A Unified Treatment of Convexity of Relative Entropy and Related Trace Functions, with Conditions for Equality
 simple proofs of SSA and Lieb's concavity of $\operatorname{Tr} K^{*} A^{p} K B^{1-p}$

Mary Beth Ruskai marybeth.ruskai@tufts.edu
Department of Mathematics, Tufts University
Supported by U.S. National Science Foundation

Tucson March 2009
joint with Anna Jenčová arXiv:0903.2895

Outline of Talk

- Background
- Proof of convexity
- Introduce left L_{A} and right R_{B} mult ops
- Integral reps
- Operator Schwarz inequality with L_{A} and R_{B}
- extend to $q \neq 1$ - p
- Prove corollaries MPT and SSA
- Equality conds
- Revisit Carlen- Lieb inequalities
- Equality conditions
- Final comments on SSA and gen

Basics

Properties of Relative Entropy: $H(A, B)=\operatorname{Tr} A(\log A-\log B)$
Joint Convexity $\quad H\left(\sum_{j} A_{j}, \sum_{j} B_{j}\right) \leq \sum_{j} H\left(A_{j}, B_{j}\right)$
Cor: Monotone under Partial Trace (MPT) $\quad \mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$

$$
H\left(A_{1}, B_{2}\right) \leq H\left(A_{12}, B_{12}\right) \quad \text { ILW: that's all folks! }
$$

Cor: Monotone under CPT Map $\quad H[\Phi(A), \Phi(B)] \leq H(A, B)$ (quantum channel)

Special Case of MPT $\quad A_{12} \rightarrow A_{123}, B_{12} \rightarrow I_{1} \otimes A_{23}$

$$
\begin{gathered}
H\left(A_{12}, A_{2}\right) \leq H\left(A_{123}, A_{23}\right) \\
-S\left(A_{12}\right)+S\left(A_{2}\right) \leq-S\left(A_{123}\right)+S\left(A_{23}\right) \quad S(A)=-\operatorname{Tr} A \log A
\end{gathered}
$$

strong subadditivity (SSA) of quantum entropy

Aside:

G Homogenous of degree one $G(\lambda A)=\lambda G(A) \quad \Rightarrow \quad G(A)$ convex \Leftrightarrow subadditive
convex \Rightarrow subadditive

$$
\frac{1}{2} G(A+B)=G\left(\frac{1}{2} A+\frac{1}{2} B\right) \leq \frac{1}{2} G(A)+\frac{1}{2} G(B)
$$

subadditive \Rightarrow convex

$$
\begin{aligned}
G[x A+(1-x) B] & \leq G(x A)+G[(1-x) B] \\
& =x G(A)+(1-x) G(B)
\end{aligned}
$$

Background

Original proof of SSA based on Lieb's result below
WYD skew entropy $\frac{1}{2} \operatorname{Tr}\left[K, \gamma^{p}\right]\left[K, \gamma^{1-p}\right]$

$$
\text { for } K=K^{*} \text { and } \gamma \text { a density matrix }
$$

Wigner-Yanase introduced for $p=\frac{1}{2}$ and proved concave in γ.
Dyson suggested $p \in(0,1)$ - led to conjecture
Conj: $\quad \gamma \mapsto \operatorname{Tr} K \gamma^{p} K \gamma^{1-p}-\operatorname{Tr} K \gamma K$ concave
Lieb dropped linear term and proved generalization

$$
(A, B) \mapsto \operatorname{Tr} K^{*} A^{p} K B^{1-p} \quad \text { concave for } p \in(0,1)
$$

Claim: But advantage to retaining linear term !!

Retaining the linear term

$$
J_{p}(K, A, B)=\frac{1}{p(1-p)}\left[\operatorname{Tr} K^{*} A K-\operatorname{Tr} K^{*} A^{p} K B^{1-p}\right]
$$

Note: well-def for $p>0$ and factor $(1-p)$ changes sign at $p=1$
Thm: $(A, B) \mapsto J_{p}(K, A, B)$ is convex for $p \in(0,2)$
$\Rightarrow \quad \operatorname{Tr} K^{*} A^{p} K B^{1-p}$ concave for $p \in(0,1)$
$\Rightarrow \quad \operatorname{Tr} A(\log A-\log B)$ convex $p=1-$ extend by cont $K=1$
$\Rightarrow \operatorname{Tr} K^{*} A^{p} K B^{1-p}$ convex for $p \in(1,2]$ and $p \in[-1,0)$
will give proof, which is elementary, short, and sweet
$\operatorname{Tr} A=\operatorname{Tr} B \quad \Rightarrow \quad J_{p}(K, A, B) \geq 0$ with equality $\Leftrightarrow A=B$ pseudo-metric in same sense as relative entropy $H(A, B)$ gen Klein

Pedestrian modular operator

$d \times d$ matrices form Hilbert space with $\langle A, B\rangle=\operatorname{Tr} A^{*} B$
Def. Left and Right mult as linear operators on this vector space

$$
L_{A}(X)=A X \quad \text { and } \quad R_{B}(X)=X B
$$

a) L_{A} and R_{B} commute $L_{A}\left[R_{B}(X)\right]=A X B=R_{B}\left[L_{A}(X)\right]$
b) $A=A^{*} \Rightarrow L_{A}, R_{A}$ self-adjoint wrt H-S inner prod

For $A, B>0$ positive definite
c) L_{A}, R_{A} pos def $\left\langle X, R_{A}(X)\right\rangle=\operatorname{Tr} X^{*} X A=\operatorname{Tr} X A X^{*} \geq 0$
d) $\left(L_{A}\right)^{-1}=L_{A^{-1}}, \quad\left(R_{B}\right)^{-1}=R_{B^{-1}}$
e) $f\left(L_{A}\right)=L_{f(A)} \quad f\left(R_{B}\right)=R_{f(B)}$, e.g., $\quad L_{A}^{p}=L_{A^{p}}, R_{A}^{p}=R_{A^{p}}$
simple form of deep idea: Araki $\Delta_{A B}=L_{A} R_{B}^{-1}$ relative modular op

Aside: Functions of operators

For $A=U D U^{*}$, define $f(A)=U f(D) U^{*}$

$$
A=U\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
0 & \ldots & 0 & \lambda_{d}
\end{array}\right) U^{*} \quad f(A)=U\left(\begin{array}{cccc}
f\left(\lambda_{1}\right) & 0 & \ldots & 0 \\
0 & f\left(\lambda_{2}\right) & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
0 & \ldots & 0 & f\left(\lambda_{d}\right)
\end{array}\right) U^{*}
$$

equiv. to any reasonable def using power series, integral rep., etc. also applies to operators, e.g., L_{A} acting on M_{d} space of matrices

$$
\begin{array}{r}
A\left|\phi_{j}\right\rangle=\alpha_{j}\left|\phi_{j}\right\rangle \quad \Rightarrow \quad L_{A}\left|\phi_{j}\right\rangle\left\langle\phi_{k}\right|=\alpha_{j}\left|\phi_{j}\right\rangle\left\langle\phi_{k}\right| \\
k=1,2, \ldots d \\
\text { e-vals of } L_{A} \mathrm{deg} \\
f(A)\left|\phi_{j}\right\rangle=\alpha_{j}\left|\phi_{j}\right\rangle \quad f\left(L_{A}\right)\left|\phi_{j}\right\rangle\left\langle\phi_{k}\right|=f\left(\alpha_{j}\right)\left|\phi_{j}\right\rangle\left\langle\phi_{k}\right|
\end{array}
$$

In particular, $\operatorname{Tr} L_{\log Q}(P)=\operatorname{Tr}\left(\log L_{Q}\right)(P)$

Back to $J_{p}(K, A, B)$

$$
g_{p}(x)=\left\{\begin{array}{ll}
\frac{1}{p(1-p)}\left(x-x^{p}\right) & p \neq 1 \\
x \log x & p=1
\end{array} .\right.
$$

well-defined for $x>0$ and $p \neq 0$, but $p \in\left[\frac{1}{2}, 2\right]$ would suffice

$$
\begin{aligned}
J_{p}(K, A, B) & \equiv \operatorname{Tr} \sqrt{B} K^{*} g_{p}\left(L_{A} R_{B}^{-1}\right)(K \sqrt{B}) \\
= & \begin{cases}\frac{1}{p(1-p)}\left(\operatorname{Tr} K^{*} A K-\operatorname{Tr} K^{*} A^{p} K B^{1-p}\right) & p \in(0,1) \cup(1,2) \\
\left.\operatorname{Tr} K K^{*} A \log A-\operatorname{Tr} K^{*} A K \log B\right) & p=1 \\
-\frac{1}{2}\left(\operatorname{Tr} K^{*} A K-\operatorname{Tr} A K B^{-1} K^{*} A\right) & p=2\end{cases} \\
& J_{1}(I, A, B)=\operatorname{Tr} A(\log A-\log B)=H(A, B)
\end{aligned}
$$

Aside: extend to $[-1,0)$

not quite symmetric around $p=\frac{1}{2} \quad p \leftrightarrow 1-p$

$$
\tilde{g}_{p}(x)=w g_{1-p}\left(w^{-1}\right)=\left\{\begin{array}{ll}
\frac{1}{p(1-p)}\left(1-x^{p}\right) & p \neq 0 \\
-\log x & p=0
\end{array} \quad p \in[-1,1)\right.
$$

$$
J_{p}(K, B, A)=\widetilde{J}_{1-p}\left(K^{*}, A, B\right)
$$

$\widetilde{J}_{p}(K, A, B)$ jointly convex for $p \in[-1,1)$

$$
\widetilde{J}_{0}(I, A, B)=\operatorname{Tr} B(\log B-\log A)=H(B, A)
$$

Integral representations

$$
\frac{g_{p}(x)}{x}= \begin{cases}\frac{1}{p(1-p)}\left(1-x^{p-1}\right) & p \neq 1 \\ \log x & p=1\end{cases}
$$

well-def for $x \in(0, \infty)$ and operator monotone for $p \in(0,2]$, or, anal cont to upper half of complex plane and UHP \mapsto UHP

$$
\Rightarrow g_{p}(x) \text { has integral rep of form }
$$

$$
\begin{aligned}
g_{p}(x) & =a x+\int_{0}^{\infty} \frac{x^{2} t-x}{x+t} \nu(t) d t \\
& =a x+\int_{0}^{\infty}\left[\frac{x^{2}}{x+t}-\frac{1}{t}+\frac{1}{x+t}\right] t \nu(t) d t
\end{aligned}
$$

with $\nu(t) \geq 0$

Specific integrals - elementary

$$
\int_{0}^{\infty} \frac{x^{p-1}}{x+1}=\frac{\pi}{\sin p \pi} \quad 0<p<1 \quad c_{p}=\frac{\sin p \pi}{\pi}
$$

allows us to give the following explicit representations

$$
g(x)= \begin{cases}\frac{1}{p(1-p)}\left[x+c_{p} \int_{0}^{\infty}\left(\frac{t}{x+t}-1\right) t^{p-1} d t\right] & p \in(0,1) \\ \int_{0}^{\infty}\left(\frac{x^{2}}{x+t}-1+\frac{t}{x+t}\right) \frac{1}{1+t} d t & p=1 \\ \frac{1}{p(1-p)}\left[x+c_{p-1} \int_{0}^{\infty} \frac{x^{2}}{x+t} t^{p-2} d t\right] & p \in(1,2) \\ \frac{1}{2}\left(-x+x^{2}\right) & p=2\end{cases}
$$

Important: For $p \in(0,2)$ integrand supported on $(0, \infty)$.

Integal representation using L_{A} and R_{B}

$$
\begin{aligned}
& \text { Recall } J_{\rho}(K, A, B)=\operatorname{Tr} \sqrt{B} K^{*} g_{\rho}\left(L_{A} R_{B}^{-1}\right)(K \sqrt{B}) \\
& g_{\rho}(x)=a x+\int_{0}^{\infty}\left[\frac{x^{2}}{x+t}-\frac{1}{t}+\frac{1}{x+t}\right] t \nu(t) d t \\
& \operatorname{Tr} \sqrt{B} K^{*} \frac{1}{L_{A} R_{B}^{-1}+t \mid}(K \sqrt{B})=\operatorname{Tr} \sqrt{B} K^{*} \frac{R_{B}}{L_{A}+t R_{B}}(K \sqrt{B}) \\
& =\operatorname{Tr} B K^{*} \frac{1}{L_{A}+t R_{B}}(K B) \\
& J_{\rho}(K, A, B)=\operatorname{Tr} K^{*} A K-\operatorname{Tr} K B K^{*} \int_{0}^{\infty} \nu(t) d t \\
& +\int_{0}^{\infty}\left[\operatorname{Tr} K^{*} A \frac{1}{L_{A}+t R_{B}}(A K)+\operatorname{Tr} B K^{*} \frac{1}{L_{A}+t R_{B}}(K B)\right] t \nu(t) d t \\
& \text { Suffices to show }(A, B, X) \mapsto \operatorname{Tr} X^{*} \frac{1}{L_{B}+t R_{A}}(X) \text { jointly convex }
\end{aligned}
$$

Proof:

Note: $\operatorname{Tr}(\lambda X)^{*} \frac{1}{L_{\lambda B}+t R_{\lambda A}}(\lambda X)=\lambda \operatorname{Tr} X^{*} \frac{1}{L_{B}+t R_{A}}(X)$ Homo of degree $1 \Rightarrow$ suffices to prove subadditivity

Let:

$$
M=()^{-1 / 2}(X)-()^{1 / 2}(\Lambda)
$$

$\operatorname{Tr} M^{*} M=\langle M, M\rangle$

$$
\begin{aligned}
& =\left\langle\left[()^{-1 / 2}(X)-()^{1 / 2}(\Lambda)\right],\left[()^{-1 / 2}(X)-()^{1 / 2}(\Lambda)\right]\right\rangle \\
& =\left\langle X,()^{-1}(X)\right\rangle-\langle X, \Lambda\rangle-\langle\Lambda, X\rangle+\langle\Lambda,()(\Lambda)\rangle
\end{aligned}
$$

Choose $M=\left(L_{A}+t R_{B}\right)^{-1 / 2}(X)-\left(L_{A}+t R_{B}\right)^{1 / 2}(\Lambda)$
$\operatorname{Tr} M^{*} M=$

$$
\operatorname{Tr} X^{*}\left(L_{A}+t R_{B}\right)^{-1}(X)-\operatorname{Tr} X^{*} \Lambda-\operatorname{Tr} \Lambda^{*} X+\operatorname{Tr} \Lambda^{*}\left(L_{A}+t R_{B}\right)(\Lambda)
$$

$$
\begin{aligned}
& \text { Let } \begin{aligned}
& M_{j}=\left(L_{A_{j}}+t R_{B_{j}}\right)^{-1 / 2}\left(X_{j}\right)-\left(L_{A_{j}}+t R_{B_{j}}\right)^{1 / 2}(\Lambda) . \text { Then } \\
& \begin{aligned}
0 & \sum_{j} \operatorname{Tr} M_{j}^{*} M_{j}=\sum_{j} \operatorname{Tr} X_{j}^{*}\left(L_{A_{j}}+t R_{B_{j}}\right)^{-1}\left(X_{j}\right) \\
& -\operatorname{Tr}\left(\sum_{j} X_{j}^{*}\right) \Lambda-\operatorname{Tr} \Lambda^{*}\left(\sum_{j} X_{j}\right)+\operatorname{Tr} \Lambda^{*} \sum_{j}\left(L_{A_{j}}+t R_{B_{j}}\right) \Lambda \\
= & \sum_{j} \operatorname{Tr} X_{j}^{*} \frac{1}{\left(L_{A_{j}}+t R_{B_{j}}\right)}\left(X_{j}\right)-\operatorname{Tr} X^{*} \Lambda-\operatorname{Tr} \Lambda^{*} X-\operatorname{Tr} \Lambda^{*}\left(L_{A}+t R_{B}\right) \Lambda
\end{aligned}
\end{aligned} .
\end{aligned}
$$

Choose $\Lambda=\frac{1}{L_{A}+t R_{B}}(X) \quad X=\sum_{j} X_{j}, \sum_{j} L_{A_{j}}=L_{\sum_{j} A_{j}}=L_{A}$

$$
\operatorname{Tr} \Lambda^{*} \sum_{j}\left(L_{A_{j}}+t R_{B_{j}}\right) \Lambda=\operatorname{Tr} X^{*} \frac{1}{L_{A}+t R_{B}} X=\operatorname{Tr} X \Lambda=\operatorname{Tr} \Lambda^{*} X
$$

$$
0 \leq \sum_{j} \operatorname{Tr} X_{j}^{*} \frac{1}{L_{A_{j}}+t R_{B_{j}}}\left(X_{j}\right)-\operatorname{Tr} X^{*} \frac{1}{L_{A}+t R_{B}}(X)
$$

compare elementary C-S ineq:

$$
\left|\sum_{k} \bar{v}_{k} w_{k}\right|^{2} \leq \sum_{k}\left|v_{k}\right|^{2} \sum_{k}\left|w_{k}\right|^{2}
$$

For $a_{k}>0$ let $v_{k}=a_{k}^{1 / 2}, w_{k}=a_{k}^{-1 / 2} x_{k}$

$$
\left|\sum_{k} x_{k}\right|^{2} \leq \sum_{k} a_{k} \sum_{k} \bar{x}_{k} \frac{1}{a_{k}} x_{k}
$$

Rewrite $\left(\sum_{k} \bar{x}_{k}\right) \frac{1}{\sum_{k} a_{k}}\left(\sum_{k} x_{k}\right) \leq \sum_{k} \bar{x}_{k} \frac{1}{a_{k}} x_{k}$
Lieb and Ruskai (1973) proved operator version

$$
\left(\sum_{k} X_{k}^{*}\right) \frac{1}{\sum_{k} A_{k}}\left(\sum_{k} X_{k}\right) \leq \sum_{k} X_{k}^{*} \frac{1}{A_{k}} X_{k}
$$

Not suff. for SSA - need Araki rel mod op hidden in L_{A} and R_{B}.
Compare proof: $\left|\sum_{k} v_{k}+t w_{k}\right|^{2} \geq 0 \forall t$ choose t to minimize

Remarks on $q \neq 1-p$

$p, q>0, p+q<1 \quad \operatorname{Tr} K^{*} A^{p} K B^{1-p}$ concave
Write $\operatorname{Tr} K^{*} A^{p} K B^{q}=\operatorname{Tr} K^{*} A^{p} K\left(B^{s}\right)^{1-p} \quad 0<s=\frac{1}{1-p}<1$
B^{s} is op monotone and op concave for $s \in(0,1)$

$$
\left(\lambda B_{1}+(1-\lambda) B_{2}\right)^{s}>\lambda B_{1}^{s}+(1-\lambda) B_{2}^{s}
$$

Note: $f(x)$ strictly concave and op concave \Rightarrow strict op ineq

$$
\begin{aligned}
\operatorname{Tr} K^{*} A^{p} K B^{q} & =\operatorname{Tr} K^{*} A^{p} K\left[\left(\lambda B_{1}+(1-\lambda) B_{2}\right)^{s}\right]^{1-p} \\
& >\operatorname{Tr} K^{*} A^{p} K\left(\lambda B_{1}^{s}+(1-\lambda) B_{2}^{s}\right)^{1-p} \\
& \geq \lambda \operatorname{Tr} K^{*} A_{1}^{p} K\left(B_{1}^{s}\right)^{1-p}+(1-\lambda) \operatorname{Tr} K^{*} A_{2}^{p} K\left(B_{2}^{s}\right)^{1-p} \\
& =\lambda \operatorname{Tr} K^{*} A_{1}^{p} K B_{1}^{q}+(1-\lambda) \operatorname{Tr} K^{*} A_{2}^{p} K B_{2}^{q}
\end{aligned}
$$

get equal only for trivial cases, $B_{1}=B_{2}$ or $\lambda=0,1$.

Monotonicity under partial traces

Prove MPT: Recall gen Pauli ops,

$$
\begin{gathered}
Z\left|e_{n}\right\rangle=e^{2 \pi i n / d}\left|e_{n}\right\rangle \\
\sum_{j} Z^{j} A Z^{-j}=d A_{\text {diag }} \quad X\left|e_{n}\right\rangle=\left|e_{n+1}\right\rangle \\
\frac{1}{d} \sum_{j} \sum_{k} X^{j} Z^{k} A\left(X^{j} Z^{k}\right)^{*}=(\operatorname{Tr} A) I
\end{gathered}
$$

$W_{n}=X^{j} Z^{k}$ in some ordering $n=1,2, \ldots d^{2}$, e.g., $n=j+d(k-1)$

$$
\frac{1}{d_{2}} \sum_{n}\left(I_{1} \otimes W_{n}\right) A_{12}\left(I_{1} \otimes W_{n}\right)^{*}=A_{1} \otimes I_{2}
$$

Discrete version of Uhlmann's observation that partial trace can be obtained by integrating over $S U(n)$ using Haar measure.

$$
\begin{aligned}
& J_{p}\left(K_{2}, A_{2}, B_{2}\right)=J_{p}\left(I_{1} \otimes K_{2}, \frac{1}{d_{1}} I_{1} \otimes A_{2}, \frac{1}{d_{1}} I_{1} \otimes B_{2}\right) \\
& \quad=\frac{1}{d_{1}^{2}} J_{p}\left(K_{12}, \sum_{n}\left(W_{n} \otimes I_{2}\right) A_{12}\left(W_{n} \otimes I_{2}\right)^{*}, \sum_{n}\left(W_{n} \otimes I_{2}\right) B_{12}\left(W_{n} \otimes I_{2}\right)^{*}\right) \\
& \quad \leq \frac{1}{d_{1}^{2}} \sum_{n} J_{p}\left(I_{1} \otimes K_{2},\left(W_{n} \otimes I_{2}\right) A_{12}\left(W_{n} \otimes I_{2}\right)^{*},\left(W_{n} \otimes I_{2}\right) B_{12}\left(W_{n} \otimes I_{2}\right)^{*}\right) \\
& \quad=\frac{1}{d_{1}^{2}} \sum_{n} J_{p}\left(I_{1} \otimes K_{2}, A_{12}, B_{12}\right)=J_{p}\left(I_{1} \otimes K_{2}, A_{12}, B_{12}\right)
\end{aligned}
$$

$$
\text { used } \quad J_{p}\left(I_{1} \otimes K_{2}, A_{12}, B_{12}\right) \quad \text { wrote } K_{12}=I_{1} \otimes K_{2}
$$

$$
=J_{p}\left(I_{1} \otimes K_{2},\left(W_{n} \otimes I_{2}\right) A_{12}\left(W_{n} \otimes I_{2}\right)^{*},\left(W_{n} \otimes I_{2}\right) B_{12}\left(W_{n} \otimes I_{2}\right)^{*}\right)
$$

$$
J_{1}\left(I, A_{2}, B_{2}\right) \leq J_{1}\left(I, A_{12}, B_{12}\right) \text { gives } H\left(A_{2}, B_{2}\right) \leq H\left(A_{12}, B_{12}\right)
$$

Cor: SSA $H\left(A_{23}, A_{2}\right) \leq H\left(A_{123}, A_{13}\right)$
p. 645 of Quantum Computation and Quantum Information

Michael A. Nielsen and Isaac L. Chuang (Cambridge Press, 2000)
based on B. Simon's version adapted from Uhlmann (1977) of "elementary" proof of $(A, B) \mapsto \operatorname{Tr} K^{*} A^{p} K B^{1-p}$ concave similar argument in Wehrl Rev. Mod. Phys (1978). BUT

- MBR, "Lieb's simple proof of concavity ..." quant-ph/0404126 Int. J. Quant Info. 3, 579-590 (2005) Schwarz + max mod
- Ando's argument described in Carlen's talk
- Petz - uses $\Delta_{A B}$ in book; elem version in quant-ph/0408130
- Proof here based on Schwarz ineq. using L_{A}, R_{B} really elem. based on Lesniewski and Ruskai, JMP; and MBR quant-ph/0604206

Equality conditions in $J_{p}(K, A, X)$ convex

$$
\begin{aligned}
\int_{0}^{\infty} \operatorname{Tr} K^{*} A_{L_{A}+t R_{B}}(A K) \nu(t) d t & \leq \int_{0}^{\infty} \sum_{j} \operatorname{Tr}\left(A_{j} K\right)^{*} \frac{1}{L_{A_{j}}+t R_{B_{j}}}\left(A_{j} K\right) \nu(t) \\
& =\sum_{j} \int_{0}^{\infty} \operatorname{Tr}\left(A_{j} K\right)^{*} \frac{1}{L_{A_{j}}+t R_{B_{j}}}\left(A_{j} K\right) \nu(t)
\end{aligned}
$$

Equal \Leftrightarrow equal for each term in integ, i.e., $M_{j}=0 \quad \forall j, \forall t$

$$
\left(L_{A_{j}}+t R_{B_{j}}\right)^{-1}\left(X_{j}\right)=\left(L_{A}+t R_{B}\right)^{-1}(X) \quad \forall j, \forall t
$$

equality conditions independent of $p \in(0,2)$

$$
\begin{array}{lll}
X=A K & \left(I+t \Delta_{A_{j} B_{j}}^{-1}\right)^{-1}(K)=\left(I+t \Delta_{A B}^{-1}\right)^{-1}(K) & \forall j, \forall t \\
X=B K & \left(\Delta_{A_{j} B_{j}}+t I\right)^{-1}(K)=\left(\Delta_{A B}+t l\right)^{-1}(K) & \forall j, \forall t
\end{array}
$$

Recall $\Delta_{A B}=L_{A} R_{B}^{-1}>0$ prod of commuting pos def ops

$$
\left(\Delta_{A_{j} B_{j}}+t l\right)^{-1}(K)=\left(\Delta_{A B}+t l\right)^{-1}(K) \quad \forall j, \forall t
$$

$\Delta_{A B}>0 \Rightarrow\left(\Delta_{A B}+t l\right)^{-1} \quad$ anal cont to $\mathbf{C} \backslash(-\infty, 0]$
can apply Cauchy integral Thm. to get
$\Rightarrow G\left(\Delta_{A_{j} B_{j}}\right)(K)=G\left(\Delta_{A B}\right)(K) \quad \forall j \quad G$ anal on $\mathbf{C} \backslash(-\infty, 0]$ allows several useful formulations
$\Rightarrow\left(\Delta_{A B}+t I\right)$ and $\left(I+\Delta_{A B}^{-1} t\right)$ forms equiv.

Equivalent equality conditions

Thm: For fixed K, and $A=\sum_{j} A_{j}, B=\sum_{j} B_{j} \quad$ TFAE
a) $J_{p}(K, A, B)=\sum_{j} J_{p}\left(K, A_{j}, B_{j}\right)$ for all $p \in(0,2)$.
b) $J_{p}(K, A, B)=\sum_{j} J_{p}\left(K, A_{j}, B_{j}\right)$ for some $p \in(0,2)$.
c) $\left(\Delta_{A_{j} B_{j}}+t l\right)^{-1}(K)=\left(\Delta_{A B}+t l\right)^{-1}(K) \quad \forall j$ and $\forall t>0$.
d) $A_{j}^{i t} K B_{j}^{-i t}=A^{i t} K B^{-i t} \quad \forall j$ and $\quad \forall t>0$.
e) $\left(\log A-\log A_{j}\right) K=K\left(\log B-\log B_{j}\right) \quad \forall j$.

In addition when $K=I$, equiv to
f) There are $D_{j}>0$ such that $\left[A_{j}, D_{j}\right]=\left[B_{j}, D_{j}\right]=0$, and

$$
A_{j}=A D^{-1} D_{j}, \quad B_{j}=B D^{-1} D_{j} \text { with } D=\sum_{j} D_{j}
$$

neccessity of (f) uses sufficient subalgebra - developed by Petz formulation here from Jenčová and Petz, CMP, 263, 259-276 (2006).

Equality conditions for SSA

use form $\log A_{123}-\log A_{12}-\log A_{23}+\log A_{2}=0$
Easy to see $A_{123}=A_{1} \otimes A_{23}$ or $A_{12} \otimes A_{3}$ will suffice If $\mathcal{H}_{2}=\mathcal{H}_{2_{L}} \otimes \mathcal{H}_{2_{R}}$ then $A_{123}=A_{12_{L}} \otimes A_{2_{R} 3}$ will suffice

Thm: Equality holds in SSA if and only if

$$
\mathcal{H}_{2}=\bigoplus_{n} \mathcal{H}_{n}^{L} \otimes \mathcal{H}_{n}^{R} \quad \text { and } \quad A_{123}=\bigoplus_{n} A_{n}^{L} \otimes A_{n}^{R}
$$

with $A_{n}^{L} \in \mathcal{B}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{n}^{L}\right), \quad A_{n}^{R} \in \mathcal{B}\left(\mathcal{H}_{n}^{R} \otimes \mathcal{H}_{3}\right)$
Cor: Equality in $\operatorname{Tr} A_{23}^{p} A_{2}^{1-p} \leq \operatorname{Tr} A_{123}^{p} A_{12}^{1-p}$ iff same cond

$$
p \in(0,1) \leq \quad p \in(1,2) \geq
$$

Carlen Lieb Inequalities

$$
\begin{aligned}
\widehat{\Upsilon}_{p, 1}(K, A) & \left.=\frac{1}{(p-1)}\left[\operatorname{Tr} K^{*} A^{p} K\right)^{1 / p}-\frac{1}{p} \operatorname{Tr} K^{*} A K\right] \\
& =\inf \left\{J_{p}(K, A, X)+\frac{1}{p} \operatorname{Tr} X: X>0\right\} \\
\widehat{\Phi}_{p, 1}\left(\sum_{k} A_{k}\right)=\widehat{\Phi}_{p, 1}(\mathcal{A}) & =\frac{1}{(p-1)}\left[\operatorname{Tr}\left(\sum_{k} A_{k}^{p}\right)^{1 / p}-\frac{1}{p} \operatorname{Tr} \sum_{k} A_{k}\right] \\
\widehat{\Psi}_{p, 1}\left(\mathcal{A}_{12}\right) & =\frac{1}{(p-1)}\left[\operatorname{Tr}_{1}\left(\operatorname{Tr}_{2} \mathcal{A}_{12}^{p}\right)^{1 / p}-\frac{1}{p} \operatorname{Tr}_{12} \mathcal{A}_{12}\right]
\end{aligned}
$$

All convex for $0<p \leq 2 . \quad \widehat{\Phi}(\mathcal{A})$ is block diag case of $\widehat{\Psi}\left(\mathcal{A}_{12}\right)$
conditional entropy $\quad \widehat{\Psi}_{(1,1)}\left(\mathcal{A}_{12}\right)=S\left(\mathcal{A}_{1}\right)-S\left(\mathcal{A}_{12}\right)$

$$
|\mathbb{1}\rangle=(1,1, \ldots, 1) \quad\left|e_{1}\right\rangle=(1,0, \ldots, 0)
$$

$$
\begin{gathered}
\mathcal{K}=\frac{1}{d} I \otimes|\mathbb{1}\rangle\left\langle e_{1}\right|=\left(\begin{array}{cccc}
I & 0 & \ldots & 0 \\
I & 0 & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
I & 0 & \ldots & 0
\end{array}\right) \\
\mathcal{A}=\sum_{k} A_{k} \otimes\left|e_{k}\right\rangle\left\langle e_{k}\right|=\left(\begin{array}{ccccc}
A_{1} & 0 & 0 & \ldots & 0 \\
0 & A_{2} & 0 & \ldots & 0 \\
0 & 0 & A_{1} & \ldots & 0 \\
\vdots & & & \ddots & \vdots
\end{array}\right) \\
\mathcal{K}^{*} \mathcal{A}^{p} \mathcal{K}=\left(\sum_{k} A_{k}^{p}\right) \otimes\left|e_{1}\right\rangle\left\langle e_{1}\right| \quad \Rightarrow \quad \widehat{\Phi}_{p, 1}(\mathcal{A})=\widehat{\Upsilon}_{p, 1}(K, A)
\end{gathered}
$$

MPT in Carlen-Lieb

monotonicity: $\quad \widehat{\Psi}_{(p, 1)}\left(\mathcal{A}_{23}\right) \leq \widehat{\Psi}_{(p, 1)}\left(\mathcal{A}_{123}\right)$
conditional entropy: $\widehat{\Psi}_{(1,1)}\left(\mathcal{A}_{23}\right)=S\left(\mathcal{A}_{2}\right)-S\left(\mathcal{A}_{23}\right)$
$p=1 \quad S\left(\mathcal{A}_{2}\right)-S\left(\mathcal{A}_{23}\right) \leq S\left(\mathcal{A}_{12}\right)-S\left(\mathcal{A}_{123}\right) \quad$ SSA

Carlen-Lieb Minkowski:

$$
\begin{aligned}
\operatorname{Tr}_{3}\left[\operatorname{Tr}_{2}\left(\operatorname{Tr}_{1} \mathcal{A}_{123}\right)^{p}\right]^{1 / p} & =\Psi_{(p, 1)}\left(\mathcal{A}_{32}\right) \\
& \leq \Psi_{(p, 1)}\left(\mathcal{A}_{132}\right)=\operatorname{Tr}_{3} \operatorname{Tr}_{1}\left(\operatorname{Tr}_{2} \mathcal{A}_{123}^{p}\right)^{1 / p}
\end{aligned}
$$

for $1<p \leq 2$ and reverse ineq \geq for $0<p<1$.
$p=1$ equality conditions same as for SSA

Equality conditions in Carlen-Lieb

Extend equal conds to all $p \in(0,2)$ by Cor to SSA equal conds
Rough idea: Equal in SSA \Rightarrow equal in MPT proof
\Rightarrow equal in convexity for $J_{p}\left(I, A_{12}, I_{1} \otimes A_{2}\right)$ can actually use SSA equal conds to improve this
equal in $\widehat{\Phi}(\mathcal{A})$ convex \Leftrightarrow equal in $J_{p}\left(I, \mathcal{A}, \operatorname{Tr}_{2}(\mathcal{A}) \otimes I_{2}\right)$
equal in $\widehat{\Psi}\left(\mathcal{A}_{12}\right)$ convex \Leftrightarrow equal in $J_{p}\left(I, \mathcal{A}_{123}, \mathcal{A}_{1} \otimes I_{23}\right)$

$$
\mathcal{A}_{123}=\sum_{n}\left(I \otimes W_{n}\right) \mathcal{A}_{12}\left(I \otimes W_{n}\right)^{*} \otimes\left|e_{n}\right\rangle\left\langle e_{n}\right|
$$

equal in "new" SSA from $\widehat{\Psi}_{(p, 1)}\left(\mathcal{A}_{23}\right) \leq \widehat{\Psi}_{(p, 1)}\left(\mathcal{A}_{123}\right)$ indep of p

Generalizations of SSA

Uniform treatment led to two distinct generalizations of SSA pseudo p-metric based on MPT of $J_{p}\left(1, A_{123}, A_{23}\right)$

$$
\begin{array}{lll}
\operatorname{Tr} A_{23}^{p} A_{2}^{1-p} & \leq \operatorname{Tr} A_{123}^{p} A_{12}^{1-p} & p \in(0,1) \\
& p \in(1,2)
\end{array}
$$

pseudo p-norm based on MPT of $\widehat{\Psi}\left(\mathcal{A}_{123}\right)$

$$
\operatorname{Tr}_{2}\left(\operatorname{Tr}_{3} \mathcal{A}_{23}^{p}\right)^{1 / p} \geq \operatorname{Tr}_{12}\left(\operatorname{Tr}_{3} \mathcal{A}_{123}^{p}\right)^{1 / p} \quad \begin{array}{ll}
& p \in(0,1) \\
& p \in(1,2)
\end{array}
$$

Compare Renyi $\frac{1}{1-p} \log \operatorname{Tr} A^{p}$ and Tsallis $\frac{1}{p-1}\left(1-\operatorname{Tr} A^{p}\right)$ entropy

