

d4p δ(p2 − m2).

Kinematical relations:

!P ≡ !pa + !pb = !p1, Ecm
1 =

√
s in the c.m. frame,

s = (pa + pb)
2 = m2

1.

The “dimensinless phase-space volume” is s(dPS1) = 2π.

∗E.Byckling, K. Kajantie: Particle Kinemaitcs (1973).



Two-particle Final State a + b → 1 + 2:

dPS2 ≡
1

(2π)2
δ4 (P − p1 − p2)

d3!p1

2E1

d3!p2

2E2

.
=

1

(4π)2
|!pcm

1 |
√

s
dΩ1 =

1

(4π)2
|!pcm

1 |
√

s
d cos θ1dφ1

=
1

4π

1

2
λ1/2

(

1,
m2

1

s
,
m2

2

s

)

dx1dx2.

The magnitudes of the energy-momentum of the two particles are

fully determined by the four-momentum conservation:

|!pcm
1 | = |!pcm

2 | =
λ1/2(s, m2

1, m2
2)

2
√

s
, Ecm

1 =
s + m2

1 − m2
2

2
√

s
, Ecm

2 =
s + m2

2 − m2
1

2
√

s
,

λ(x, y, z) = (x − y − z)2 − 4yz = x2 + y2 + z2 − 2xy − 2xz − 2yz.

The phase-space volume of the two-body is scaled down

with respect to that of the one-particle by a factor

dPS2

s dPS1
≈

1

(4π)2
.

just like a “loop factor”.



Consider a 2 → 2 scattering process pa + pb → p1 + p2,

the (Lorentz invariant) Mandelstam variables are defined as

s = (pa + pb)
2 = (p1 + p2)

2 = E2
cm,

t = (pa − p1)
2 = (pb − p2)

2 = m2
a + m2

1 − 2(EaE1 − pap1 cos θa1),

u = (pa − p2)
2 = (pb − p1)

2 = m2
a + m2

2 − 2(EaE2 − pap2 cos θa2),

s + t + u = m2
a + m2

b + m2
1 + m2

2.

The two-body phase space can be thus written as

dPS2 =
1

(4π)2
dt dφ1

s λ1/2
(

1, m2
a/s, m2

b /s
).



Exercise 2.1: Assume that ma = m1 and mb = m2. Show that

t = −2p2
cm(1 − cos θ∗a1),

u = −2p2
cm(1 + cos θ∗a1) +

(m2
1 − m2

2)
2

s
,

pcm = λ1/2(s, m2
1, m2

2)/2
√

s is the momentum magnitude in the c.m. frame.

Note: t is negative-definite; t → 0 in the collinear limit.

Exercise 2.2: A particle of mass M decays to two particles

isotropically in its rest frame. What does the momentum distribution

look like in a frame in which the particle is moving with a speed βz?

Compare the result with your expectation for the shape change

for a basket ball.



Three-particle Final State a + b → 1 + 2 + 3:

dPS3 ≡
1

(2π)5
δ4 (P − p1 − p2 − p3)

d3!p1

2E1

d3!p2

2E2

d3!p3

2E3

.
=

|!p1|2 d|!p1| dΩ1

(2π)3 2E1

1

(4π)2
|!p(23)

2 |
m23

dΩ2

=
1

(4π)3
λ1/2

(

1,
m2

2

m2
23

,
m2

3

m2
23

)

2|!p1| dE1 dx2dx3dx4dx5.

d cos θ1,2 = 2dx2,4, dφ1,2 = 2πdx3,5, 0 ≤ x2,3,4,5 ≤ 1,

|!pcm
1 |2 = |!pcm

2 + !pcm
3 |2 = (Ecm

1 )2 − m2
1,

m2
23 = s − 2

√
sEcm

1 + m2
1, |!p23

2 | = |!p23
3 | =

λ1/2(m2
23, m2

2, m2
3)

2m23
,

The particle energy spectrum is not monochromatic.
The maximum value (the end-point) for particle 1 in c.m. frame is

Emax
1 =

s + m2
1 − (m2 + m3)

2

2
√

s
, m1 ≤ E1 ≤ Emax

1 ,

|!pmax
1 | =

λ1/2(s, m2
1, (m2 + m3)

2)

2
√

s
, 0 ≤ p1 ≤ pmax

1 .



With mi = 10, 20, 30,
√

s = 100 GeV.

More intuitive to work out the end-point for the kinetic energy,

– recall the direct neutrino mass bound in β-decay:

Kmax
1 = Emax

1 − m1 =
(
√

s − m1 − m2 − m3)(
√

s − m1 + m2 + m3)

2
√

s
.



In general, the 3-body phase space boundaries are non-trivial.

That leads to the “Dalitz Plots”.

One practically useful formula is:

Exercise 2.3: A particle of mass M decays to 3 particles M → abc.

Show that the phase space element can be expressed as

dPS3 =
1

27π3
M2dxadxb.

xi =
2Ei

M
, (i = a, b, c,

∑

i

xi = 2).

where the integration limits for ma = mb = mc = 0 are

0 ≤ xa ≤ 1, 1 − xa ≤ xb ≤ 1.



Recursion relation P → 1 + 2 + 3... + n:

p pnpn−1, n

p1 p2  . . . pn−1

dPSn(P ; p1, ..., pn) = dPSn−1(P ; p1, ..., pn−1,n)

dPS2(pn−1,n; pn−1, pn)
dm2

n−1,n

2π
.

For instance,

dPS3 = dPS2(i)
dm2

prop

2π
dPS2(f).

This is generically true, but particularly useful

when the diagram has an s-channel particle propagation.



Breit-Wigner Resonance, the Narrow Width Approximation

An unstable particle of mass M and total widthΓ V , the propagator is

R(s) =
1

(s − M2
V )2 + Γ2

V M2
V

.

Consider an intermediate state V ∗

a → bV ∗ → b p1p2.

By the reduction formula, the resonant integral reads

∫ (mmax
∗ )2=(ma−mb)

2

(mmin∗ )2=(m1+m2)2
dm2

∗ .

Variable change

tan θ =
m2

∗ − M2
V

ΓV MV
,

resulting in a flat integrand over θ
∫ (mmax

∗ )2

(mmin∗ )2

dm2
∗

(m2∗ − M2
V )2 + Γ2

V M2
V

=
∫ θmax

θmin

dθ

ΓV MV
.



In the limit

(m1 + m2) +Γ V . MV . ma − ΓV ,

θmin = tan−1 (m1 + m2)
2 − M2

V

ΓV MV
→ −π,

θmax = tan−1 (ma − mb)
2 − M2

V

ΓV MV
→ 0,

then the Narrow Width Approximation

1

(m2∗ − M2
V )2 + Γ2

V M2
V

≈
π

ΓV MV
δ(m2

∗ − M2
V ).

Exercise 2.4: Consider a three-body decay of a top quark,

t → bW ∗ → b eν. Making use of the phase space recursion relation

and the narrow width approximation for the intermediate W boson,

show that the partial decay width of the top quark can be expressed as

Γ(t → bW ∗ → b eν) ≈ Γ(t → bW ) · BR(W → eν).



(C). Matrix element: The dynamics
Properties of scattering amplitudes

• Analyticity: A scattering amplitude is analytical except:

simple poles (corresponding to single particle states, bound states etc.);

branch cuts (corresponding to thresholds).

• Crossing symmetry: A scattering amplitude for a 2 → 2 process is sym-

metric among the s-, t-, u-channels.

• Unitarity:

S-matrix unitarity leads to :

−i(T − T †) = TT †



Partial wave expansion for a + b → 1 + 2:

M(s, t) = 16π
∞
∑

J=M

(2J + 1)aJ(s)dJ
µµ′(cos θ)

aJ(s) =
1

32π

∫ 1

−1
M(s, t) dJ

µµ′(cos θ)d cos θ.

where µ = sa − sb, µ′ = s1 − s2, J = max(|µ|, |µ′|).

The partial wave amplitude have the properties:

(a). partial wave unitarity: Im(aJ) ≥ |aJ |2, or |Re(aJ)| ≤ 1/2,

(b). kinematical thresholds: aJ(s) ∝ βli
i β

lf
f (J = L + S).

⇒ well-known behavior: σ ∝ β
2lf+1
f .

Exercise 2.6: Appreciate the properties (a) and (b) by explicitly

calculating the helicity amplitudes for

e−Le+R → γ∗ → H−H+, e−Le+L,R → γ∗ → µ−
Lµ+

R , H−H+ → G∗ → H−H+.



(D). Calculational Tools
Traditional “Trace” Techniques:

∗ You should be good at this — QFT course!

With algebraic symbolic manipulations:

∗ REDUCE

∗ FORM

∗ MATHEMATICA, MAPLE ...

Helicity Techniques:

More suitable for direct numerical evaluations.

∗ Hagiwara-Zeppenfeld: best for massless particles... (NPB)

∗ CalCul Method (by T.T. Wu et al., Parke-Mangano: Phys. Report);

∗ New techniques in loop calculations

(by Z.Bern, L.Dixon, W. Giele, N. Glover, K.Melnikov, F. Petriello ...)

Exercise 2.5: Calculate the squared matrix element for
∑

|M(ff̄ → ZZ)|2,

in terms of s, t, u, in whatever technique you like.



Calculational packages:

• Monte Carlo packages for phase space integration:

(1) VEGAS by P. LePage: adaptive important-sampling MC

http://en.wikipedia.org/wiki/Monte-Carlo integration

(2) SAMPLE, RAINBOW, MISER ...

• Automated software for matrix elements:

(1) REDUCE — an interactive program designed for general algebraic

computations, including to evaluate Dirac algebra, an old-time program,

http://www.uni-koeln.de/REDUCE;

http://reduce-algebra.com.

(2) FORM by Jos Vermaseren: A program for large scale symbolic

manipulation, evaluate fermion traces automatically,

and perform loop calculations,s commercially available at

http://www.nikhef.nl/ form



(3) FeynCalc and FeynArts: Mathematica packages for algebraic

calculations in elementary particle physics.

http://www.feyncalc.org;

http://www.feynarts.de

(4) MadGraph: Helicity amplitude method for tree-level matrix elements

available upon request or

http://madgraph.hep.uiuc.edu

Example:
Standard Model particles include:
Quarks: d u s c b t d u s c b t
Leptons: e- mu- ta- e+ mu+ ta+ ve vm vt ve vm vt
Bosons: g a z w+ w- h

Enter process you would like calculated in the form e+ e- → a.
(return to exit MadGraph.)

a a → w+ w-

Generating diagrams for 4 external legs
There are 3 graphs.
Writing Feynman graphs in file aa wpwm.ps
Writing function AA WPWM in file aa wpwm.f.



• Automated evaluation of cross sections:

(1)MadGraph/MadEvent and MadSUSY:

Generate Fortran codes on-line!

http://madgraph.hep.uiuc.edu

(2) CompHEP: computer program for calculation of elementary particle

processes in Standard Model and beyond. CompHEP has a built-in numeric

interpreter. So this version permits to make numeric calculation without

additional Fortran/C compiler. It is convenient for more or less simple

calculations.

— It allows your own construction of a Lagrangian model!

http://theory.npi.msu.su/k̃ryukov

(3) GRACE and GRACE SUSY:

http://minami-home.kek.jp



(4) Pandora by M. Peskin:

C++ based package for e+e−, including beam effects.

http://www-sldnt.slac.stanford.edu/nld/new/Docs/

Generators/PANDORA.htm

The program pandora is a general-purpose parton-level event generator

which includes beamstrahlung, initial state radiation, and full treatment

of polarization effects. (An interface to PYTHIA that produces fully

hadronized events is possible.)

This version includes the SM physics processes:

e+e− → +++−, qq̄, γγ, tt̄, Zγ, ZZ, W+W−

→ Zh,ν ν̄h, e+e−h,ν ν̄γ
γγ → +++−, qq̄, tt̄, e+e−, W+W−, h
eγ → eγ, eZ, νW

e−e− → e−e−.

and some illustrative Beyond the SM processes:

e+e− → Z ′ → +++−, qq̄
→ KK − gravitons → +++−, qq̄, γγ, ZZ, W+W−

→ γ graviton
M → ρTCW+W−.



• Numerical simulation packages:

(1) PYTHIA:

PYTHIA is a Monte Carlo program for the generation of high-energy

physics events, i.e. for the description of collisions at high energies

between e+, e−, p and p̄ in various combinations.

They contain theory and models for a number of physics aspects,

including hard and soft interactions, parton distributions, initial and

final state parton showers, multiple interactions, fragmentation and decay.

http://www.thep.lu.se/ torbjorn/Pythia.html

(2) ISAJET

ISAJET is a Monte Carlo program which simulates pp, p̄p, and ee

interactions at high energies. It is based on perturbative QCD plus

phenomenological models for parton and beam jet fragmentation.

http://www.phy.bnl.gov/ isajet

(3) HERWIG

HERWIG is a Monte Carlo program which simulates pp, pp̄
interactions at high energies. It has the most sophisticated perturbative

treatments, and possible NLO QCD matrix elements in parton showing.

http://hepwww.rl.ac.uk/theory/seymour/herwig/




