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1. INTRODUCTION. What happens to the norm of a matrix when

some of its entries are replaced by zeros? This question leads to some interesting

mathematics and the goal of this paper is to describe some of it.

The answer to our question depends on two things: the norm that we

choose and the position of the entries that are replaced. Let us illustrate this

by examples.

The operator norm of an n × n complex matrix A is its norm as a linear

operator on the Euclidean space ICn; i.e., ‖A‖ = sup{‖Ax‖ : x ∈ ICn, ‖x‖ = 1}.
The Frobenius norm of A is defined as ‖A‖2 = (

∑

i,j |aij|2)
1

2 = (trA∗A)
1

2 .

Both these norms are used frequently in analysis of matrices. They can also

be described in terms of the singular values of A − the square roots of the

eigenvalues of A∗A enumerated as s1(A) ≥ · · · ≥ sn(A). We have ‖A‖ = s1(A)

and ‖A‖2 = (
∑

j s2
j (A))

1

2 .

Let M(n) be the space of all n × n (complex) matrices. A norm ||| · |||
on M(n) is said to be unitarily invariant if |||UAV ||| = |||A||| for all unitary

matrices U, V and for all A in M(n). Since sj(UAV ) = sj(A), the operator

norm and the Frobenius norm are unitarily invariant. Another example of such

a norm is the trace norm defined as ‖A‖1 =
∑

j sj(A). More examples, and

properties, of these norms may be found in [2, Chapter IV].
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Let A =







1 1

−1 1





 and B =







1 1

0 1





. It is easy to see that ‖A‖ =
√

2,

while ‖B‖ = 1
2
(1 +

√
5). Thus, replacing an entry of a matrix by zero can

increase its operator norm. On the other hand, the Frobenius norm of a matrix

is diminished if any of its entries is replaced by one with smaller absolute value.

It is an interesting fact that among all unitarily invariant norms, the Frobenius

norm is the only one that has this property. See [4, Prop. 3.1]. The matrix

B was obtained from A by triangular truncation − wiping out the part below

the main diagonal. We will say more about this operation later on.

There is an interesting operation on M(n) that reduces all unitarily invari-

ant norms. Let P1, . . . , Pk be orthogonal projection operators in ICn whose

ranges are orthogonal to each other and whose sum P1 + · · ·+ Pk = I. Let

C(A) =
k
∑

j=1

PjAPj. (1)

This is called a pinching of A. If we choose an orthonormal basis for ICn whose

elements successively span the ranges of Pj , 1 ≤ j ≤ k, then the matrix of A can

be decomposed into blocks in such a way that the diagonal blocks are square

and have sizes dim range Pj and the matrix C(A) is obtained from this by

replacing all the off-diagonal blocks by zeros. Especially interesting is the case

when the range of each Pj is 1-dimensional. In this case the pinching replaces

all off-diagonal entries of A by zeros. The resulting matrix, the diagonal part

of A, will be written as D(A).

The sum in (1) is reminiscent of a convex combination, and indeed that

is one reason for the interest in pinchings − they describe certain averaging

operations on operators. There is another sense in which C(A) can be obtained

from A by averaging. Let ω = e2πi/n and let U be the diagonal matrix with
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entries 1, ω, ω2, . . . , ωn−1 down its diagonal. Using the identity
n−1
∑

j=0

ωj = 0 and

elementary algebra one can see that

D(A) =
1

n

n−1
∑

j=0

U jAU∗j . (2)

The matrix U is unitary and the expression (2) represents D(A) as an average

of n unitary conjugates of A. Using the same idea one can write any pinching

C(A) corresponding to k orthogonal projections as an average of k unitary

conjugates of A.

It follows from (2) that |||D(A)||| ≤ |||A||| for every unitarily invariant

norm. This is a consequence of the triangle inequality and the fact that each

of the summands in (2) has the same norm as A. More generally, we have

|||C(A)||| ≤ |||A||| for every pinching C. For the sake of brevity, we write

|||X||| ≤ |||Y ||| to mean that for two given matrices X, Y, every unitarily

invariant norm of X is bounded by the corresponding norm of Y .

This idea of representing diagonals as averages can be carried much further,

as we will soon see. We will replace the sum in (2) by an integral and the roots

of unity by trigonometric polynomials. Such representations lead to interesting

bounds for norms of matrices obtained by trimming A in different ways.

2. DIAGONALS AS AVERAGES. In addition to the main diag-

onal of A we will consider other diagonals as well. Let σ be any permutation

of the indices {1, 2, . . . , n} and let G(A) be the matrix obtained from A by

replacing all its entries except ajσ(j) by zeros. This is a generalized diagonal

of A obtained by retaining exactly one entry from each row and each column.

When σ is the identity permutation G(A) = D(A). To each σ corresponds

a permutation matrix Pσ that permutes the basis vectors. One can see that
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G(A) is just the main diagonal of the matrix APσ. Hence |||G(A)||| ≤ |||APσ|||.
So, by unitary invariance |||G(A)||| ≤ |||A|||, another instance when norms are

diminished when some entries are replaced by zeros.

Now for 1 ≤ j ≤ n−1, let Dj(A) be the matrix obtained from A by replacing

all its entries except those on the jth superdiagonal by zeros. Likewise, let

D−j(A) be the matrix obtained by retaining only the jth subdiagonal of A.

(The superdiagonals are the diagonals above the main diagonal and parallel to

it; the subdiagonals are the ones below the main diagonal.) To be consistent

with this notation, put D0(A) = D(A).

How big are the norms of Dj(A)? Note that for each 1 ≤ j ≤ n−1, the sum

Dj(A)+Dj−n(A) is a generalized diagonal G(A). Hence |||Dj(A)+Dj−n(A)||| ≤
|||A|||. Once again, by a permutation we can bring all the nonzero entries of

Dj(A) + Dj−n(A) to the main diagonal. This does not change norms. The

norm of a diagonal matrix is certainly reduced if any of its entries is replaced

by a zero. (Hint: express the new matrix as an average of the original matrix

and another one of equal norm.) Thus

|||Dj(A)||| ≤ |||A||| for all j. (3)

Using the triangle inequality, we obtain from this

|||Dj(A) + D−j(A)||| ≤ 2|||A||| for all j. (4)

By the same argument, if T3(A) = D−1(A) +D0(A) +D1(A) is the tridiagonal

part of A, then

|||T3(A)||| ≤ 3|||A||. (5)

A slightly cleverer argument gives a better inequality. We can write T3(A) =

C(A) +Γ(A), where C(A) is a pinching of A by 2× 2 blocks and Γ(A) is a part
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of a generalized diagonal of A. For example, if we write the tridiagonal part of

a 5 × 5 matrix A as




























◦ ◦
◦ ◦ ⋆

⋆ ◦ ◦
◦ ◦ ⋆

⋆ ◦





























then all the entries represented by dots ◦ together constitute a pinching of A

into blocks of sizes 2, 2, and 1. The remaining entries represented by stars ⋆

constitute a part of a generalized diagonal of A. This shows that

|||T3(A)||| ≤ 2|||A|||. (6)

Can one improve this further? How about the inequality (4)?

For each real number θ, let Uθ be the diagonal matrix with entries

eirθ, 1 ≤ r ≤ n, down its diagonal. Then the (r, s) entry of the matrix UθAU∗

θ

is ei(r−s)θars. Hence, we have

Dk(A) =
1

2π

π
∫

−π

eikθUθAU∗

θ dθ. (7)

When k = 0, this gives another representation of D0(A) as an average over

unitary conjugates of A. For other values of k, this expresses Dk(A) as a

“twisted average” over unitary conjugates of A. From this expression we can

again derive the inequality (3). We can also use it to write

Dk(A) + D−k(A) =
1

2π

π
∫

−π

(2 cos kθ)UθAU∗

θ dθ.

Hence

|||Dk(A) + D−k(A)|| ≤ 1

2π

π
∫

−π

|2 cos kθ| dθ |||A|||.
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It is easy to evaluate this integral. One gets

|||Dk(A) + D−k(A)||| ≤ 4

π
|||A|||. (8)

This is an improvement over the inequality (4). Using the same argument we

see that

|||T3(A)||| ≤ 1

2π

π
∫

−π

|1 + 2 cos θ| dθ |||A|||.

Once again, it is easy to evaluate the integral. We now get

|||T3(A)||| ≤
(

1

3
+

2
√

3

π

)

|||A|||. (9)

This is an improvement over (6). The constant factor in the inequality (9) is

smaller than 1.436, that in (8) is smaller than 1.274.

More generally, consider the trimming of A obtained by replacing all its

diagonals outside the band −k ≤ j ≤ k by zeros; i.e., consider the matrices

T2k+1(A) =
k
∑

j=−k

Dj(A), 1 ≤ k ≤ n. (10)

Then, from (7) we get

T2k+1(A) =
1

2π

π
∫

−π

Dk(θ)UθAU∗

θ dθ, (11)

where

Dk(θ) =
k
∑

j=−k

eijθ (12)

is the Dirichlet kernel, a familiar object related to Fourier series. See [3, Sec.

2.2] or [9, p. 174]. The numbers

Lk =
1

2π

π
∫

−π

|Dk(θ)|dθ (13)

are called the Lebesgue constants. It is known that for large values of k, Lk are

like log k. For example, one knows that

Lk ≤ log k + log π +
2

π
(1 +

1

2k
),
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and that

Lk =
4

π2
log k + O(1).

From (11) we see that

|||T2k+1(A)||| ≤ Lk|||A|||. (14)

Naive arguments would have shown only that |||T2k+1(A)||| ≤ (2k + 1)|||A|||.
The ineequality (14) is a striking improvement, when n, k, and n− k are large.

The trimming operation we have introduced here has an interesting con-

nection with the triangular truncation that we talked of in the Introduction.

Let ∆U be the linear map on the space of matrices (of a fixed size) that takes

a matrix B to its upper triangular part; i.e., ∆U acts by replacing all entries of

a matrix below the main diagonal by zeros. Given a k × k matrix B, consider

the matrix A =







0 B∗

B 0






. The singular values of A are the singular values

of B counted twice as often. Hence, ||A|| = ‖B‖. Note also that

T2(k+1)+1(A) =







0 ∆U(B)∗

∆U (B) 0






.

So, it follows from (14) that

‖∆U(B)‖ ≤ Lk+1‖B‖. (15)

In other words, the norm of the triangular truncation operator (on the space of

k × k matrices equipped with the operator norm) is bounded by the Lebesgue

constant Lk+1. We have remarked earlier that Lk+1 ≈ 4
π2 log k.

It is remarkable that arguments from Fourier series lead to interesting

bounds (8), (9), (14), and (15) for norms of matrices. The unexpected ap-

pearance of the number π makes them especially attractive. Of course, this

appeal would be lost if better bounds were to be found. As it turns out, the
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bounds (8) and (9) are sharp, as are the bounds (14) and (15) in an asymptotic

sense. This is discussed in the next section.

3. EXAMPLES. We will show that the bounds (8) and (9) are sharp for

the trace norm and, therefore, by a duality argument they are sharp for the

operator norm.

Example 3.1. Let B be the tridiagonal n×n matrix with each entry on its first

superdiagonal and the first subdiagonal equal to 1, and all other entries equal

to 0. It is not difficult to see that the eigenvalues of B are 2 cos(jπ/n+1), 1 ≤
j ≤ n; see [2, p.60]. (The matrix B−2I is the familiar second difference matrix

that is used in numerical analysis to discretize the second derivative operator.)

Example 3.2. Let A = E, the matrix with all entries equal to 1. Then

D1(A) + D−1(A) = B,

where B is the tridiagonal matrix in Example 3.1. Here

‖B‖1

‖A‖1
=

1

n

n
∑

j=1

|2 cos
jπ

n + 1
|. (16)

Let f(θ) = |2 cos θ|. The sum

1

n + 1

n+1
∑

j=1

|2 cos
jπ

n + 1
|

is a Riemann sum for the function π−1f(θ) over a subdivision of the interval

[0, π] into n + 1 equal parts. As n → ∞, this sum and the one in (16) tend to

the same limit. This limit is equal to

1

π

π
∫

0

|2 cos θ|dθ =
1

2π

π
∫

−π

|2 cos θ|dθ =
4

π
.
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This shows that the inequality (8) can not be improved (if it has to be valid

for all dimensions n and for all unitarily invariant norms).

The same example shows that the inequality (9) is also sharp.

Note that in this example A was Hermitian, so the inequalities (8) and (9)

and sharp even on the space of all Hermitian matrices.

The duality principle we need says that if T is a linear operator from a

Banach space X to another Banach space Y , then its adjoint T ∗ (a linear map

from the dual Y ∗ to X∗) has the same norm as T .

Let X be the space M(n), or the space H(n) of all Hermitian n×n matrices.

The space X has a natural inner product defined as 〈A, B〉 = trA∗B. By the

Riesz Representation Theorem every linear functional ϕ on X is of the form

ϕ(A) = trAΦ, where Φ is some element of X. The norms ‖ · ‖ and ‖ · ‖1 on

X are dual to each other; i.e., if X is equipped with the operator norm ‖ · ‖,
then its dual space X∗ is the space X equipped with the trace norm ‖ · ‖1, and

vice versa. The adjoint of a linear operator L : X → X, is the linear operator

L∗ : X → X that satisfies the relation

〈A,L(B)〉 = 〈L∗(A), B〉 for all A, B.

It is easy to verify that for each k the operator taking a matrix A to Dk(A)+

D−k(A) is its own adjoint. Hence, its norm as a linear operator on the space

(X, ‖ · ‖) is the same as its norm as a linear operator on the space (X, ‖ · ‖1).

Thus the inequalities (8) and (9) are sharp for the operator norm as well.

Further, they are sharp even when A is Hermitian.

Example 3.3. Let A be the n × n matrix with entries aij = 1
i−j

if i 6= j,
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and aii = 0. With some work [6, p. 39] it can be seen that ‖A‖ ≤ π and

‖∆U (A)‖ ≥ 4
5
log n for large values of n. See the delightful article [5] for

several examples related to this. This example shows that the norm of the

operator ∆U on (M(n), ‖ · ‖) or (H(n), ‖ · ‖) grows like log n. More elaborate

analysis shows that the norm of ∆U approaches 1
π

log n as n increases; see [1].

Our inequality (15) gives just a little larger number 4
π2 log n as an asymptotic

bound for this norm.

Example 3.4. Let B be a Hermitian matrix of a large order k for which

‖∆U (B)‖ is close to 1
π

log k. (Such a matrix exists, as we have remarked in our

discussion of Example 3.3.) Let A =







0 B

B 0





. Then ‖A‖ = ‖B‖.

Note that

T2k+3(A) =







0 ∆U(B)∗

∆U(B) 0







and the norm of this matrix is ‖∆U(B)‖. So, the ratio of ‖T2k+3(A)‖ and ‖A‖
is approximately 1

π
log k, again showing that the bound (14) is almost exact for

the operator norm (and by duality for the trace norm).

4. MORE ON AVERAGES. For I, a subset of {1, 2, . . . , n}, let XI

be the diagonal matrix whose diagonal entry xii is 1 if i ∈ I, and −1 if i 6∈ I.

It can be seen easily that

D(A) =
1

2n

∑

I

X1AXI . (17)

This expression has the advantage of using real diagonal matrices XI instead

of the complex matrices Uk used in (2). Further, these matrices have only ±1

on the diagonal. So, an analogous expression can be used for matrices over
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other fields. On the other hand, now there are far more terms involved. This

difference is crucial. In [4] it was shown that (2) leads to the bound

|||A −D(A)||| ≤ 2(1 − 1

n
)|||A|||

for the off-diagonal part of A, and that this inequality is sharp for the norms

‖ · ‖ and ‖ · ‖1. Using (17) one would obtain a weaker inequality here.

Is it possible to obtain a representation for D(A) using real diagonal conju-

gations as in (17), but with fewer terms? (It has been shown [4] that we could

not have fewer than n terms in any case.)

This question has an amusing connection with a famous problem in the

theory of design of experiments. A matrix all of whose entries are ±1, and

whose columns are mutually orthogonal, is called a Hadamard matrix. Do such

matrices exist? The 2 × 2 matrix







1 1

1 −1





 is a Hadamard matrix. Taking

m-fold tensor products of this matrix with itself gives Hadamard matrices of

order n = 2m, m = 1, 2 . . .. It is not difficult to see that for n > 2, a necessary

condition for the existence of a Hadamard matrix of order n is that n = 4k for

some k. It has been conjectured that this condition is sufficient as well. This

conjecture has been proved for k ≤ 106; see [10].

Suppose n is such that a Hadamard matrix of order n exists. Let Yj, 1 ≤ j ≤
n, be the diagonal matrix whose diagonal is the jth column of this Hadamard

matrix. Then,

D(A) =
1

n

n
∑

j=1

YjAYj.

So, for such values of n, one does have a representation of D(A) as an average

of n real diagonal conjugates of A.

If the conjecture on Hadamard matrices were to have a positive solution,
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then for all n we could find such a representation for D(A) with at most n + 3

terms.

Finally, we should point out that while we have concentrated on norms in

this article, there is a long tradition in matrix theory of comparing eigenvalues,

determinants, and singular values of a matrix to those of its diagonal. Several

famous results due to Schur, Hadamard, Mirsky, Fan, Thompson, and others

belong to this tradition. The interested reader could find them in the books

[2], [7], and [8].
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