
CHAPTER 2
Unitary similarity and unitary equivalence

2.0 Introduction

yIn Chapter 1, we made an initial study of similarity of A 2 Mn via a general
nonsingular matrix S, that is, the transformation A ! S�1AS. For certain
very special nonsingular matrices, called unitary matrices, the inverse of S has
a simple form: S�1 = S�. Similarity via a unitary matrix U , A ! U�AU , is
not only conceptually simpler than general similarity (the conjugate transpose
is much easier to compute than the inverse), but it also has superior stability
properties in numerical computations. A fundamental property of unitary sim-
ilarity is that every A 2 Mn is unitarily similar to an upper triangular matrix
whose diagonal entries are the eigenvalues of A. This triangular form can be
further re�ned under general similarity; we study the latter in Chapter 3.
The transformation A ! S�AS, in which S is nonsingular but not neces-

sarily unitary, is called *congruence; we study it in Chapter 4. Notice that
similarity by a unitary matrix is both a similarity and a *congruence.
For A 2 Mn;m, the transformation A ! UAV , in which U 2 Mm and

V 2 Mn are both unitary, is called unitary equivalence. The upper triangular
form achievable under unitary similarity can be greatly re�ned under unitary
equivalence and generalized to non-square matrices: every A 2 Mn;m is uni-
tarily equivalent to a nonnegative diagonal matrix whose diagonal entries (the
singular values of A) are of great importance.

y Matrix Analysis, second edition by Roger A. Horn and Charles R. Johnson, copyright Cam-
bridge University Press 2009

101



102 Unitary similarity and unitary equivalence

2.1 Unitary matrices and the QR factorization
2.1.1 De�nition. A set of vectors fx1; : : : ; xkg � Cn is orthogonal if x�i xj =
0 for all i 6= j, i; j = 1; : : : ; k. If, in addition, x�i xi = 1 for all i = 1; : : : ; k

(that is, the vectors are normalized), then the set is orthonormal.

Exercise. If fy1; : : : ; ykg is an orthogonal set of nonzero vectors, show that
the set fx1; : : : ; xkg de�ned by xi = (y�i yi)�1=2yi, i = 1; : : : ; k, is an ortho-
normal set.

2.1.2 Theorem. Every orthonormal set of vectors in Cn is linearly indepen-
dent.

Proof: Suppose that fx1; : : : ; xkg is an orthonormal set, and suppose that
0 = �1x1 + � � � + �kxk. Then 0 = (�1x1 + � � � + �kxk)�(�1x1 + � � � +
�kxk) = �i;j ��i�jx

�
i xj = �ki=1j�ij2x�i xi = �ki=1j�ij2 because the vectors

xi are orthogonal and normalized. Thus, all �i = 0 and hence fx1; : : : ; xkg is
a linearly independent set.

Exercise. Show that every orthogonal set of nonzero vectors in Cn is linearly
independent.

Exercise. If fx1; : : : ; xkg 2 Cn is an orthogonal set, show that either k � n
or at least k � n of the vectors xi are equal to zero.

An independent set need not be orthonormal, of course, but one can apply
the Gram�Schmidt orthonormalization procedure (0.6.4) to it and obtain an
orthonormal set with the same span as the original set.

Exercise. Show that any nonzero subspace of Rn or Cn has an orthonormal
basis (0.6.5).

2.1.3 De�nition. A matrix U 2 Mn is unitary if U�U = I . If, in addition,
U 2Mn(R), U is real orthogonal.

Exercise. Show that U 2Mn and V 2Mm are unitary if and only if U �V 2
Mn+m is unitary.

Exercise. Verify that the matrices Q;U; and V in Problems 19, 20, and 21 in
(1.3) are unitary.

The unitary matrices in Mn form a remarkable and important set. We list
some of the basic equivalent conditions for U to be unitary in (2.1.4).

2.1.4 Theorem. If U 2Mn, the following are equivalent:

(a) U is unitary;



2.1 Unitary matrices and the QR factorization 103

(b) U is nonsingular and U� = U�1;
(c) UU� = I;
(d) U� is unitary;
(e) The columns of U form an orthonormal set;
(f) The rows of U form an orthonormal set; and
(g) For all x 2 Cn, kxk2 = kUxk2, that is, x and Ux have the same

Euclidean norm.

Proof: (a) implies (b) since U�1 (when it exists) is the unique matrix, left
multiplication by which produces I (0.5); the de�nition of unitary says that U�

is such a matrix. Since BA = I if and only if AB = I (for A;B 2Mn (0.5)),
(b) implies (c). Since (U�)� = U , (c) implies that U� is unitary; that is, (c)
implies (d). The converse of each of these implications is similarly observed,
so (a)�(d) are equivalent.
Partition U = [u1 : : : un] according to its columns. Then U�U = I means

that u�i ui = 1 for all i = 1; : : : ; n and u�i uj = 0 for all i 6= j. Thus, U�U = I
is another way of saying that the columns of U are orthonormal, and hence (a)
is equivalent to (e). Similarly, (d) and (f) are equivalent.
If (a) holds and y = Ux, then y�y = x�U�Ux = x�Ix = x�x, so (a)

implies (g). To prove the converse, let U�U = A = [aij ], let z; w 2 C be
given, and take x = z + w in (g). Then x�x = z�z + w�w + 2Re z�w and
y�y = x�Ax = z�Az + w�Aw + 2Re z�Aw; (g) ensures that z�z = z�Az

and w�w = w�Aw, and hence Re z�w = Re z�Aw for any z and w. Take
z = ep and w = ieq and compute Re ieTp eq = 0 = Re ieTpAeq = Re iapq =
� Im apq, so every entry of A is real. Finally, take z = ep and w = eq and
compute eTp eq = Re eTp eq = Re eTpAeq = apq, which tells us that A = I and
U is unitary.

2.1.5 De�nition. A linear transformation T : Cn ! Cm is called a Euclidean
isometry if x�x = (Tx)�(Tx) for all x 2 Cn. Theorem (2.1.4) says that a
square complex matrix U 2 Mn is a Euclidean isometry (via U : x ! Ux) if
and only if it is unitary. See (5.2) for other kinds of isometries.

Exercise. Let T (�) =
h

cos � sin �
� sin � cos �

i
, in which � is a real parameter. (a)

Show that a given U 2 M2(R) is real orthogonal if and only if either U =

T (�) or U =
h
1 0
0 �1

i
T (�) for some � 2 R. (b) Show that a given U 2

M2(R) is real orthogonal if and only if eitherU = T (�) orU =
h
0 1
1 0

i
T (�)

for some � 2 R. These are two different presentations, involving a parameter
�, of the 2-by-2 real orthogonal matrices. Interpret them geometrically.
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2.1.6 Observation. If U; V 2 Mn are unitary (respectively, real orthogonal),
then UV is also unitary (respectively, real orthogonal).

Exercise. Use (b) of (2.1.4) to prove (2.1.6).

2.1.7 Observation. The set of unitary (respectively, real orthogonal) matrices
inMn forms a group. This group is generally referred to as the n-by-n unitary
(respectively, orthogonal) group, a subgroup of GL(n;C) (0.5).

Exercise. A group is a set that is closed under a single associative binary op-
eration (�multiplication�) and is such that the identity for and inverses under
the operation are contained in the set. Verify (2.1.7). Hint: Use (2.1.6) for clo-
sure; matrix multiplication is associative; I 2 Mn is unitary; and U� = U�1

is again unitary.

The set (group) of unitary matrices inMn has another very important prop-
erty. Notions of �convergence� and �limit� of a sequence of matrices will be
presented precisely in Chapter 5, but can be understood here in terms of �con-
vergence� and �limit� of entries. The de�ning identity U�U = I means that
every column of U has Euclidean norm 1, and hence no entry of U = [uij ] can
have absolute value greater than 1. If we think of the set of unitary matrices as
a subset of Cn

2

, this says it is a bounded subset. If Uk � [u(k)ij ] is an in�nite
sequence of unitary matrices, k = 1; 2; : : : such that limk!1 u

(k)
ij � uij exists

for all i; j = 1; 2; : : : ; n, then from the identity U�kUk = I for all k = 1; 2; : : :
we see that limk!1 U

�
kUk = U

�U = I , in which U = [uij ]. Thus, the limit
matrix U is also unitary. This says that the set of unitary matrices is a closed
subset of Cn

2

.
Since a closed and bounded subset of a �nite dimensional Euclidean space

is a compact set (see Appendix E), we conclude that the set (group) of unitary
matrices inMn is compact. For our purposes, the most important consequence
of this observation is the following selection principle for unitary matrices.

2.1.8 Lemma. Let U1; U2; : : : 2 Mn be a given in�nite sequence of unitary
matrices. There exists an in�nite subsequence Uk1 ; Uk2 ; : : :, 1 � k1 < k2 <

� � � , such that all of the entries of Uki converge (as sequences of complex
numbers) to the entries of a unitary matrix as i!1.

Proof: All that is required here is the fact that from any in�nite sequence in a
compact set one may always select a convergent subsequence. We have already
observed that if a sequence of unitary matrices converges to some matrix, then
the limit matrix must be unitary.
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The unitary limit guaranteed by the lemma need not be unique; it can depend
upon the subsequence chosen.

Exercise. Consider the sequence of unitary matrices Uk =
h
0 1
1 0

ik
; k =

1; 2; : : : : Show that there are two possible limits of subsequences.

Exercise. Explain why the selection principle (2.1.8) applies as well to the
(real) orthogonal group; that is, an in�nite sequence of real orthogonal matrices
has an in�nite subsequence that converges to a real orthogonal matrix.

A unitary matrix U has the property that U�1 equals U�. One way to gen-
eralize the notion of a unitary matrix is to require that U�1 be similar to U�.
The set of such matrices is easily characterized as the range of the mapping
A! A�1A� for all nonsingular A 2Mn.

2.1.9 Theorem. Let A 2 Mn be nonsingular. Then A�1 is similar to A� if
and only if there is a nonsingular B 2Mn such that A = B�1B�.

Proof: If A = B�1B� for some nonsingular B 2Mn, then A�1 = (B�)�1B
and B�A�1(B�)�1 = B(B�)�1 = (B�1B�)� = A�, so A�1 is similar to A�

via the similarity matrix B�. Conversely, if A�1 is similar to A�, then there is
a nonsingular S 2 Mn such that SA�1S�1 = A� and hence S = A�SA. Set
S� � ei�S for � 2 R, so that S� = A�S�A and S�� = A�S��A. Adding these
two identities gives H� = A�H�A, in which H� � S� + S�� is Hermitian. If
H� were singular, there would be a nonzero x 2 Cn such that 0 = H�x =

S�x + S
�
�x, so �x = S�1� S��x = e�2i�S�1S�x and S�1S�x = �e2i�x.

Choose a value of � = �0 2 [0; 2�) such that �e2i�0 is not an eigenvalue of
S�1S�; the resulting Hermitian matrix H � H�0 is nonsingular and has the
property that H = A�HA.
Now choose any complex � such that j�j = 1 and � is not an eigenvalue of

A�. Set B � �(�I � A�)H , in which the complex parameter � 6= 0 is to be
chosen, and observe that B is nonsingular. We want to have A = B�1B�, or
BA = B�. Compute B� = H(����I � ��A), and BA = �(�I � A�)HA =
�(�HA�A�HA) = �(�HA�H) = H(��A��I). We shall be done if we
can select a nonzero � such that � = �����, but if � = ei , then � = ei(�� )=2
will do.

If a unitary matrix is presented as a 2-by-2 block matrix, then the ranks of
its off-diagonal blocks are equal; the ranks of its diagonal blocks are related by
a simple formula.

2.1.10 Lemma. Let a unitary U 2 Mn be partitioned as U =
h
U11 U12
U21 U22

i
,
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in which U11 2Mk. Then rankU12 = rankU21 and rankU22 = rankU11 +
n � 2k. In particular, U12 = 0 if and only if U21 = 0, in which case U11 and
U22 are unitary.

Proof: The two assertions about rank follow immediately from the law of
complementary nullities (0.7.5) using the fact that U�1 =

h
U�
11 U�

21
U�
12 U�

22

i
.

Plane rotations and Householder matrices are special (and very simple) uni-
tary matrices that play an important role in establishing some basic matrix
factorizations.

2.1.11 Example. plane rotations. Let

U(�; i; j) =

26666666666666666666664

1
. . . 0

1

- - - - - - - - - - cos � 0 : : : 0 � sin � - - - - - - - -
0 1

0
...

. . . 0

0 0 1

- - - - - - - - - - sin � 0 : : : 0 cos � - - - - - - - -
... 0

. . .
1

37777777777777777777775

- - - row i

- - - row j

column i column j

This is simply the identity matrix, with the i; i and j; j entries replaced by cos �
and the i; j entry (respectively j; i entry) replaced by � sin � (respectively,
sin �).

Exercise. Verify that U(�; i; j) 2 Mn(R) is real orthogonal for any pair of
indices 1 � i < j � n and any parameter 0 � � < 2�. The matrix U(�; i; j)
carries out a rotation (through an angle �) in the i, j coordinate plane of Rn.
Left multiplication by U(�; i; j) affects only rows i and j of the matrix mul-
tiplied; right multiplication by U(�; i; j) affects only columns i and j of the
matrix multiplied.

2.1.12 Example. Householder matrices. Let w 2 Cn be a nonzero vector.
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The Householder matrix Uw 2 Mn is de�ned by Uw = I � 2(w�w)�1ww�.
If w is a unit vector, then Uw = I � 2ww�.

Exercise. Show that a Householder matrix Uw is both unitary and Hermitian;
if w 2 Rn then Uw is real orthogonal and symmetric.

Exercise. Show that a Householder matrix Uw acts as the identity on the sub-
space w? and that it acts as a re�ection on the one-dimensional subspace
spanned by w; that is, Uwx = x if x ? w and Uww = �w.

Exercise. Use (0.8.5.11) to show that detUw = �1 for all n. Thus, for all
n and every nonzero w 2 Rn, the Householder matrix Uw 2 Mn(R) is a
real orthogonal matrix that is never a proper rotation matrix (a real orthogonal
matrix whose determinant is +1).

Exercise. Use (1.2.8) to show that the eigenvalues of a Householder matrix are
always �1; 1; : : : ; 1 and explain why its determinant is always �1.

Householder matrices provide a simple way to construct a unitary matrix
that takes a given vector into any other vector that has the same Euclidean
norm.

2.1.13 Theorem. Let x; y 2 Cn be given and suppose kxk2 = kyk2. If
y = ei�x for some real �, let U(y; x) = ei�In; otherwise let � 2 [0; 2�)

be such that x�y = ei�jx�yj (take � = 0 if x�y = 0), let w = ei�x � y,
and let U(y; x) = ei�Uw, in which Uw is the Householder matrix Uw = I �
2(w�w)�1ww�. ThenU(y; x) is unitary and essentially Hermitian,U(y; x)x =
y, and U(y; x)z ? y whenever z ? x. If x and y are real, then U(y; x) is real
orthogonal: U(y; x) = I if y = x, and U(y; x) is the real Householder matrix
Ux�y otherwise.

Proof: The assertions are readily veri�ed if x and y are linearly dependent,
that is, if y = ei�x for some real �. If x and y are linearly independent, the
Cauchy-Schwarz inequality (0.6.3) ensures that x�x 6= jx�yj. Compute

w�w = (ei�x� y)�(ei�x� y) = x�x� e�i�x�y � ei�y�x+ y�y
= 2(x�x� Re(e�i�x�y)) = 2(x�x� jx�yj)

and

w�x = e�i�x�x� y�x = e�i�x�x� e�i�jy�xj = e�i�(x�x� jx�yj)

and, �nally,

ei�Uwx = e
i�(x� 2(w�w)�1ww�x) = ei�(x� (ei�x� y)e�i�) = y
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If z is orthogonal to x, then w�z = �y�z and

y�U(y; x)z = ei�

 
y�z � 1

kxk22 � jx�yj

�
ei�y�x� kyk22

�
(�y�x)

!
= ei� (y�z + (�y�x)) = 0

Since Uw is unitary and Hermitian, U(y; x) = (ei�I)Uw is unitary (as a prod-
uct of two unitary matrices) and essentially Hermitian (0.2.5).

Exercise. Let y 2 Cn be a given unit vector and let e1 be the �rst column of the
n-by-n identity matrix. Construct U(y; e1) using the recipe in the preceding
theorem and verify that its �rst column is y (which it should be, since y =
U(y; e1)e1).

Exercise. Let x 2 Cn be a given nonzero vector. Explain why the matrix
U(kxk2 e1; x) constructed in the preceding theorem is an essentially Hermitian
unitary matrix that takes x into kxk2 e1.

The following QR factorization of a complex or real matrix is of consider-
able theoretical and computational importance.

2.1.14 Theorem. (QR factorization) Suppose A 2Mn;m and n � m. Then
(a) There is a Q 2 Mn;m with orthonormal columns and an upper triangular
R 2Mm with non-negative main diagonal entries such that A = QR.
(b) If rankA = m, then the factors Q and R in (a) are uniquely determined
and the main diagonal entries of R are all positive.
(c) Ifm = n, then the factor Q in (a) is unitary.
(d) If A is real, then both of the factors Q and R in (a) may be taken to be real.

Proof: Let a1 2 Cn be the �rst column of A, let r1 = ka1k2, and let U1 be
a unitary matrix such that U1a1 = r1e1. Theorem (2.1.13) gives an explicit
construction for such a matrix, which is either a unitary scalar matrix or the
product of a unitary scalar matrix and a Householder matrix. Partition

U1A =

�
r1 F
0 A2

�
in which A2 2 Mn�1;m�1. Let a2 2 Cn�1 be the �rst column of A2 and let
r2 = ka2k2. Use (2.1.13) again to construct a unitary V2 2 Mn�1 such that
V2a2 = r2e1 and let U2 = [I1]� V2. Then

U2U1A =

24 r1 F
0 r2
0 0 A3

35
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Repeat this constructionm times to obtain

UmUm�1 � � �U2U1A =
�
R

0

�
in whichR 2Mm is upper triangular. Its main diagonal entries are r1; : : : ; rm
are all nonnegative. LetU = UmUm�1 � � �U2U1. PartitionU� =U�1U�2 � � �U�m�1U�m =
[Q Q2], in which Q 2Mn;m has orthonormal columns since it comprises the
�rst m columns of a unitary matrix. Then A = QR, as desired. If A has
full column rank, then R is nonsingular, so its main diagonal entries are all
positive.
Suppose that rankA = m and A = QR = ~Q ~R, in which R and ~R are

upper triangular and have positive main diagonal entries, and Q and ~Q have
orthonormal columns. Then A�A = R�(Q�Q)R = R�IR = R�R and also
A�A = ~R� ~R, so R�R = ~R� ~R and ~R��R� = ~RR�1. This says that a lower
triangular matrix equals an upper triangular matrix, so both must be diagonal:
~RR�1 = D is diagonal, and it must have positive main diagonal entries be-
cause the main diagonal entries of both ~R and R�1 are positive. But ~R = DR
implies that D = ~RR�1 = ~R��R� = (DR)��R� = D�1R��R� = D�1, so
D2 = I and hence D = I . We conclude that ~R = R and hence ~Q = Q.
The assertion in (c) follows from the fact that a square matrix with orthonor-

mal columns is unitary. The �nal assertion (d) follows from the construction in
(a) and the assurance in (2.1.13) that the unitary matrices Ui may all be chosen
to be real.

Exercise. Show that any B 2 Mn of the form B = A�A, A 2 Mn, may
be written as B = LL�, in which L 2 Mn is lower triangular and has non-
negative diagonal entries. Explain why this factorization is unique if A is non-
singular. This is called the Cholesky factorization of B; every positive de�nite
matrix may be factored in this way (see Chapter 7).

For square matrices A 2 Mn, there are some easy variants of the QR fac-
torization that can be useful. Let K be the (real orthogonal and symmetric)
n-by-n reversal matrix (0.9.5.1), which has the pleasant property thatK2 = I .
Moreover,KRK is lower triangular ifR is upper triangular (the main diagonal
entries are the same, but the order is reversed), and of course KLK is upper
triangular if L is lower triangular. If we factor KAK = QR as in (2.1.14),
then A = (KQK)(KRK) = Q1L, in which Q1 = KQK is unitary and L
is lower triangular with nonnegative main diagonal entries; we call this a QL
factorization of A. Now let A� = QL be a QL factorization of A�, and ob-
serve that A = L�Q�, which is an RQ factorization of A. Finally, factoring
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KA�K = QL gives A = (KLK)�(BQB)�, which is an LQ factorization of
A.

2.1.15 Corollary. Let A 2 Mn be given. Then there are unitary matrices
Q1; Q2; Q3, lower triangular matrices L2; L3 with nonnegative main diagonal
entries, and an upper triangular matrix R2 with nonnegative main diagonal
entries such that A = Q1L1 = R2Q2 = L3Q3. If A is nonsingular, then the
respective unitary and triangular factors are uniquely determined and the main
diagonal entries of the triangular factors are all positive. If A is real, then all
of the factors Q1; Q2; Q3; L2; L3; R2 may be chosen to be real.

Problems

1. If U 2Mn is unitary, show that jdetU j = 1.

2. Let U 2 Mn be unitary and let � be a given eigenvalue of U . Show that
(a) j�j = 1 and (b) x is a (right) eigenvector of U corresponding to � if and
only if x is a left eigenvector of U corresponding to �. Hint: Use (2.1.4g) and
Problem 1 in (1.1).

3. Given real parameters �1; �2; : : : ; �n, show thatU = diag(ei�1 ; ei�2 ; : : : ; ei�n)is
unitary. Show that every diagonal unitary matrix has this form.

4. Characterize the diagonal real orthogonal matrices.

5. Show that the permutation matrices (0.9.5) inMn are a subgroup (a subset
that is itself a group) of the group of real orthogonal matrices. How many
different permutation matrices are there inMn?

6. Give a presentation in terms of parameters of the 3-by-3 orthogonal group.
Two presentations of the 2-by-2 orthogonal group are given in (2.1).

7. Suppose A;B 2 Mn and AB = I . Provide details for the following
argument that BA = I: Every y 2 Cn can be represented as y = A(By), so
rankA = n and hence dim(nullspace(A)) = 0 (0.2.3.1). Compute A(AB �
BA) = A(I �BA) = A� (AB)A = A�A = 0, so AB �BA = 0.

8. A matrix A 2 Mn is complex orthogonal if ATA = I . A real orthogonal
matrix is unitary, but a nonreal orthogonal matrix need not be unitary. (a) Let
K =

h
0 1
�1 0

i
2 M2(R). Show that A(t) = (cosht)I + (i sinh t)K 2 M2

is complex orthogonal for all t 2 R, but that A(t) is unitary only for t = 0.
The hyperbolic functions are de�ned by cosh t = (et + e�t)=2, sinh t =
(et � e�t)=2. (b) Show that, unlike the unitary matrices, the set of complex
orthogonal matrices is not a bounded set, and it is therefore not a compact set.
(c) Show that the set of complex orthogonal matrices of a given size forms
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a group. The smaller (and compact) group of real orthogonal matrices of a
given size is often called the orthogonal group. (d) If A 2 Mn is complex
orthogonal, show that jdetAj = 1; consider A(t) in (a) to show that A can
have eigenvalues � with j�j 6= 1. (e) If A 2 Mn is complex orthogonal, show
that �A, AT , and A� are all complex orthogonal and nonsingular. Do the rows
or columns ofA form an orthogonal set? (f) Characterize the diagonal complex
orthogonal matrices. Compare with Problem 4. (g) Show that A 2Mn is both
complex orthogonal and unitary if and only if it is real orthogonal.

9. If U 2Mn is unitary, show that �U , UT , and U� are all unitary.

10. If U 2 Mn is unitary, show that x; y 2 Cn are orthogonal if and only if
Ux and Uy are orthogonal.

11. A nonsingular matrix A 2 Mn is skew orthogonal if A�1 = �AT . Show
that A is skew-orthogonal if and only if �iA is orthogonal. More generally, if
� 2 R, show that A�1 = ei�AT if and only if ei�=2A is orthogonal. What is
this for � = �? for � = 0?

12. Show that if A 2 Mn is similar to a unitary matrix, then A�1 is similar to
A�.

13. Consider diag (2; 12 ) 2 M2 and show that the set of matrices that are
similar to unitary matrices is a proper subset of the set of matrices A for which
A�1 is similar to A�.

14. Show that the intersection of the group of unitary matrices inMn with the
group of complex orthogonal matrices in Mn is the group of real orthogonal
matrices inMn. Hint: U�1 = UT = U�.

15. If U 2 Mn is unitary, � � f1; : : : ; ng, and U [�; �c] = 0, (0.7.1) show
that U [�c; �] = 0, and U [�] and U [�c] are unitary.

16. Let x; y 2 Rn be given linearly independent unit vectors and let w =

x + y. Consider the Palais matrix Px;y = I � 2(wTw)�1wwT + 2yxT .
Show that: (a) Px;y = (I � 2(wTw)�1wwT )(I � 2xxT ) = UwUx is a
product of two real Householder matrices, so it is a real orthogonal matrix; (b)
detPx;y = +1, so Px;y is always a proper rotation matrix; (c) Px;yx = y and
Px;yy = �x+2(xT y)y; (d) Px;yz = z if z 2 Rn, z ? x; and z ? y; (e) Px;y
acts as the identity on the (n � 2)-dimensional subspace (spanfx; yg)? and
it is a proper rotation on the 2-dimensional subspace spanfx; yg that takes x
into y; (f) If n = 3, explain why Px;y is the unique proper rotation that takes
x into y and leaves �xed their vector cross product x � y; (g) the eigenvalues
of Px;y are xT y � i(1� (xT y)2)1=2 = e�i�; 1; : : : ; 1, in which cos � = xT y.
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Hint: (1.3.23) the eigenvalues of [w x]T [�(wTw)�1w y] 2 M2(R) are
1
2 (x

T y � 1� i(1� (xT y)2)1=2).
17. Suppose that A 2 Mn;m, n � m, and rankA = m. Describe the steps of
the Gram-Schmidt process applied to the columns of A, proceeding from left
to right. Explain why this process produces, column-by-column, an explicit
matrix Q 2 Mn;m with orthonormal columns and an explicit upper triangular
matrix R 2 Mm such that Q = AR. How is this factorization related to the
one in (2.1.14)?

18. Let A 2 Mn be factored as A = QR as in (2.1.14), partition A =

[a1 : : : an] and Q = [q1 : : : qn] according to their columns and let R =

[rij ]
n
i;j=1. (a) Explain why fq1; : : : ; qkg is an orthonormal basis for spanfa1; : : : ; akg

for each k = 1; : : : ; n. (b) Show that rkk is the Euclidean distance from ak to
spanfa1; : : : ; ak�1g for each k = 2; : : : ; n.
19. Let X = [x1 : : : xm] 2 Mn;m, suppose rankX = m, and factor X =

QR as in (2.1.14). Let Y = QR�� = [y1 : : : ym]. Show that the columns of
Y are a basis for the subspace S = spanfx1; : : : ; xmg and that Y �X = Im,
so y�i xj = 0 if i 6= j and each y�i xi = 1. One says that fy1; : : : ; ymg is the
basis of S that is dual (reciprocal) to the basis fx1; : : : ; xmg.
20. If U 2Mn is unitary, show that adjU = det(U)U�.

21. Explain why Lemma 2.1.10 remains true if �unitary� is replaced with
�complex orthogonal.�

22. Suppose that X;Y 2Mn;m have orthonormal columns. Show that X and
Y have the same range (column space) if and only if there is a unitaryU 2Mm

such that X = Y U . Hint: (0.2.7).

23. Let A 2 Mn, let A = QR be a QR factorization, let R = [rij ], and
partition both A and R according to their columns: A = [a1 : : : an] and
R = [r1 : : : rn]. Explain why kaik2 = krik2 for each i = 1; : : : ; n, jdetAj =
detR = r11 � � � rnn, and rii � krik2 for each i = 1; : : : ; n. Conclude that
jdetAj �

Qn
i=1 kaik2. This is known as Hadamard's inequality.

Further Reading. For more information about matrices that satisfy the condi-
tions of (2.1.9), see C. R. DePrima and C. R. Johnson, The Range of A�1A�

in GL(n;C), Linear Algebra Appl. 9 (1974) 209�222.

2.2 Unitary similarity
Since U� = U�1 for unitary U , the transformation on Mn given by A !
U�AU is a similarity transformation if U is unitary. This special type of simi-
larity is called unitary similarity.
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2.2.1 De�nition. Let A;B 2 Mn be given. We say that A is unitarily similar
to B if there is a unitary U 2 Mn such that A = UBU�. If U may be taken
to be real (and hence is real orthogonal), then A is said to be real orthogo-
nally similar to B. We say that A is unitarily diagonalizable if it is unitarily
similar to a diagonal matrix; A is real orthogonally diagonalizable if it is real
orthogonally similar to a diagonal matrix.

Exercise. Show that unitary similarity is an equivalence relation.

2.2.2 Theorem. Let U 2Mn and V 2Mm be unitary, let A = [aij ] 2Mn;m

and B = [bij ] 2 Mn;m, and suppose A = UBV . Then
Pn;m
i;j=1 jbij j2 =Pn;m

i;j=1 jaij j2. In particular, this identity is satis�ed if m = n and V = U�,
that is, if A is unitarily similar to B.

Proof: It suf�ces to check that trB�B = trA�A. (0.2.5) Compute trA�A =
tr(UBV )�(UBV ) = tr(V �B�U�UBV ) = trV �B�BV = trB�BV V � =

trB�B.

Exercise. Show that the matrices
h

3 1
�2 0

i
and

h
1 1
0 2

i
are similar but not

unitarily similar.

Unitary similarity implies similarity, but not conversely. The unitary simi-
larity equivalence relation partitionsMn into �ner equivalence classes than the
similarity equivalence relation. Unitary similarity, like similarity, corresponds
to a change of basis, but of a special type�it corresponds to a change from
one orthonormal basis to another.

Exercise. Using the notation of (2.1.11), explain why only rows and columns
i and j are changed under real orthogonal similarity via the plane rotation
U(�; i; j).

Exercise. Using the notation of (2.1.13), explain why U(y; x)�AU(y; x) =
U�wAUw for any A 2 Mn, that is, a unitary similarity via an essentially Her-
mitian unitary matrix of the form U(y; x) is a unitary similarity via a House-
holder matrix. Unitary (or real orthogonal) similarity via a Householder matrix
is often called a Householder transformation.

For computational or theoretical reasons, it is often convenient to transform
a given matrix by unitary similarity into another matrix with a special form.
Here are two examples.

2.2.3 Example. Suppose A = [aij ] 2 Mn is given. We claim that there is a
unitary U 2Mn such that all the main diagonal entries of U�AU = B = [bij ]
are equal; if A is real, then U may be taken to be real orthogonal. If this claim
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is true, then trA = trB = nb11, so every main diagonal entry of B is equal
to the average of the main diagonal entries of A.
Begin by considering the complex case and n = 2. Since we can replace

A 2 M2 by A � ( 12 trA)I , there is no loss of generality to assume that
trA = 0, in which case the two eigenvalues of A are �� for some � 2 C.
We wish to determine a unit vector u such that u�Au = 0. If � = 0, let u be
any unit vector such that Au = 0. If � 6= 0, let w and z be any unit eigen-
vectors associated with the distinct eigenvalues ��. Let x(�) = ei�w + z,
which is nonzero for all � 2 R since w and z are linearly independent.
Compute x(�)�Ax(�) = �(ei�w + z)�(ei�w � z) = 2i� Im(ei�z�w). If
z�w = ei�jz�wj,then x(��)�Ax(��) = 0. Let u = x(��)= kx(��)k2.
Now let v 2 C2 be any unit vector that is orthogonal to u and let U = [u v].
Then U is unitary and (U�AU)11 = u�Au = 0. But tr(U�AU) = 0, so
(U�AU)22 = 0 as well.
Now suppose n = 2 and A is real. If the diagonal entries of A = [aij ]

are not equal, consider the plane rotation matrix U� =
h
cos � � sin �
sin � cos �

i
. A

calculation reveals that the diagonal entries of U�AUT� are equal if (cos2 � �
sin2 �)(a11 � a22) = 2 sin � cos �(a12 + a21), so equal diagonal entries are
achieved if � 2 (0; �=2) is chosen so that cot 2� = (a12 + a21)=(a11 � a22).
We have now shown that any 2-by-2 complex matrixA is unitarily similar to

a matrix with both diagonal entries equal to the average of the diagonal entries
of A; if A is real, the similarity may be taken to be real orthogonal.
Now suppose n > 2 and de�ne f(A) = maxfjaii�ajj j : i; j = 1; 2; : : : ; ng.

If f(A) > 0, let A2 =
h
aii aij
aji ajj

i
for a pair of indices i; j for which

f(A) = jaii� ajj j (there could be several pairs of indices for which this max-
imum positive separation is attained; choose any one of them). Let U2 2 M2

be unitary, real if A is real, and such that U�2A2U2 has both main diagonal en-
tries equal to 1

2 (aii + ajj). Construct U(i; j) 2Mn from U2 in the same way
that U(�; i; j) was constructed from a 2-by-2 plane rotation in (2.1.11). The
unitary similarity U(i; j)�AU(i; j) affects only entries in rows and columns i
and j, so it leaves unchanged every main diagonal entry ofA except the entries
in positions i and j, which it replaces with the average 12 (aii + ajj). For any
k 6= i; j the triangle inequality ensures that

jakk �
1

2
(aii + ajj)j = j1

2
(akk � aii) +

1

2
(akk � ajj)j

� 1

2
jakk � aiij+

1

2
jakk � ajj j

� 1

2
f(A) +

1

2
f(A) = f(A)
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with equality only if the scalars akk � aii and akk � ajj both lie on the same
ray in the complex plane and jakk � aiij = jakk � ajj j. These two conditions
imply that aii = ajj , so it follows that jakk � 1

2 (aii + ajj)j < f(A) for all
k 6= i; j. Thus, the unitary similarity we have just constructed reduces by one
the �nitely many pairs of indices k; ` for which f(A) = jakk�a``j. Repeat the
construction, if necessary, to deal with any such remaining pairs and achieve a
unitary U (real if A is real) such that f(U�AU) < f(A).
Finally, consider the compact set R(A) = fU�AU : U 2 Mn is unitary}.

Since f is a continuous nonnegative-valued function on R(A), it achieves its
minimum value there, that is, there is some B 2 R(A) such that f(A) �
f(B) � 0 for all A 2 R(A). If f(B) > 0, we have just seen that there is a
unitary U (real if A is real) such that f(B) > f(U�BU). This contradiction
shows that f(B) = 0, so all the diagonal entries of B are equal.

2.2.4 Example. Suppose A = [aij ] 2 Mn is given. The following construc-
tion shows that A is unitarily similar to an upper Hessenberg matrix with non-
negative entries in its �rst subdiagonal. Let a1 be the �rst column of A, parti-
tioned as aT1 = [a11 �

T ] with � 2 Cn�1. Let U1 = In�1 if � = 0; otherwise,
use (2.1.13) to construct U1 = U(k�k2 e1; �) 2 Mn�1, a unitary matrix that
takes � into a positive multiple of e1. Form the unitary matrix V1 = I1 � U1
and observe that the �rst column of V1A is the vector [a11 k�k2 0]T . More-
over,A1 = (V1A)V �1 has the same �rst column as V1A and is unitarily similar
to A. Partition it as

A1 =

24 a11 F�
k�k2
0

�
A2

35 , A2 2Mn�1

Use (2.1.13) again to form, in the same way, a unitary matrix U2 that takes the
�rst column ofA2 into a vector whose entries below the second are all zero and
whose second entry is nonnegative. Let V2 = I2 � U2 and let A2 = V2AV �2 .
This similarity does not affect the �rst column ofA1. After at most n�1 steps,
this construction produces an upper Hessenberg matrix An�1 that is unitarily
similar to A and has nonnegative subdiagonal entries.

Exercise. If A is Hermitian or skew-Hermitian, explain why the construction
in the preceding example produces a tridiagonal Hermitian or skew-Hermitian
matrix that is unitarily similar to A.

Theorem (2.2.2) provides a necessary but not suf�cient condition for two
given matrices to be unitarily similar. It can be augmented with additional
identities that collectively do provide necessary and suf�cient conditions. A
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key role is played by the following simple notion. Let s, t be two given non-
commuting variables. We refer to any �nite formal product of nonnegative
powers of s, t

W (s; t) = sm1tn1sm2tn2 � � � smktnk ; m1; n1; : : : ;mk; nk � 0 (2.2.5)

as a word in s and t. The degree of the wordW (s; t) is the nonnegative integer
m1 + n1 +m2 + n2 + � � �+mk + nk, that is, the sum of all the exponents in
the word. If A 2Mn is given, we de�ne a word in A and A� as

W (A;A�) = Am1(A�)n1Am2(A�)n2 � � �Amk(A�)nk

Since the powers of A and A� need not commute, it may not be possible to
simplify the expression ofW (A;A�) by rearranging the terms in the product.
Suppose A is unitarily similar to B 2 Mn, so that A = UBU� for some

unitary U 2Mn. For any wordW (s; t) we have

W (A;A�) = (UBU�)m1(UB�U�)n1 � � � (UBU�)mk(UB�U�)nk

= UBm1U�U(B�)n1U� � � �UBmkU�U(B�)nkU�

= UBm1(B�)nk � � �Bmk(B�)nkU�

= UW (B;B�)U�

soW (A;A�) is unitarily similar toW (B;B�). Thus, trW (A;A�) = trW (B;B�).
If we take the wordW (s; t) = ts, we obtain the identity in (2.2.2).
If one considers all possible wordsW (s; t), this observation gives in�nitely

many necessary conditions for two matrices to be unitarily similar. A theorem
of W. Specht, which we state without proof, guarantees that these necessary
conditions are also suf�cient.

2.2.6 Theorem. Two matrices A;B 2Mn are unitarily similar if and only if

trW (A;A�) = trW (B;B�) (2.2.7)

for every wordW (s; t) in two noncommuting variables.

Specht's theorem can be used to show that two matrices are not unitarily
similar by exhibiting a speci�c word that violates (2.2.7). However, except
in special situations (see Problem 6), it may be useless in showing that two
given matrices are unitarily similar because in�nitely many conditions must
be veri�ed. Fortunately, a re�nement of Specht's theorem says that it suf�ces
to check the trace identities (2.2.7) for only �nitely many words, which gives
a practical criterion to assess unitary similarity of matrices of small size.
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2.2.8 Theorem. Two matrices A;B 2 Mn are unitarily similar if and only if
trW (A;A�) = trW (B;B�) for every word W (s; t) in two noncommuting
variables whose degree is at most

n

r
2n2

n� 1 +
1

4
+
n

2
� 2

For n = 2, it suf�ces to verify (2.2.7) for the three words W (s; t) = s; s2,
and st. For n = 3, it suf�ces to verify (2.2.7) for the seven wordsW (s; t) =
s; s2; st; s3; s2t; s2t2, and s2t2st.

Problems

1. Let A = [aij ] 2 Mn(R) be symmetric but not diagonal, and suppose that
indices i; j with i < j are chosen so that jaij j is as large as possible. De�ne
� by cot 2� = (ajj � aii)=2aij , let U(�; i; j) be the plane rotation (2.1.11),
and let B = U(�; i; j)AU(�; i; j)T = [bpq]. Show that bij = 0 and use (2.2.2)
to show that

P
p6=q jbpqj2 <

P
p6=q japqj2. Indeed, it is not necessary to com-

pute �; just take cos � = ajj(a2ij + a2jj)�1=2 and sin � = aij(a2ij + a2jj)�1=2.
Show that repeated real orthogonal similarities via plane rotations (chosen in
the same way forB and its successors) strictly decrease the sums of the squares
of the off-diagonal entries while preserving the sums of the squares of all the
entries; at each step, the computed matrix is (in this sense) more nearly diag-
onal than at the step before. This is the method of Jacobi for calculating the
eigenvalues of a real symmetric matrix. It produces a sequence of matrices
that converges to a real diagonal matrix. Why must the diagonal entries of the
limit be the eigenvalues of A? How can the corresponding eigenvectors be
obtained?

2. The eigenvalue calculation method of Givens for real matrices also uses
plane rotations, but in a different way. For n � 3, provide details for the fol-
lowing argument showing that every A = [aij ] 2 Mn(R) is real orthogonally
similar to a real lower Hessenberg matrix, which is necessarily tridiagonal if
A is symmetric; see (0.9.9) and (0.9.10). Choose a plane rotation U1;3 of the
formU(�; 1; 3), as in the preceding problem, so that the 1,3 entry ofU�1;3AU1;3
is 0. Choose another plane rotation of the form U1;4 = U(�; 1; 4) so that the
1,4 entry of U�1;4(U�1;3AU1;3)U1;4 is 0; continue in this way to zero out the rest
of the �rst row with a sequence of real orthogonal similarities. Then start on
the second row beginning with the 2,4 entry and zero out the 2,4, 2,5, . . . , 2,n
entries. Explain why this process does not disturb previously manufactured 0
entries, and why it preserves symmetry if A is symmetric. Proceeding in this
way through row n�3 produces a lower Hessenberg matrix after �nitely many



118 Unitary similarity and unitary equivalence

real orthogonal similarities via plane rotations; that matrix is tridiagonal if A
is symmetric. However, the eigenvalues of A are not displayed as in Jacobi's
method; they must be obtained from a further calculation.

3. Show that everyA 2M2 is unitarily similar to its transpose. Hint: Consider
the three wordsW (s; t) = s; s2; st.

4. Let

A =

24 1 1 1

�1 0 1

�1 �1 �1

35
Any matrix is similar to its transpose (3.2.3), but A is not unitarily similar to
AT . For which of the seven words listed in (2.2.8) do A and B = AT fail the
test (2.2.7)?

5. If A 2 Mn and there is a unitary U 2 Mn such that A� = UAU�, show
that A+ A� = U(A+ A�)U�, that is, U commutes with A+ A�. Apply this
observation to the 3-by-3 matrix in the preceding problem and conclude that if
it is unitarily similar to its transpose, then any such unitary similarity must be
diagonal. Show that no diagonal unitary similarity can take this matrix into its
transpose.

6. Let A 2 Mn and B;C 2 Mm be given. Use either (2.2.6) or (2.2.8) to
show that B and C are unitarily similar if and only if any one of the following
conditions holds:
(a)
h
A 0
0 B

i
and

h
A 0
0 C

i
are unitarily similar.

(b) B � � � � � B and C � � � � � C are unitarily similar if both direct sums
contain the same number of terms.
(c) A�B � � � � �B and A� C � � � � � C are unitarily similar if both direct
sums contain the same number of terms.

7. Give an example of two 2-by-2 matrices that satisfy the identity (2.2.2) but
are not unitarily similar. Explain why.

8. Let A;B 2 M2 and let C = AB � BA. Use Example 2.2.3 to show that
C2 = �I for some scalar �. Hint: trC =?;

h
0 b
a 0

i2
=?

9. Let A 2 Mn and suppose trA = 0. Use Example 2.2.3 to show that A
can be written as a sum of two nilpotent matrices. Conversely, if A can be
written as a sum of nilpotent matrices, explain why trA = 0. Hint: Write
A = UBU�, in which B = [bij ] has zero main diagonal entries. Then write
B = BL +BR, in which BL = [�ij ], �ij = bij if i � j and �ij = 0 if j > i.
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10. Let n � 2 be a given integer and de�ne ! = e2�i=n. (a) Explain whyPn�1
k=0 !

k` = 0 unless ` = mn for some m = 0;�1;�2; : : :, in which case
the sum is equal to n. (b) Let Fn = n�1=2[!(i�1)(j�1)]ni;j=1 denote the n-
by-n Fourier matrix. Show that Fn is symmetric, unitary, and coninvolu-
tory: FnF �n = FnFn = I . (c) Let Cn denote the basic circulant permutation
matrix (0.9.6.2). Explain why Cn is unitary (real orthogonal). (d) Let D =

diag(1; !; !2; : : : ; !n�1) and show that CnFn = FnD, so Cn = FnDF �n and
Ckn = FnD

kF �n for all k = 1; 2; : : : : (e) Let A denote the circulant matrix
(0.9.6.1), expressed as the sum in (0.9.6.3). Explain why A = Fn�F

�
n , in

which � = diag(�1; : : : ; �n), each �` =
Pn�1
k=0 ak+1!

k(`�1), and the diag-
onal entries of � are the entries of the vector n1=2F �nAe1. Thus, the Fourier
matrix provides an explicit unitary diagonalization for every circulant matrix.
(f) Write Fn = Cn + iSn, in which Cn and Sn are real. What are the entries
of Cn and Sn? Let Hn = Cn + Sn denote the n-by-n Hartley matrix. (g)
Show that C2n + S2n = I , CnSn = SnCn = 0, Hn is symmetric, and Hn is
real orthogonal. (h) Let Kn denote the reversal matrix (0.9.5.1). Show that
CnKn = KnCn = Cn, SnKn = KnSn = �Sn, and HnKn = KnHn, so Cn,
Sn, and Hn are centrosymmetric. It is known that HnAHn = � is diagonal
for any matrix of the form A = E+KnF , in which E and F are real circulant
matrices, E = ET , and F = �FT ; the diagonal entries of � are the entries of
the vector n1=2HnAe1. In particular, the Hartley matrix provides an explicit
real orthogonal diagonalization for every real symmetric circulant matrix.

Further Readings and Notes. For the original proof of (2.2.6), see W. Specht,
Zur Theorie der Matrizen II, Jahresber. Deutsch. Math.-Verein. 50 (1940) 19�
23; there is a modern proof in [Kap]. For a survey of the issues addressed in
(2.2.8), see D. Ðjoković and C. Johnson, Unitarily Achievable Zero Patterns
and Traces of Words in A and A�, Linear Algebra Appl. 421 (2007) 63-68.

2.3 Unitary triangularizations

Perhaps the most fundamentally useful fact of elementary matrix theory is a
theorem attributed to I. Schur: any square complex matrixA is unitarily similar
to a triangular matrix whose diagonal entries are the eigenvalues of A. The
proof involves a sequential de�ation by unitary similarity.

2.3.1 Theorem. (Schur) Let A 2Mn have eigenvalues �1; : : : ; �n in any pre-
scribed order and let x be a unit vector such that Ax = �1x. Then there is
a unitary U = [x u2 : : : un] 2 Mn such that U�AU = T = [tij ] is upper
triangular with diagonal entries tii = �i; i = 1; : : : ; n. That is, every square



120 Unitary similarity and unitary equivalence

complex matrix A is unitarily similar to an upper triangular matrix whose di-
agonal entries are the eigenvalues of A in any prescribed order. Furthermore,
if A 2 Mn(R) and if all its eigenvalues are real, then U may be chosen to be
real orthogonal.

Proof: Let x be a normalized eigenvector of A associated with the eigenvalue
�1, that is, x�x = 1 and Ax = �1x. Let U1 = [x u2 : : : un] be any unitary
matrix whose �rst column is x. For example, one may take U1 = U(x; e1) as
in (2.1.13) or see Problem 1. Then

U�1AU1 = U�1
�
Ax Au2 : : : Aun

�
= U�1

�
�1x Au2 : : : Aun

�

=

26664
x�

u�2
...
u�n

37775 � �1x Au2 : : : Aun
�

=

26664
�1x

�x x�Au2 : : : x�Aun
�1u

�
2x
... A1

�1u
�
nx

37775 =
�
�1 F
0 A1

�

because the columns of U1 are orthonormal. The eigenvalues of the submatrix
A1 = [u�iAuj ]

n
i;j=2 2 Mn�1 are �2; : : : ; �n. If n = 2, we have achieved

the desired unitary triangularization. If not, let � 2 Cn�1 be a normalized
eigenvector of A1 corresponding to �2, and perform the preceding reduction
on A1. If U2 2 Mn�1 is any unitary matrix whose �rst column is �, then we
have seen that

U�2A1U2 =

�
�2 F
0 A2

�
Let V2 = [1]� U2 and compute the unitary similarity

(U1V2)
�
AU1V2 = V

�
2 U

�
1AU1V2 =

26664
�1 � �

0 �2

0 A2

37775- - - - - - - - - - - - - - - - - - -

Continue this reduction to produce unitary matricesUi 2Mn�i+1; i = 1; : : : ; n�
1 and unitary matrices Vi 2Mn; i = 2; : : : ; n� 2. The matrix

U = U1V2V3 � � �Vn�2
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is unitary and U�AU is upper triangular.
If all the eigenvalues ofA 2Mn(R) are real, then all of the eigenvectors and

unitary matrices in the preceding algorithm can be chosen to be real (Problem
3 in (1.1) and (2.1.13)).

Exercise. Follow the proof of (2.3.1) to see that upper triangular can be re-
placed by lower triangular in the statement of the theorem with, of course, a
different unitary similarity.

Exercise. If the eigenvector x in the proof of (2.3.1) is also a left eigenvector
ofA, we know that x�A = �x�. (1.4.7a) Explain why U�1AU1 =

h
�1 0
0 A1

i
.

If every right eigenvector of A is also a left eigenvector, explain why the upper
triangular matrix T constructed in (2.3.1) is actually a diagonal matrix.

2.3.2 Example. If the eigenvalues of A are re-ordered and the corresponding
upper triangularization (2.3.1) is performed, the entries of T above the main
diagonal can look very different. Consider

T1 =

24 1 1 4

0 2 2

0 0 3

35 ; T2 =
24 2 �1 3

p
2

0 1
p
2

0 0 3

35 ; U = 1p
2

24 1 1 0

1 �1 0

0 0
p
2

35
Explain why U is unitary and T2 = UT1U�.

Exercise. If A = [aij ] 2 Mn has eigenvalues �1; : : : ; �n and is unitarily
similar to an upper triangular matrix T = [tij ] 2 Mn, the diagonal entries
of T are the eigenvalues of A in some order. Apply (2.2.2) to A and T to show
that

nX
i=1

j�ij2 =
nX

i;j=1

jaij j2 �
X
i<j

jtij j2 �
nX

i;j=1

jaij j2 (2.3.2a)

with equality if and only if T is diagonal.

Exercise. If A = [aij ] and B = [bij ] 2 M2 have the same eigenvalues and ifP2
i;j=1 jaij j2 =

P2
i;j=1 jbij j2, use the criterion in (2.2.8) to show that A and

B are unitarily similar. However, consider

A =

24 1 3 0

0 2 4

0 0 3

35 and B =

24 1 0 0

0 2 5

0 0 3

35 (2.3.2b)

which have the same eigenvalues and the same sums of squared entries. Use
the criterion in (2.2.8) or the exercise following (2.4.5.1) to show that A and B
are not unitarily similar. Nevertheless, A and B are similar. Why?
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It is a useful adjunct to (2.3.1) that a commuting family of matrices may be
simultaneously upper triangularized.

2.3.3 Theorem. Let F � Mn be a commuting family. There is a unitary
U 2Mn such that U�AU is upper triangular for every A 2 F .

Proof: Return to the proof of (2.3.1). Exploiting (1.3.19) at each step of the
proof in which a choice of an eigenvector (and unitary matrix) is made, choose
an eigenvector that is common to every A 2 F and choose a single unitary
matrix that has this common eigenvector as its �rst column; it de�ates (via
unitary similarity) every matrix in F in the same way. Similarity preserves
commutativity, and a partitioned multiplication calculation reveals that, if two
matrices of the form�

A11 A12
0 A22

�
and

�
B11 B12
0 B22

�
commute, thenA22 andB22 commute also. Thus, the commuting family prop-
erty is inherited by the submatrix Ai at each reduction step in the proof of
(2.3.1). We conclude that all ingredients in the U of (2.3.1) may be chosen in
the same way for all members of a commuting family, thus verifying (2.3.3).

In (2.3.1) we are permitted to specify the main diagonal of T (that is, we
may specify in advance the order in which the eigenvalues of A appear as
the de�ation progresses), but (2.3.3) makes no such claim�even for a single
matrix in F . At each stage of the de�ation, the common eigenvector used is
associated with some eigenvalue of each matrix in F , but we may not be able
to specify which one. We simply take the eigenvalues as they come, using
(1.3.19).
If a real matrix A has any non-real eigenvalues, there is no hope of reducing

it to upper triangular form T by a real similarity because the diagonal entries
of T would be the eigenvalues of A. However, we can always reduce A to a
real quasi-triangular form by a real similarity as well as by a real orthogonal
similarity.

2.3.4 Theorem. Suppose that A 2 Mn(R) has p complex conjugate pairs of
non-real eigenvalues �1 = a1 + ib1; �1 = a1 � ib1 : : : ; �p = ap + ibp; �p =
ap � ibp in which all aj ; bj 2 R and all bj 6= 0, and, if 2p < n, an ad-
ditional n � 2p real eigenvalues �1; : : : ; �n�2p. Then there is a nonsingular
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S 2Mn(R) such that

S�1AS =

26664
A1 F

A2
. . .

0 An�p

37775 (2.3.5)

is real and block upper triangular, and each diagonal block is either 1-by-1 or
2-by-2. There are p real diagonal blocks of the form

h
aj bj
�bj aj

i
, one for

each conjugate pair of non-real eigenvalues �j ; �j = aj � ibj . There are
n � 2p diagonal blocks of the form [�j ], one for each of the real eigenvalues
�1; : : : ; �n�2p. The p 2-by-2 diagonal blocks and the n� 2p 1-by-1 diagonal
blocks may appear in (2.3.5) in any prescribed order. The real similarity S
may be taken to be a real orthogonal matrixQ; in this case the 2-by-2 diagonal
blocks of QTAQ have the form Rj

h
aj bj
�bj aj

i
R�1j , in which each Rj is a

nonsingular real upper triangular matrix.

Proof: The proof of (2.3.1) shows how to de�ate A by a sequence of real
orthogonal similarities corresponding to its real eigenvalues, if any. Problem
33 in (1.3) describes the de�ation step corresponding to a complex conjugate
pair of non-real eigenvalues; repeating this de�ation p times achieves the form
(2.3.5), whose 2-by-2 diagonal blocks have the asserted form (which reveals
their corresponding conjugate pair of eigenvalues). It remains to consider how
the 2-by-2 diagonal blocks would be modi�ed if we were to use only real
orthogonal similarities in the 2-by-2 de�ations. If � = a + ib is a non-real
eigenvalue of A with associated eigenvector x = u + iv; u; v 2 Rn, we have
seen that fu; vg is linearly independent and A[u v] = [u v]

h
a
�b

b
a

i
. If fu; vg

is not an orthonormal set, use the QR factorization (2.1.14) to write [u v] =
Q2R2, in which Q2 = [q1 q2] 2 Mn;2(R) has orthonormal columns and
R2 2 M2(R) is nonsingular and upper triangular. Then A[u v] = AQ2R2 =
Q2R2

h
a
�b

b
a

i
, so

AQ2 = Q2R2

�
a b

�b a

�
R�12

If we let S be a real orthogonal matrix whose �rst two columns are q1 and q2,
we obtain a de�ation of the asserted form. Of course, if fu; vg is orthonormal,
the QR factorization is unnecessary and we can take S to be a real orthogonal
matrix whose �rst two columns are u and v.

There is also a real version of (2.3.3).
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2.3.6 Theorem. Let F � Mn(R) be a commuting family. There is a real
orthogonal Q � Mn (R) such that QTAQ has the form (2.3.5) for every A 2
F .

Exercise. Modify the proof of (2.3.3) to prove (2.3.6) as follows: First de�ate
all members of F using all the common real eigenvectors. Then consider the
common non-real eigenvectors and de�ate two columns at a time as in the
proof of (2.3.4). Notice that different members of F may have different num-
bers of 2-by-2 diagonal blocks after the common real orthogonal similarity,
but if one member has a 2-by-2 block in a certain position and another mem-
ber does not, then commutativity requires that the latter must have a pair of
equal 1-by-1 blocks there.

Problems

1. Let x 2 Cn be a given unit vector and write x = [x1 y
T ]T , in which

x1 2 C and y 2 Cn�1. Choose � 2 R such that ei�x1 � 0 and de�ne
z = ei�x = [z1 �

T ]T , in which z1 2 R is nonnegative and � 2 Cn�1.
Consider the Hermitian matrix

Vx =

"
z1 ��
- - - - - - - - - - - - - - - - - - - -
� �I + 1

1+z1
���

#
Use partitioned multiplication to compute V �x Vx = V 2x . Conclude that U =

e�i�Vx = [x u2 : : : un] is a unitary matrix whose �rst column is the given
vector x.

2. If x 2 Rn is a given unit vector, show how to streamline the construction
described in Problem 1 to produce a real orthogonal matrixQ 2Mn(R)whose
�rst column is x. Prove that your construction works.

3. Let A 2 Mn(R). Explain why the nonreal eigenvalues of A (if any) must
occur in conjugate pairs.

4 Consider the family F =
nh

0 �1
0 �1

i
;
h
1 1
0 �1

io
and show that the hy-

pothesis of commutativity in (2.3.3), while suf�cient to imply simultaneous
unitary upper triangularizability of F , is not necessary.

5. Let F = fA1; : : : ; Akg � Mn be a given family, and let G = fAiAj :
i; j = 1; 2; : : : ; kg be the family of all pair-wise products of matrices in F .
If G is commutative, it is known that F can be simultaneously unitarily upper
triangularized if and only if every eigenvalue of every commutator AiAj �
AjAi is zero. Show that assuming commutativity of G is a weaker hypothesis
than assuming commutativity of F . Show that the family F in Problem 4
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has a corresponding G that is commutative, and that it also satis�es the zero
eigenvalue condition.

6. Let A;B 2 Mn be given, and suppose A and B are simultaneously similar
to upper triangular matrices; that is, S�1AS and S�1BS are both upper trian-
gular for some nonsingular S 2Mn. Show that every eigenvalue ofAB�BA
must be zero. Hint: If �1;�2 2 Mn are both upper triangular, what is the
main diagonal of�1�2 ��2�1?

7. If a given A 2 Mn can be written as A = Q�QT , in which Q 2 Mn

is complex orthogonal and � 2 Mn is upper triangular, show that A has at
least one eigenvector x 2 Cn such that xTx 6= 0. Consider A =

h
1 i
i �1

i
to show that not every A 2 Mn can be upper triangularized by a complex
orthogonal similarity.

8. LetQ 2Mn be complex orthogonal, and suppose x 2 Cn is an eigenvector
ofQ associated with an eigenvalue � 6= �1: Show that xTx = 0. See Problem
8(a) in (2.1) for an example of a family of 2-by-2 complex orthogonal matrices
with both eigenvalues different from�1. Show that none of these matrices can
be reduced to upper triangular form by orthogonal similarity. Hint: Qx = �x
) (Qx)TQx = �2xTx.

9. Let �; �2; : : : ; �n be the eigenvalues of A 2 Mn, suppose x is a nonzero
vector such thatAx = �x, and let y 2 Cn and � 2 C be given. Provide details
for the following argument to show that the eigenvalues of the bordered matrix
A =

h
� y�

x A

i
2Mn+1 are the two eigenvalues of

h
� y�x
1 �

i
together with

�2; : : : ; �n. Form a unitary U whose �rst column is x= kxk2, let V = [1]�U ,
and show that V �AV =

h
B F
0 C

i
, in which B =

h
� y�x= kxk2

kxk2 �

i
2

M2 and C 2 Mn�2 has eigenvalues �2; : : : ; �n. Consider a similarity of
B via diag(1; kxk�12 ). If y ? x, conclude that the eigenvalues of A are
�; �; �2; : : : ; �n. Explain why the eigenvalues of

h
� y�

x A

i
and

h
A x
y� �

i
are the same.

10. Let A = [aij ] 2 Mn and let c = maxfjaij j : 1 � i; j � ng. Show that
jdetAj � cnnn=2 as follows: Let �1; : : : ; �n be the eigenvalues of A. Use the
arithmetic-geometric mean inequality and (2.3.2a) to explain why jdetAj2 =
j�1 � � ��nj2 � ((j�1j2 + � � �+ j�nj2)=n)n � (

Pn
i;j=1 jaij j2=n)n � (nc2)n.

11. Use (2.3.1) to prove that if all the eigenvalues of A 2 Mn are zero, then
An = 0. Hint: If T 2Mn is strictly upper triangular, what does T 2 look like?
T 3? Tn�1? Tn?
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Further Reading. See (3.4.3.1) for a re�nement of the upper triangularization
(2.3.1). For a proof of the stronger form of (2.3.3) asserted in Problem 5,
see Y. P. Hong and R. A. Horn, On Simultaneous Reduction of Families of
Matrices to Triangular or Diagonal Form by Unitary Congruences, Linear and
Multilinear Algebra 17 (1985) 271�288.

2.4 Some consequences of Schur's triangularization theorem
A bounty of results can be harvested from Schur's unitary triangularization
theorem.

2.4.1 The trace and determinant SupposeA 2Mn has eigenvalues �1; : : : ; �n.
In (1.2) we used the characteristic polynomial to show that

Pn
i=1 �i = trA,Pn

i=1�
n
j 6=i�j = tr(adjA), and detA = �ni=1�i, but these identities and

others follow simply from inspection of the triangular form in (2.3.1).
For any nonsingular S 2 Mn we have tr(S�1AS) = tr(ASS�1) = trA;

tr(adj(S�1AS)) = tr((adjS)(adjA)(adjS�1)) = tr((adjS)(adjA)(adjS)�1) =

tr(adjA); and det(S�1AS) = (detS�1)(detA)(detS) = (detS)�1(detA)(detS) =
detA. Thus, trA, tr(adjA), and detA can be evaluated using any matrix
that is similar to A. The upper triangular matrix T = [tij ] in Schur's the-
orem (2.3.1) is convenient for this purpose, since its main diagonal entries
t11; : : : ; tnn are the eigenvalues of A, trT =

Pn
i=1 tii, detT = �

n
i=1tii, and

the main diagonal entries of adjT are �nj 6=1tjj ; : : : ;�nj 6=ntjj .

2.4.2 The eigenvalues of a polynomial in A Suppose A 2 Mn has eigen-
values �1; : : : ; �n and let p(t) be a given polynomial. We showed in (1.1.6)
that p(�i) is an eigenvalue of p(A) for each i = 1; : : : ; n and that if � is an
eigenvalue of p(A), then there is some i 2 f1; : : : ; ng such that � = p(�i).
These observations identify the the distinct eigenvalues of p(A) (that is, its
spectrum (1.1.4)), but not their multiplicities. Schur's theorem (2.3.1) reveals
the multiplicities.
Let A = UTU�, in which U is unitary and T = [tij ] is upper triangu-

lar with main diagonal entries t11 = �1; t22 = �2; : : : ; tnn = �n. Then
p(A) = p(UTU�) = Up(T )U� (Problem 2 in (1.3)). The main diagonal
entries of p(T ) are p(�1); p(�2); : : : ; p(�n), so these are the eigenvalues (in-
cluding multiplicities) of p(T ) and hence also of p(A). In particular, for each
k = 1; 2; : : : the eigenvalues of Ak are �k1 ; : : : ; �

k
n and

trAk = �k1 + � � �+ �kn (2.4.2.1)
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Exercise. If T 2 Mn is strictly upper triangular, show that: all of the entries
in the main diagonal and the �rst p � 1 superdiagonals of T p are zero, p =
1; : : : ; n; in particular, Tn = 0.

Suppose that A 2 Mn. We know (Problem 6 in (1.1)) that if Ak = 0 for
some positive integer k, then �(A) = f0g, so the characteristic polynomial of
A is pA(t) = tn We can now prove the converse, and a little more. If �(A) =
f0g, then there is a unitary U and a strictly upper triangular T such that A =
UTU�; the preceding exercise tells us that Tn = 0, so An = UTnU� = 0.
Thus, the following are equivalent forA 2Mn: (a)A is nilpotent; (b)An = 0;
and (c) �(A) = f0g.

2.4.3 The Cayley-Hamilton theorem The fact that every matrix satis�es its
own characteristic equation follows from Schur's theorem and a simple obser-
vation about multiplication of triangular matrices with special patterns of zero
entries.
2.4.3.1 Lemma. Suppose that R = [rij ]; T = [tij ] 2 Mn are upper triangular
and that rij = 0, 1 � i; j � k < n, and tk+1;k+1 = 0: Let S = [sij ] = RT .
Then sij = 0; 1 � i; j � k + 1.

Proof: The hypotheses describe block matrices R and T of the form

R =

�
0k R12
0 R22

�
; T =

�
T11 T12
0 T22

�
; T11 2Mk

in which R22, T11, and T22 are upper triangular and the �rst column of T22 is
zero. The product RT is necessarily upper triangular. We must show that it
has a zero upper-left principal submatrix of size k + 1. Partition T22 = [0 Z]
to reveal its �rst column and perform a block multiplication

RT =

�
0kT11 +R120 0kT12 +R12[0 Z]

0T11 +R220 0T12 +R22[0 Z]

�
=

�
0k [0 R12Z]

0 [0 R22Z]

�
which reveals the desired zero upper-left principal submatrix of size k+1.

2.4.3.2 Theorem. (Cayley�Hamilton). Let pA(t) be the characteristic polyno-
mial of A 2Mn. Then pA(A) = 0

Proof: Factor pA(t) = (t � �1)(t � �2) � � � (t � �n) as in (1.2.6) and use
(2.3.1) to write A as A = UTU�, in which U is unitary, T is upper triangular,
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and the main diagonal entries of T are �1; : : : ; �n. Compute

pA(A) = pA(UTU
�) = UpA(T )U

�

= U [(T � �1I)(T � �2I) � � � (T � �nI)]U�

It suf�ces to show that pA(T ) = 0. The upper left 1-by-1 block of T � �1I is
0, and the 2; 2 entry of T � �2I is 0, so the preceding lemma ensures that the
upper left 2-by-2 principal submatrix of (T ��1I)(T ��2I) is 0. Suppose the
upper left k-by-k principal submatrix of (T � �1I) � � � (T � �kI) is zero. The
k+1; k+1 entry of (T ��k+1I) is 0, so invoking the lemma again, we know
that the upper left principal submatrix of (T��1I) � � � (T��k+1I) of size k+1
is 0. By induction, we conclude that ((T ��1I) � � � (T ��n�1I))(T ��nI) =
0.

Exercise. What is wrong with the following argument? �Since pA(�i) = 0

for every eigenvalue �i of A 2 Mn, and since the eigenvalues of pA(A) are
pA(�1); : : : ; pA(�n), all eigenvalues of pA(A) are 0. Therefore, pA(A) = 0.�
Give an explicit example to illustrate the fallacy in the argument.

Exercise. What is wrong with the following argument? �Since pA(t) = det(tI�
A), we have pA(A) = det(AI � A) = det(A � A) = det 0 = 0. Therefore,
pA(A) = 0.�

The Cayley�Hamilton theorem is often paraphrased as �every square matrix
satis�es its own characteristic equation,� (1.2.3) but this must be understood
carefully: The scalar polynomial pA(t) is �rst computed as pA(t) = det(tI �
A), and one then forms the matrix pA(A) from the characteristic polynomial.
We have proved the Cayley�Hamilton theorem for matrices with complex

entries, and hence it must hold for matrices whose entries come from any sub-
�eld of the complex numbers (the reals or the rationals, for example). In fact,
the Cayley�Hamilton theorem is a completely formal result that holds for ma-
trices whose entries come from any �eld or, more generally, any commutative
ring. See Problem 3.
One important use of the Cayley�Hamilton theorem is to write powers Ak

of A 2Mn, for k � n, as linear combinations of I;A;A2; : : : ; An�1.
2.4.3.3 Example. Let A =

h
3 1
�2 0

i
. Then pA(t) = t2 � 3t + 2, so A2 �

3A + 2I = 0. Thus, A2 = 3A � 2I; A3 = A(A2) = 3A2 � 2A = 3(3A �
2I)� 2A = 7A� 6I; A4 = 7A2 � 6A = 15A� 14I , and so on. We can also
express negative powers of the nonsingular matrix A as linear combinations of
A and I . Write A2 � 3A + 2I = 0 as 2I = �A2 + 3A = A(�A + 3I),
or I = A[ 12 (�A + 3I)]. Thus, A

�1 = � 1
2A +

3
2I =

h
0 �1=2
1 3=2

i
, A�2 =
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(� 1
2A+

3
2I)

2 = 1
4A

2 � 3
2A+

9
4I =

1
4 (3A� 2I)�

3
2A+

9
4I = �

3
4A+

7
4I ,

and so on.
2.4.3.4 Corollary. Suppose A 2 Mn is nonsingular and let pA(t) = tn +

an�1t
n�1+ � � �+a1t+a0. Let q(t) = �1

a0
(tn�1+an�1t

n�2+ � � �+a2t+a1).
Then A�1 = q(A) is a polynomial in A.

Proof: Write pA(A) = 0 asA(An�1+an�1An�2+� � �+a2A+a1I) = �a0I ,
that is, Aq(A) = I .

Exercise. If A;B 2 Mn are similar and g(t) is any given polynomial, show
that g(A) is similar to g(B), and that any polynomial equation satis�ed by A
is satis�ed by B. Give some thought to the converse: Satisfaction of the same
polynomial equations implies similarity�true or false?

2.4.3.5 Example.We have shown that each A 2 Mn satis�es a polynomial
equation of degree n, for example, its characteristic equation. It is possible
for A 2 Mn to satisfy a polynomial equation of degree less than n, however.
Consider

A =

24 1 0 0

0 1 1

0 0 1

35 2M3

The characteristic polynomial is pA(t) = (t � 1)3 and indeed (A � I)3 = 0.
But (A � I)2 = 0 so A satis�es a polynomial equation of degree 2. There is
no polynomial h(t) = t + a0 of degree 1 such that h(A) = 0 since h(A) =
A+ a0I 6= 0 for all a0 2 C.

Exercise. Suppose that a diagonalizable matrix A 2 Mn has d � n distinct
eigenvalues �1; : : : ; �d. Let q(t) = (t��1) � � � (t��d). Show that q(A) = 0,
so A satis�es a polynomial equation of degree d. Why is there no polynomial
g(t) of degree strictly less than d such that g(A) = 0? Consider the matrix
in the preceding example to show that the minimum degree of a polynomial
equation satis�ed by a nondiagonalizable matrix can be strictly larger than the
number of its distinct eigenvalues.

2.4.4 Sylvester's theorem on linear matrix equations The equation AX �
XA = 0 associated with commutativity is a special case of the linear matrix
equation AX � XB = C, often called Sylvester's equation. The following
theorem gives a necessary and suf�cient condition for Sylvester's equation to
have a unique solution X for every given C. It relies on the Cayley-Hamilton
theorem, and on the observation that if AX = XB, then A2X = A(AX) =
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A(XB) = (AX)B = (XB)B = XB2, A3X = A(A2X) = A(XB2) =

(AX)B2 = XB3, etc. Thus, with the usual understanding that A0 denotes the
identity matrix, we have 

mX
k=0

akA
k

!
X =

mX
k=0

akA
kX =

mX
k=0

akXB
k = X

 
mX
k=0

akB
k

!

that is, AX �XB = 0 implies that g(A)X �Xg(B) = 0 for any polynomial
g(t).
2.4.4.1 Theorem. (Sylvester) Let A 2 Mn and B 2 Mm be given. The
equation AX � XB = C has a unique solution X 2 Mn;m for each given
C 2Mn;m if and only if �(A)\�(B) = ?, that is, if and only ifA andB have
no eigenvalue in common. In particular, if �(A) \ �(B) = ? then the onlyX
such that AX �XB = 0 isX = 0. If A and B are real, then AX �XB = C
has a unique solution X 2Mn;m(R) for each given C 2Mn;m(R).

Proof: Consider the linear transformation T : Mn;m ! Mn;m de�ned by
T (X) = AX � XB. In order to ensure that the equation T (X) = C has a
unique solution X for every given C 2 Mn;m it suf�ces to show that the only
solution of T (X) = 0 is X = 0. (0.5) If AX � XB = 0, we know from
the preceding discussion that pB(A)X�XpB(B) = 0. The Cayley-Hamilton
theorem ensures that pB(B) = 0, so pB(A)X = 0.
Let �1; : : : ; �n be the eigenvalues of B, so pB(t) = (t � �1) � � � (t � �n)

and pB(A) = (A � �1I) � � � (A � �nI). If �(A) \ �(B) = ? then each
factor A � �jI is nonsingular, pB(A) is nonsingular, and the only solution of
pB(A)X = 0 isX = 0. Conversely, if pB(A)X = 0 has a nontrivial solution,
then pB(A) must be nonsingular, some factor A � �jI is singular, and some
�j is an eigenvalue of A.
If A and B are real, consider the linear transformation T : Mn;m(R) !

Mn;m(R) de�ned by T (X) = AX � XB. The same argument shows that
the real matrix pB(A) is nonsingular if and only if �(A) \ �(B) = ? (even if
some of the eigenvalues �i of B are not real).

Sylvester's theorem is often used in the following form.
2.4.4.2 Corollary. Suppose that B;C 2 Mn are block diagonal and confor-
mally partitioned as A = A1�� � ��Ak and B = B1�� � ��Bk, and suppose
that �(Bi) \ �(Cj) = ? whenever i 6= j. If A 2 Mn and AB = CA, then
A = A1�� � ��Ak is block diagonal conformal toB andC, andAiBi = CiAi
for each i = 1; : : : ; k.
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Proof: Partition A = [Aij ] conformally to B and C. Then AB = CA if and
only if AijBj = CiAij . If i 6= j, then (2.4.4.1) ensures that Aij = 0.

2.4.5 Uniqueness in Schur's triangularization theorem For a given A 2
Mn, the upper triangular form T described in (2.3.1) that can be achieved
by unitary similarity need not be unique. That is, different upper triangular
matrices with the same main diagonals can be unitarily similar to A. However,
if A has d distinct eigenvalues �1; : : : ; �d in a prescribed order with respective
multiplicities n1; : : : ; nd, and if we let � = �1In1 � � � � � �dInd , then any
two upper triangular matrices T and T 0 that are unitarily similar to A and have
the same main diagonal as � are related in a simple way: there is a block
diagonal unitary matrixW = W1 � � � � �Wd with eachWi 2 Mni such that
T 0 =WTW �.
2.4.5.1 Theorem. Suppose that d; n1; : : : ; nd are given positive integers with
d � 2, let n1 + � � � + nd = n, and let � = �1In1 � � � � � �dInd . Let T =
[Tij ]

d
i;j=1 and T 0 = [T 0ij ]di;j=1 be upper triangular matrices that are partitioned

conformally to � and have the same main diagonal as �. Let a given W =

[Wij ]
d
i;j=1 2 Mn be partitioned conformally to � and suppose that TW =

WT 0. ThenWij = 0 if i > j, that is, W is block upper triangular conformal
to �. If W is unitary, then T 0 = WTW �, W = W11 � � � � �Wdd is block
diagonal, and each block Wii is unitary. Conversely, if Wi 2 Mni is unitary
for each i = 1; : : : ; d and Tij = WiT

0
ijW

�
j for all i; j = 1; : : : ; d, i � j, then

T is unitarily similar to T 0 (viaW =W1 � � � � �Wd).

Proof: Begin with the identity WT = T 0W . Because T and T 0 are block
upper triangular, the d; 1 block of T 0W is T 0ddWd1 and the d; 1 block of WT
is Wd1T11. Since �(T 0dd) = f�dg 6= f�1g = �(T11), (2.4.4.1) ensures that
Wd1 = 0 is the only solution to T 0ddWd1 = Wd1T11. If d = 2, we stop at this
point. If d > 2, then the d; 2 block of T 0W is T 0ddWd2, the d; 2 block ofWT
is Wd1T12 +Wd2T22 = Wd2T22, and T 0ddWd2 = Wd2T22. Again, (2.4.4.1)
ensures thatWd2 = 0 since �(T 0dd) = f�dg 6= f�2g = �(T22). Proceeding in
this way across the dth block row of T 0W =WT , we see that all of the blocks
Wd1; : : : ;Wd;d�1 are zero. Now equate the (d� 1); k blocks of T 0W = WT

in turn for k = 1; : : : ; d � 1 and conclude in the same way that they are all
zero. Working our way up the block rows of T 0W = WT , we conclude that
Wij = 0 for all i > j, which means thatW is block upper triangular conformal
to �.
Now assume that W is unitary. Partition W =

h
W11 X

0 Ŵ

i
and conclude

from (2.1.10) that W11 and Ŵ are unitary, and X = 0. Since Ŵ is also
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block upper triangular and unitary, an induction leads to the conclusion that
W =W11 � � � � �Wdd.
The converse assertion follows from a computation.

Exercise. Suppose T = [tij ]; T
0 = [t0ij ] 2 Mn are upper triangular and have

the same main diagonals, and suppose the main diagonal entries are distinct.
Explain why T and T 0 are unitarily similar if and only if there are �1; : : : ; �n 2
R such that tjk = ei(�j��k)t0jk whenever k > j. Describe the set of all
matrices that have the same main diagonal as the matrix T1 in Example 2.3.2
and are unitarily similar to it.

2.4.6 Every square matrix is block diagonalizable The following applica-
tion and extension of Schur's theorem (2.3.1) is an important step toward the
Jordan canonical form, which we discuss in the next chapter.
2.4.6.1 Theorem. Let the distinct eigenvalues of A 2 Mn be �1; : : : ; �d,
with respective multiplicities n1; : : : ; nd. Theorem (2.3.1) ensures that A is
unitarily similar to a d-by-d block upper triangular matrix T = [Tij ]

d
i;j=1 in

which each block Tij is ni-by-nj , Tij = 0 if i > j, and each diagonal block
Tii is upper triangular with diagonal entries �i, that is, each Tii = �iIni +Ri
and Ri 2Mni is strictly upper triangular. Then A is similar to26664

T11 0

T22
. . .

0 Tdd

37775 (2.4.6.2)

IfA 2Mn(R) and if all its eigenvalues are real, then the unitary similarity that
reduces A to the special upper triangular form T and the similarity matrix that
reduces T to the block diagonal form (2.4.6.2) may both be taken to be real.

Proof: Partition T as

T =

�
T11 Y

0 S2

�
in which S2 = [Tij ]di;j=2. Notice that the only eigenvalue of T11 is �1 and that
the eigenvalues of S2 are �2; : : : ; �d. Sylvester's theorem (2.4.4.1) ensures
that the equation T11X �XS = �Y has a solution X; use it to construct

M =

�
In1 X

0 I

�
and its inverseM�1 =

�
In1 �X
0 I

�
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Then

M�1TM =

�
In1 �X
0 I

� �
T11 Y

0 S2

� �
In1 X

0 I

�
=

�
T11 T11X �XS + Y
0 S2

�
=

�
T11 0

0 S2

�
If d = 2, this is the desired block diagonalization. If d > 2, repeat this reduc-
tion process to show that S2 is similar to T22 � S3 in which S3 = [Tij ]di;j=3.
After d� 1 reductions, we �nd that T is similar to T11 � � � � � Tdd.
If A is real and has real eigenvalues, then it is real orthogonally similar to

a real block upper triangular matrix of the form just considered. Each of the
reduction steps can be carried out with a real similarity.

Exercise. Suppose that A 2 Mn is unitarily similar to a d-by-d block upper
triangular matrix T = [Tij ]

d
i;j=1. If any block Tij with j > i is nonzero, use

(2.2.2) to explain why T is not unitarily similar to T11 � � � � � Tdd.

There are two extensions of the preceding theorem that, for commuting fam-
ilies and simultaneous (but not necessarily unitary) similarity, signi�cantly re-
�ne the block structure achieved in (2.3.3).
2.4.6.3 Theorem. Let F � Mn be a commuting family, let A0 be any given
matrix in F , and suppose that A0 has d distinct eigenvalues �1; : : : ; �d, with
respective multiplicities n1; : : : ; nd. Then there is a nonsingular S 2Mn such
that (a) Â0 = S�1A0S = T1 � � � � � Td, in which each Ti 2 Mni is upper
triangular and all its diagonal entries are �i; and (b) for every A 2 F , S�1AS
is upper triangular and block diagonal conformal to Â0.

Proof: First use (2.4.6.1) to choose a nonsingular S0 such that S�10 A0S0 =

R1 � � � � � Rd = ~A0, in which each Ri 2 Mni has �i as its only eigen-
value. Let S�10 FS0 = fS�10 AS0 : A 2 Fg, which is also a commuting
family. Partition any given B 2 S�10 FS0 as B = [Bij ]

d
i;j=1, conformal to

~A0. Then [RiBij ] = ~A0B = B ~A0 = [BijRj ], so RiBij = BijRj for all
i; j = 1; : : : ; d. Sylvester's theorem (2.4.4.1) now ensures that Bij = 0 for
all i 6= j since Ri and Rj have no eigenvalues in common. Thus, S�10 FS0
is a commuting family of block diagonal matrices that are all conformal to
~A0. For each i = 1; : : : ; d, consider the family Fi � Mni consisting of the
ith diagonal block of every matrix in S�10 FS0; notice that Ri 2 Fi for each
i = 1; : : : ; d. Each Fi is a commuting family, so (2.3.3) ensures that there is a
unitary Ui 2 Mni such that U�i FiUi is an upper triangular family. The main
diagonal entries of U�i RiUi are its eigenvalues, which are all equal to �i. Let
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U = U1 � � � � � Ud and observe that S = S0U accomplishes the asserted
reduction, in which Ti = U�i RiUi.

2.4.6.4 Corollary. Let F �Mn be a commuting family. There is a nonsingu-
lar S 2Mn such that, for every A 2 F , S�1AS is upper triangular and block
diagonal, and each diagonal block has exactly one eigenvalue.

Proof: If every matrix in F has only one eigenvalue, apply (2.3.3) and stop.
If some matrix in F has at least two distinct eigenvalues, let A0 2 F be any
matrix that has the maximum number of distinct eigenvalues among all ma-
trices in F . Construct a simultaneous block diagonal upper triangularization
as in the preceding theorem, and observe that the size of every diagonal block
obtained is strictly smaller than the size of A0. Associated with each diagonal
block of the reduced form of A0 is a commuting family. Among the mem-
bers of that family, either (a) each matrix has only one eigenvalue (no further
reduction required), or (b) some matrix has at least two distinct eigenvalues,
in which case we choose any matrix that has the maximum number of distinct
eigenvalues and reduce again to obtain a set of strictly smaller diagonal blocks.
Recursively repeat this reduction, which must terminate in �nitely many steps,
until no member of any commuting family has more than one eigenvalue.

2.4.7 Every square matrix is almost diagonalizable Another use of Schur's
result is to make it clear that every matrix is �almost� diagonalizable in two
possible interpretations of the phrase. The �rst says that arbitrarily close to
a given matrix there is a diagonalizable matrix, and the second says that any
given matrix is similar to an upper triangular matrix whose off-diagonal entries
are arbitrarily small.
2.4.7.1 Theorem. Let A = [aij ] 2 Mn. For each � > 0, there exists a
matrix A(�) = [aij(�)] 2 Mn that has n distinct eigenvalues (and is therefore
diagonalizable) and is such that

Pn
i;j=1 jaij � aij(�)j2 < �.

Proof: Let U 2 Mn be unitary and such that U�AU = T is upper triangular.
Let E = diag("1; "2; : : : ; "n), in which "1; : : : ; "n are chosen so that j"ij <�
�
n

�1=2and so that tii + "i 6= tjj + "j for all i 6= j. (Re�ect for a moment
to see that this can be done.) Then T + E has n distinct eigenvalues: t11 +
"1; : : : ; tnn + "n, and so does A + UEU�, which is similar to T + E. Let
A(�) = A + UEU�, so that A � A(�) = �UEU� and hence (2.2.2) ensures
that

P
i;j jaij � aij(�)j2 =

Pn
i=1 j"ij2 < n

�
�
n

�
= �.

Exercise. Show that the condition
P
i;j jaij � aij(�)j2 < � in (2.4.6) could be
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replaced by maxi;j jaij � aij(�)j < �. Hint: Apply the theorem with �2 in
place of � and realize that, if a sum of squares is less than �2, each of the items
must be less than � in absolute value.

2.4.7.2 Theorem. Let A 2 Mn. For each � > 0 there is a nonsingular matrix
S� 2Mn such that S�1� AS� = T� = [tij(�)] is upper triangular and jtij(�)j �
� for 1 � i < j � n.

Proof: First apply Schur's theorem to produce a unitary matrix U 2 Mn

and an upper triangular matrix T 2 Mn such that U�AU = T . De�ne D�
= diag(1; �; �2; : : : ; �n�1) for a nonzero scalar � and set t = maxi<j jtij j.
Assume that � < 1, since it certainly suf�ces to prove the statement in this
case. If t � 1, let S� = UD�, and, if t > 1, let S� = UD1=tD�. In either
case, the appropriate S� substantiates the claim of the theorem. If t � 1,
for example, a calculation reveals that tij(�) = tij�

�i�j = tij�
j�i, whose

absolute value is no more than �j�i, which is, in turn, no more than � if i < j.
If t > 1, on the other hand, the similarity by D1=t simply preprocesses the
matrix, producing one in which all off-diagonal entries are no more than 1 in
absolute value.

Exercise. Prove the following variant of (2.4.7.2): If A 2 Mn and � > 0,
there is a nonsingular S� 2 Mn such that S�1� AS� = T� = [tij(�)] is upper
triangular and

P
j>i jtij(�)j � �. Hint: Apply (2.4.7) with [2=n(n � 1)]� in

place of �.

2.4.8 Commuting families and simultaneous triangularization We now use
the commuting families version (2.3.3) of Schur's theorem to show that the
eigenvalues �add� and �multiply��in some order�for commuting matrices.
2.4.8.1 Theorem. Suppose A;B 2 Mn commute. Then there is an ordering
�1; : : : ; �n of the eigenvalues ofA and an ordering �1; : : : ; �n of the eigenval-
ues ofB such that the eigenvalues ofA+B are �1+�1; �2+�2; : : : ; �n+�n
and the eigenvalues of AB are �1�1; �2�2; : : : ; �n�n. In particular, �(A +
B) � �(A) + �(B) and �(AB) � �(A)�(B).

Proof: Since A and B commute, (2.3.3) ensures that there is a unitary U 2
Mn such that U�AU = T = [tij ] and U�BU = R = [rij ] are both upper
triangular. The main diagonal entries (and hence also the eigenvalues) of the
upper triangular matrix T +R = U�(A+B)U are t11 + r11; : : : ; tnn + rnn;
these are the eigenvalues of A + B since A + B is similar to T + R. The
main diagonal entries (and hence also the eigenvalues) of the upper triangular



136 Unitary similarity and unitary equivalence

matrix TR = U�(AB)U are t11r11; : : : ; tnnrnn; these are the eigenvalues of
AB, which is similar to TR.

2.4.8.2 Example. Even when A and B commute, not every sum of their re-
spective eigenvalues need be an eigenvalue of A + B. Consider the diagonal
matrices

A =

�
1 0

0 2

�
and B =

�
3 0

0 4

�
and realize that 1+4 = 5 =2 f4; 6g = �(A+B). Thus �(A+B) is contained
in, but is not generally equal to, �(A) + �(B) when A and B commute.
2.4.8.3 Example. If A and B do not commute, it is dif�cult to say how �(A+
B) is related to �(A) and �(B). In particular, �(A+B) need not be contained
in �(A) + �(B). Let

A =

�
0 1

0 0

�
and B =

�
0 0

1 0

�
Then �(A+B) = f�1; 1g, while �(A) = �(B) = f0g.
2.4.8.4 Example. Is there a converse of (2.4.8.1)? If the eigenvalues of A and
B add, in some order, must A and B commute? The answer is no, even if the
eigenvalues of �A and �B add, in some order, for all scalars � and �. This is
an interesting phenomenon, and the characterization of such pairs of matrices
is an unsolved problem! Consider the noncommuting matrices

A =

24 0 1 0

0 0 �1
0 0 0

35 and B =

24 0 0 0

1 0 0

0 1 0

35
for which �(A) = �(B) = f0g. Moreover, p�A+bB(t) = t3, so �(�A +
bB) = f0g for all �; � 2 C and the eigenvalues add. If A and B were
simultaneously upper triangularizable, the proof of (2.4.8.1) shows that the
eigenvalues of AB would be products, in some order, of the eigenvalues of A
andB. However, �(AB) = f�1; 0; 1g is not contained in �(A) ��(B) = f0g,
so A and B are not simultaneously triangularizable.
2.4.8.5 Corollary. Suppose thatA;B 2Mn commute, �(A) = f�1; : : : ; �d1g,
and �(B) = f�1; : : : ; �d2g. If �i 6= ��j for all i; j, thenA+B is nonsingular.

Exercise. Verify (2.4.8.5) using (2.4.8.1).

Exercise. Suppose T = [tij ] and R = [rij ] are n-by-n upper triangular ma-
trices of the same size and let p(s; t) be a polynomial in two noncommuting
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variables, that is, any linear combination of words in two noncommuting vari-
ables. Explain why p(T;R) is upper triangular and its main diagonal entries
(its eigenvalues) are p(t11; r11); : : : ; p(tnn; rnn).

For complex matrices, simultaneous triangularization and simultaneous uni-
tary triangularization are equivalent concepts.
2.4.8.6 Theorem. Let A1; : : : ; Am 2 Mn be given. There is a nonsingular
S 2 Mn such that S�1AiS is upper triangular for all i = 1; : : : ;m if and
only if there is a unitary U 2 Mn such that U�AiU is upper triangular for all
i = 1; : : : ;m.

Proof: Use (2.1.14) to write S = QR, in which Q is unitary and R is upper
triangular. Then Ti = S�1AiS = (QR)�1Ai(QR) = R�1(Q�AiQ)R is
upper triangular, so Q�AiQ = RTiR

�1 is upper triangular, as the product of
three upper triangular matrices.

Simultaneous upper triangularizability of m matrices by similarity is com-
pletely characterized by the following theorem of McCoy. It involves a poly-
nomial p(t1; : : : ; tm) in m noncommuting variables, which is a linear combi-
nation of products of powers of the variables. Since the variables are noncom-
muting, different powers of the same variables may occur in a given product
with products of powers of other variables in between. The key observation
is captured in the preceding exercise: if T1; : : : ; Tm are upper triangular, then
so is p(T1; : : : ; Tm) and the main diagonals of T1; : : : ; Tm and p(T1; : : : ; Tm)
exhibit speci�c orderings of their eigenvalues. For each k = 1; : : : ; n, the kth

main diagonal entry of p(T1; : : : ; Tm) (an eigenvalue of p(T1; : : : ; Tm)) is the
same polynomial in the respective kth main diagonal entries of T1; : : : ; Tm.
2.4.8.7 Theorem. (McCoy) Let m � 2 and let A1; : : : ; Am 2 Mn be given.
The following statements are equivalent:
(a) For every polynomial p(t1; : : : ; tm) in m noncommuting variables and
every k; ` = 1; : : : ;m, p(A1; : : : ; Am)(AkA` �A`Ak) is nilpotent.
(b) There is a unitary U 2 Mn such that U�AiU is upper triangular for each
i = 1; : : : ;m.
(c) There is an ordering �(i)1 ; : : : ; �

(i)
n of the eigenvalues of each of the matrices

Ai, i = 1; : : : ;m, such that for any polynomial p(t1; : : : ; tm) in m noncom-
muting variables, the eigenvalues of p(A1; : : : ; Am) are p(�

(1)
i ; : : : ; �

(m)
i ),

i = 1; : : : ; n.

Proof: (b) ) (c): Let Tk = U�AkU = [t
(k)
ij ] be upper triangular and let

�
(k)
1 = t

(k)
11 ; : : : ; �

(k)
n = t

(k)
nn . Then the eigenvalues of p(A1; : : : ; Am) =
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p(UT1U
�; : : : ; UTmU

�) = Up(T1; : : : ; Tm)U
� are the main diagonal entries

of p(T1; : : : ; Tm), which are p(�
(1)
i ; : : : ; �

(m)
i ), i = 1; : : : ;m.

(c) ) (a) For any given polynomial p(t1; : : : ; tm) in m noncommuting vari-
ables consider the polynomials qk`(t1; : : : ; tm) = p(t1; : : : ; tm)(tkt` � t`tk),
k; ` = 1; : : : ;m inm noncommuting variables. The eigenvalues of qk`(A1; : : : ; Am)
are, according to (c), qk`(�

(1)
i ; : : : ; �

(m)
i ) = p(�

(1)
i ; : : : ; �

(m)
i )(�

(k)
i �

(`)
i �

�
(`)
i �

(k)
i ) = p(�

(1)
i ; : : : ; �

(m)
i ) � 0 = 0 for all i = 1; : : : ; n. Thus, each matrix

p(A1; : : : ; Am)(AkA` �A`Ak) is nilpotent. (2.4.2)
(a) ) (b): Suppose (see the following lemma) that A1; : : : ; Am have a com-
mon unit eigenvector x . Subject to this assumption, we proceed by induction
as in the proof of (2.3.3). Let U1 be any unitary matrix that has x as its �rst
column. Use U1 to de�ate each Ai in the same way:

Ai = U�1AiU1 =
"
�
(i)
1 F
0 ~Ai

#
, ~Ai 2Mn�1; i = 1; : : : ;m (2.4.8.8)

Let p(t1; : : : ; tm) be any given polynomial in m noncommuting variables.
Then (a) ensures that the matrix

U�p(A1; : : : ; Am)(AkA` �A`Ak)U = p(A1; : : : ;Am)(AkA` �A`Ak)
(2.4.8.9)

is nilpotent for each k; ` = 1; : : : ;m. Partition each of the matrices (2.4.8.9)
conformally to (2.4.8.8) and observe that its 1; 1 entry is zero and its lower
right block is p( ~A1; : : : ; ~Am)( ~Ak ~A` � ~A` ~Ak), which is necessarily nilpotent.
Thus, the matrices ~A1; : : : ; ~Am 2 Mn�1 inherit property (a) and hence (b)
follows by induction, as in (2.3.3).

We know that commuting matrices always have a common eigenvector (1.3.19).
If the matrices A1; : : : ; Am in the preceding theorem commute, then the con-
dition (a) is trivially satis�ed since p(A1; : : : ; Am)(AkA`�A`Ak) = 0 for all
k; ` = 1; : : : ;m. The following lemma shows that the condition (a), weaker
than commutativity, is suf�cient to ensure existence of a common eigenvector.
2.4.8.10 Lemma. Let A1; : : : ; Am 2 Mn be given. Suppose that for every
polynomial p(t1; : : : ; tm) inm � 2 noncommuting variables and every k; ` =
1; : : : ;m, each of the matrices p(A1; : : : ; Am)(AkA` � A`Ak) is nilpotent.
Then for each given nonzero vector x 2 Cn there is a polynomial q(t1; : : : ; tm)
in m noncommuting variables such that q(A1; : : : ; Am)x is a common eigen-
vector of A1; : : : ; Am.

Proof: We consider only the case m = 2, which illustrates all the features
of the general case. Let A;B 2 Mn, let C = AB � BA, and assume that
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p(A;B)C is nilpotent for every polynomial p(s; t) in two noncommuting vari-
ables. Let x 2 Cn be any given nonzero vector. We claim that there is a
polynomial q(s; t) in two noncommuting variables such that q(A;B)x is a
common eigenvector of A and B:
Begin with (1.1.9) and let g1(t) be a polynomial such that �1 = g1(A)x is

an eigenvector of A: A�1 = ��1.
Case I: Suppose Cp(B)�1 = 0 for every polynomial p(t), that is,

ABp(B)�1 = BAp(B)�1 for every polynomial p(t) (2.4.8.11)

Using this identity with p(t) = 1 shows that AB�1 = BA�1. Now proceed by
induction: Suppose ABk�1 = BkA�1 for some k � 1. Using (2.4.8.11) and
the induction hypothesis, we compute

ABk+1�1 = AB �Bk�1 = BA �Bk�1 = B �ABk�1
= B �BkA�1 = Bk+1A�1

We conclude that ABk�1 = BkA�1 for every k � 1, and hence Ap(B)�1 =
p(B)A�1 = p(B)��1 = �(p(B)�1) for every polynomial p(t). Thus, p(B)�1
is an eigenvector ofA if it is nonzero. Use (1.1.9) again to choose a polynomial
g2(t) such that g2(B)�1 = g2(B)g1(A)x is an eigenvector of B (necessarily
nonzero). Let q(s; t) = g2(t)g1(s). We have shown that q(A;B)x is a com-
mon eigenvector of A and B, as claimed.
Case II: Suppose there is some polynomial f1(t) such that Cf1(B)�1 6= 0.

Use (1.1.9) to �nd a polynomial q1(t) such that �2 = q1(A)Cf1(B)�1 is an
eigenvector of A. If Cp(B)�2 = 0 for every polynomial p(t), then Case I
permits us to construct the desired common eigenvector; otherwise, let f2(t)
be a polynomial such that Cf2(B)�2 6= 0 and let q2(t) be a polynomial such
that �3 = q2(A)Cf2(B)�2 is an eigenvector of A. Continue in this fashion to
construct a sequence of eigenvectors

�k = qk�1(A)Cfk�1(B)�k�1, k = 2; 3; : : : (2.4.8.12)

of A until either (i) Cp(B)�k = 0 for every polynomial p(t), or (ii) k = n+1.
If (i) occurs for some k � n, Case I permits us to construct the desired common
eigenvector ofA andB. If (i) is false for each k = 1; 2; : : : ; n, our construction
produces n+ 1 vectors �1; : : : ; �n+1 that must be linearly dependent, so there
are n+1 scalars c1; : : : ; cn+1, not all zero, such that c1�1+� � �+cn+1�n+1 = 0.

n+1X
i=1

ci�i = 0
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Let r = minfi : ci 6= 0g. Then

�cr�r =
nX
i=r

ci+1�i+1 =
nX
i=r

ci+1qi(A)Cfi(B)�i

= cr+1qr(A)Cfr(B)�r

+
n�1X
i=r

ci+2qi+1(A)Cfi+1(B)�i+1 (2.4.8.13)

Using (2.4.8.12), the summand in (2.4.8.13) in which i = r can be expanded
to

cr+2qr+1(A)Cfr+1(B)qr(A)Cfr(B)�r

In the same fashion, we can use (2.4.8.12) to expand each of the summands
in (2.4.8.13) with i = r + 1; r + 2; : : : ; n � 1 to an expression of the form
hi(A;B)Cfr(B)�r in which each hi(A;B) is a polynomial in A and B. We
obtain in this way an identity of the form �cr�r = p(A;B)Cfr(B)�r, in
which p(s; t) is a polynomial in two noncommuting variables. This means that
fr(B)�r is an eigenvector of p(A;B)C associated with the nonzero eigenvalue
�cr, in contradiction to the hypothesis that p(A;B)C is nilpotent. This con-
tradiction shows that (i) is true for some k � n and hence A and B have a
common eigenvector of the asserted form.

We have stated McCoy's theorem (2.4.8.7) for complex matrices, but if we
restate (b) to assert only simultaneous similarity (not simultaneous unitary sim-
ilarity), then the theorem is valid for matrices and polynomials over any �eld
that contains the eigenvalues of all the matrices A1; : : : ; Am.

2.4.9 Continuity of eigenvalues Schur's unitary triangularization theorem
can be used to prove a basic and widely useful fact: The eigenvalues of a
square real or complex matrix depend continuously on its entries. Both aspects
of Schur's theorem�unitary and triangular�play key roles in the proof. The
following lemma encapsulates the fundamental principle involved.
2.4.9.1 Lemma. Let an in�nite sequence of matrices A1; A2; : : : 2 Mn be
given and suppose limk!1Ak = A (entry-wise convergence). Then there is
an in�nite sequence of positive integers k1 < k2 < � � � and unitary matrices
Uki 2 Mn for i = 1; 2; : : : such that (a) Ti � U�kiAkiUki is upper triangular
for all i = 1; 2; : : :; (b) U � limi!1 Uki exists and is unitary; (c) T � U�AU
is upper triangular; and (d) limi!1 Ti = T .

Proof: Using (2.3.1), for each k = 1; 2; : : : let Uk 2 Mn be unitary and
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such that U�kAUk is upper triangular. Lemma (2.1.8) ensures that there is an
in�nite subsequence Uk1 ; Uk2 ; : : : and a unitary U such that Uki ! U as i !
1. Then convergence of each of its three factors ensures that the product
Ti � U�kiAkiUki converges to a limit T � U�AU , which is upper triangular
because each Ti is upper triangular.

In the preceding argument, the main diagonal of each upper triangular ma-
trix T; T1; T2; : : : is a particular presentation (think of it as an n-vector) of
the eigenvalues of A;Ak1 ; Ak2 ; : : :, respectively. The entry-wise convergence
Ti ! T ensures that among the up to n! different ways of presenting the eigen-
values of each of the matrices A;Ak1 ; Ak2 ; : : : as an n-vector, there is at least
one presentation for each matrix such that the respective vectors of eigenval-
ues converge to a vector whose entries comprise all the eigenvalues of A. It
is in this sense, formalized in the following theorem, that the eigenvalues of a
square real or complex matrix depend continuously on its entries.
2.4.9.2 Theorem. Let an in�nite sequenceA1; A2; : : : 2Mn be given and sup-
pose that limk!1Ak = A (entry-wise convergence). Let �(A) = [�1(A) : : : �n(A)]T

and �(Ak) = [�1(Ak) : : : �n(Ak)]T be given presentations of the eigenvalues
of A and Ak, respectively, for k = 1; 2; : : :. Let �n = f� : � is a permutation
of f1; 2; : : : ; ngg. Then for each given " > 0 there exists a positive integer
N = N(") such that

min
�2�n

max
i=1;:::;n

�����(i)(Ak)� �i(A)��	 � " for all k � N (2.4.9.3)

Proof: If the assertion (2.4.9.3) is false, then there is some "0 > 0 and an
in�nite sequence of positive integers k1 < k2 < � � � such that for every j =
1; 2; : : : we have

max
i=1;:::;n

����(i)(Akj )� �i(A)�� > "0 for every � 2 �n (2.4.9.4)

However, (2.4.9.1) ensures that there is an in�nite sub-subsequence k1 �
kj1 < kj2 < � � � , unitary matrices U;Ukj1 ; Ukj2 ; : : :, and upper triangular
matrices T � U�AU and Tp � U�kjpAkjpUkjp for p = 1; 2; : : : such that all of
the entries of Tp (in particular, the main diagonal entries) converge to the corre-
sponding entries of T as p!1. Since the vectors of main diagonal entries of
T; T1; T2; : : :are obtained, respectively, from the given presentations of eigen-
values �(A); �(Akj1 ); �(Akj2 ); : : : by permuting their entries, the entry-wise
convergence we have observed contradicts (2.4.9.4) and proves the theorem.



142 Unitary similarity and unitary equivalence

2.4.10 Eigenvalues of a rank one perturbation It is often useful to know
that any one eigenvalue of a matrix can be shifted arbitrarily by a rank one
perturbation, without disturbing the rest of the eigenvalues.
2.4.10.1 Theorem (A. Brauer) SupposeA 2Mn has eigenvalues �; �2; : : : ; �n,
and let x be a nonzero vector such that Ax = �x. Then for any v 2 Cn the
eigenvalues of A+ xv� are �+ v�x; �2; : : : ; �n.

Proof: Let � = x= kxk2 and let U = [� u2 : : : un] be unitary. Then the proof
of (2.3.1) shows that

U�AU =

�
� F
0 A1

�
in which A1 2Mn�1 has eigenvalues �2; : : : ; �n. Also,

U�xv�U =

26664
��x

u�2x
...
u�nx

37775 v�U =
26664
kxk2
0
...
0

37775 � v�� v�u2 � � � v�un
�

=

�
kxk2 v�� F

0 0

�
=

�
v�x F
0 0

�
Therefore,

U�(A+ xv�)U =

�
�+ v�x F
0 A1

�
has eigenvalues �+ v�x; �2; : : : ; �n.

For a different approach to this result, see (1.2.8).

2.4.11 The complete principle of biorthogonality The principle of biorthog-
onality says that left and right eigenvectors corresponding to different eigen-
values are orthogonal; see (1.4.7). We now address all the possibilities for left
and right eigenvectors.
2.4.11.1 Theorem. Let A 2 Mn, unit vectors x; y 2 Cn, and �; � 2 C be
given.
(a) IfAx = �x, y�A = �y�, and � 6= �, then y�x = 0. LetU = [x y u3 : : : un] 2
Mn be unitary. Then

U�AU =

24 � F F
0 � 0

0 F An�2

35 ; An�2 2Mn�2 (2.4.11.2)
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(b) Suppose thatAx = �x, y�A = �y�, and y�x = 0. LetU = [x y u3 : : : un] 2
Mn be unitary. Then

U�AU =

24 � F F
0 � 0

0 F An�2

35 ; An�2 2Mn�2 (2.4.11.3)

and the algebraic multiplicity of � is at least two.
(c) Suppose that Ax = �x, y�A = �y�, and y�x 6= 0. Let S = [x S1] 2 Mn,
in which the columns of S1 are any given basis for the orthogonal comple-
ment of y. Then S is nonsingular, the �rst column of S�� is a nonzero scalar
multiple of y, and S�1AS has the block form�

� 0

0 An�1

�
; An�1 2Mn�1 (2.4.11.4)

If the geometric multiplicity of � is one, then its algebraic multiplicity is also
one. Conversely, if A is similar to a block matrix of the form (2.4.11.4), then
it has a non-orthogonal pair of left and right eigenvectors associated with the
eigenvalue �.
(d) Suppose that Ax = �x, y�A = �y�, and x = y (such an x is called a
normal eigenvector). Let U = [x U1] 2 Mn be unitary. Then U�AU has the
block form (2.4.11.4).

Proof: (a) Compared with the reduction in (2.3.1), the extra zeroes in the
second row of (2.4.11.2) come from the left eigenvector: y�Aui = �y�ui = 0
for i = 3; : : : ; n.
(b) The zero pattern in (2.4.11.3) is the same as that in (2.4.11.2), and for the
same reason. For the assertion about the algebraic multiplicity, see Problem 14
in (1.2).
(c) See (1.4.7) and (1.4.12). If the algebraic multiplicity of � for a matrix of
the form (2.4.11.4) is at least two, then � is an eigenvalue of An�1. Then �
has geometric multiplicity at least one as an eigenvalue of An�1, which means
it has geometric multiplicity at least two as an eigenvalue of A.
(d) Compared with the reduction in (2.3.1), the extra zeroes in the �rst row of
(2.4.11.4) appear because x is also a left eigenvector: x�AU1 = �x�U1 = 0.

Problems

1. Suppose A = [aij ] 2 Mn has n distinct eigenvalues. Use (2.4.9.2) to show
that there is an � > 0 such that every B = [bij ] 2 Mn with

Pn
i;j=1 jaij �
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bij j2 < � has n distinct eigenvalues. Conclude that the set of matrices with
distinct eigenvalues is an open subset ofMn.

2. Why is the rank of an upper triangular matrix at least as large as the number
of its nonzero main diagonal entries? Let A = [aij ] 2Mn, and suppose A has
exactly k � 1 nonzero eigenvalues �1; : : : ; �k. Write A = UTU�, in which
U is unitary and T = [tij ] is upper triangular. Show that rankA � k, with
equality if A is diagonalizable. Explain why

j
kX
i=1

�ij2 � k
kX
i=1

j�ij2 = k
nX
i=1

jtiij2 � k
nX

i;j=1

jtij j2 = k
kX
i=1

jaij j2

and conclude that rankA � j trAj2=(trA�A).

3. Our proof of the Cayley�Hamilton theorem (2.4.3.2) relies on the fact that
complex matrices have eigenvalues, but the de�nition (1.2.3) of the character-
istic polynomial does not involve eigenvalues. The Cayley-Hamilton theorem
is valid for matrices whose entries come from any �eld. Indeed, it is valid for
matrices whose entries come from a commutative ring with unit, examples of
which are the ring of integers modulo some integer k (which is a �eld if and
only if k is prime) and the ring of polynomials in one or more formal indeter-
minants with complex coef�cients. Provide details for the following proof that
any A 2 Mn satis�es the identity pA(A) = 0. The proof is valid for A over a
commutative ring with unit.
(a) Start with the fundamental identity (tI�A)[adj(tI�A)] = det(tI�A)I =
pA(t)I (0.8.2) and write

pA(t)I = It
n + Ian�1t

n�1 + Ian�2t
n�2 + � � �+ Ia1t+ Ia0 (2.4.12)

a polynomial in t of degree n with matrix coef�cients; each coef�cient is the
identity matrix.
(b) Explain why adj(tI �A) is a matrix whose entries are polynomials in t of
degree at most n� 1, and hence it can be written as

adj(tI �A) = An�1tn�1 +An�2tn�2 + � � �+A1t+A0 (2.4.13)

in which each coef�cientAk is an n-by-nmatrix whose entries are polynomial
functions of the entries of A and A0 = (�1)n�1 adjA.
(c) Use (2.4.13) and compute the product (tI �A)[adj(tI �A)] as

An�1t
n + (An�2 �AAn�1)tn�1 + � � �+ (A0 �AA1)t�AA0 (2.4.14)
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(d) Match the coef�cients of (2.4.12) and (2.4.14) to obtain n+ 1 equations

An�1 = I

An�2 �AAn�1 = an�1I

... (2.4.15)
A0 �AA1 = a1I

�AA0 = a0I

(e) For each k = 1; : : : ; n, multiply the kth equation in (2.4.15) by An�k+1,
add all n+ 1 equations, and obtain the Cayley-Hamilton theorem 0 = pA(A).
(f) For each k = 1; : : : ; n� 1, multiply the kth equation in (2.4.15) by An�k,
add only the �rst n equations, and obtain the identity

adjA = (�1)n�1(An�1 + an�1An�2 + � � �+ a2A+ a1I) (2.4.16)

which expresses adjA as an explicit polynomial in A.
(g) Use (2.4.15) to show that the matrix coef�cients in the right-hand side of
(2.4.13) are An�1 = I and

An�k�1 = A
k + an�1A

k�1 + � � �+ an�k+1A+ an�kI (2.4.17)

for k = 1; 2; : : : ; n� 1, so they are actually polynomials in A.

4. Let A;B 2 Mn and suppose A commutes with B. Explain why B com-
mutes with adjA, and why adjA commutes with adjB. If A is nonsingular,
deduce that B commutes with A�1.

5. Consider the matrices
h
0 �
0 0

i
and explain why there can be non-diagonalizable

matrices arbitrarily close to a given diagonalizable matrix. Use Problem 1 to
explain why this cannot happen if the given matrix has distinct eigenvalues.

6. Show that for

A =

24 1 0 0

0 2 0

0 0 3

35 and B =

24 �2 1 2

�1 �2 �1
1 1 1

35
�(aA + bB) = fa � 2b; 2a � 2b; 3a + bg for all scalars a; b 2 C, but A and
B are not simultaneously similar to upper triangular matrices. �(AB) =?

7. Use the criterion in Problem 6 in (2.3) to show that the two matrices in
Example (2.4.8.6) cannot be simultaneously upper triangularized. Apply the
same test to the two matrices in Problem 6.

8. An observation in the spirit of McCoy's theorem (2.4.8.7) can sometimes be
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useful in showing that two matrices are not unitarily similar. Let p(t; s) be a
polynomial with complex coef�cients in two noncommuting variables, and let
A;B 2 Mn be unitarily similar with A = UBU� for some unitary U 2 Mn.
Explain why p(A;A�) = Up(B;B�)U�. Conclude that if A and B are uni-
tarily similar, then tr p(A;A�) = tr p(B;B�) for every complex polynomial
p(t; s) in two noncommuting variables. How is this related to Specht's theorem
(2.2.6)?

9. Let p(t) = tn + an�1tn�1 + � � � + a1t + a0 be a given monic polynomial
of degree n with zeroes �1; �2; : : : ; �n. Let �k = �

k
1 + �

k
2 + � � �+ �kn denote

the kth moments of the zeroes, k = 0; 1; 2; : : : (take �0 = n). Provide details
for the following proof of Newton's identities

kan�k + an�k+1�1 + an�k+2�2 + � � �+ an�1�k�1 + �k = 0 (2.4.18)

for k = 1; 2; : : : ; n� 1 and

a0�k + a1�k+1 + � � �+ an�1�n+k�1 + �n+k = 0 (2.4.19)

for k = 0; 1; 2; : : :. First show that if jtj > R = maxfj�ij : i = 1; : : : ; ng,
then (t� �i)�1 = t�1 + �it�2 + �2i t�3 + � � � and hence

f(t) =
nX
i=1

(t� �i)�1 = nt�1 + �1t�2 + �2t�3 + � � � for jtj > R

Now show that p0(t) = p(t)f(t) and compare coef�cients. Newton's identities
show that the �rst n moments of the zeroes of a monic polynomial of degree
n uniquely determine its coef�cients. See Problem 18 in (3.3) for a matrix-
analytic approach to Newton's identities.

10. Show thatA;B 2Mn have the same characteristic polynomials, and hence
the same eigenvalues, if and only if trAk = trBk for all k = 1; 2; : : : ; n.
Deduce that A is nilpotent if and only if trAk = 0 for all k = 1; 2; : : : ; n.

11. Let A;B 2 Mn be given and consider their commutator C = AB � BA.
Show that (a) trC = 0. (b) Consider A =

h
0 0
1 0

i
and B =

h
0 1
0 0

i
and

show that a commutator need not be nilpotent; that is, a commutator can have
some nonzero eigenvalues, but their sum must be zero. (c) If rankC � 1,
show that C is nilpotent. Hint: Problem 2. (d) If rankC = 0, explain why A
and B are simultaneously unitarily triangularizable. (e) Suppose rankC = 1
and provide details for the following sketch of a proof that A and B are simul-
taneously triangularizable by similarity (Laffey's theorem): We may assume
that A is singular (replace A by A � �I if necessary). If the null space of A
is B-invariant, then it is a common nontrivial invariant subspace, so A and B
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are simultaneously similar to a block matrix of the form (1.3.17). If the null
space of A is not B-invariant, let x 6= 0 be such that Ax = 0 and ABx 6= 0.
Then Cx = ABx so there is a z 6= 0 such that C = ABxzT . For any y,
(zT y)ABx = Cy = ABy � BAy, BAy = AB(y � (zT y)x), and hence
rangeBA � rangeAB � rangeA, rangeA is B-invariant, and A and B are
simultaneously similar to a block matrix of the form (1.3.17). Now assume that
A =

h
A11 A12

0 A22

i
; B =

h
B11 B12

0 B22

i
; A11; B11 2 Mk; 1 � k < n, and

C =
h
A11B11 � B11A11 X

0 A22B22 � B22A22

i
has rank 1. At least one of the

diagonal blocks of C is zero, so we may invoke (2.3.3). If one diagonal block
has rank 1 and size greater than one, repeat the reduction. A 1-by-1 diagonal
block cannot have rank 1.

12. LetA;B 2Mn and letC = AB�BA. (a) IfC commutes withA, explain
why trCk = tr(Ck�1(AB � BA)) = tr(ACk�1B � Ck�1BA) = 0 for all
k = 2; : : : ; n. Deduce Jacobson's Lemma from Problem 10: C is nilpotent if it
commutes with eitherA orB. (b) If n = 2, show thatC commutes with bothA
and B if and only if A commutes with B. Hint: Explain why we may assume
that A and B are upper triangular and C is strictly upper triangular. (c) If A
is diagonalizable, show that A commutes with C if and only if A commutes
with B. Hint: If A = S�S�1, � = �1In1 � � � � � �dInd , and �i 6= �j if
i 6= j, let C = S�1CS and B = S�1BS. If � commutes with C then C is
block diagonal conformal to �. But C = �B � B� has zero diagonal blocks,
so C = 0. (d) A and B are said to quasi-commute if they both commute with
their commutator C. IfA andB quasi-commute and p(s; t) is any polynomial
in two noncommuting variables, show that p(A;B) commutes with C and use
(a) to show that p(A;B)C is nilpotent. (e) If A and B quasi-commute, use
McCoy's theorem (2.4.8.7) to show that A and B are simultaneously unitarily
triangularizable.

13. Provide details for the following alternative proof of Sylvester's theorem
(2.4.4.1) on the linear matrix equation AX�XB = C: SupposeA 2Mn and
B 2 Mm have no eigenvalues in common. Consider the linear transforma-
tions T1; T2 : Mn;m ! Mn;m de�ned by T1(X) = AX and T2(X) = XB.
Show that T1 and T2 commute, and deduce from (2.4.8.1) that the eigenvalues
of T � T1 � T2 are differences of eigenvalues of T1 and T2. Argue that �
is an eigenvalue of T1 if and only if there is a nonzero X 2 Mn;m such that
AX � �X = 0, which can happen if and only if � is an eigenvalue of A (and
every nonzero column ofX is a corresponding eigenvector). The spectra of T1
and A are therefore the same, and similarly for T2 and B. Thus, T is nonsin-
gular if A and B have no eigenvalues in common. If x is an eigenvector of A
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corresponding to the eigenvalue � and y is a left eigenvector of B correspond-
ing to the eigenvalue �, considerX = xy�, show that T (X) = (���)X , and
conclude that the spectrum of T consists of all possible differences of eigen-
values of A and B.

14. Let A 2 Mn and suppose rankA = r. Provide details to show that A is
unitarily similar to an upper triangular matrix whose �rst r rows are linearly
independent and whose last n � r rows are zero. Suppose A has k nonzero
eigenvalues. Begin by using (2.3.1) to writeA = UTU� in which U is unitary,
T =

h
B1 F
0 C1

i
is upper triangular, the diagonal entries of B1 2 Mk are

the nonzero eigenvalues of A, the diagonal entries of C1 2 Mn�k are zero,
C1 =

h
0 A2

0 0

i
, and A2 2Mn�k�1. If A2 = 0 or if A2 is nonsingular, stop.

If not, repeat the reduction.

15. Let A;B 2 Mn and consider the polynomial in two complex variables
de�ned by pA;B(s; t) = det(tB � sA). (a) Suppose that A and B are simul-
taneously triangularizable, with A = SAS�1, B = SBS�1, A and B upper
triangular, diagA = (�1; : : : ; �n), and diagB = (�1; : : : ; �n). Show that
pA;B(s; t) = det(tB � sA) =

Qn
i=1(t�i � s�i). (b) Now suppose that A and

B commute. Deduce that

pA;B(B;A) =
Qn
i=1(�iA� �iB) = S(

Qn
i=1(�iA� �iB))S

�1

Explain why the i; i entry of the upper triangular matrix �iA � �iB is zero.
(c) Use Lemma 2.4.1 to show that pA;B(B;A) = 0 if A and B commute. Ex-
plain why this identity is a two-variable generalization of the Cayley-Hamilton
theorem. Hint: What is pA;I(1; t) and why is pA;I(I;A) = 0? (d) Suppose
A;B 2 Mn commute. For n = 2, show that pA;B(B;A) = (detB)A2 �
(tr(A adjB))AB+(detA)B2. For n = 3, show that pA;B(B;A) = (detB)A3�
(tr(A adjB))A2B + (tr(B adjA))AB2 � (detA)B3. What are these iden-
tities for B = I? (e) Calculate det(tB � sA) for the matrices in Examples
2.4.8.3 and 2.4.8.4; discuss. (f) Why did we assume commutativity in (b) but
not in (a)?

16. Let � be an eigenvalue of A =
h
a b
c d

i
2 M2. (a) Explain why � =

a+ d� � is an eigenvalue of A; (b) Explain why (A� �I)(A� �I) = (A�
�I)(A� �I) = 0; (c) Deduce that any nonzero column of

h
a� � b
c d� �

i
is

an eigenvector of A associated with �, and any nonzero row is the conjugate
transpose of a left eigenvector associated with �; (d) Deduce that any nonzero
column of

h
�� d b
c �� a

i
is an eigenvector of A associated with � and any

nonzero row is the conjugate transpose of a left eigenvector associated with �.
See Problem 21 in (3.3) for a generalization.
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17. Let A;B 2Mn be given and let

S(A;B) = spanfI;A;B;A2; AB;BA;B2; A3; A2B; : : :g

denote the subalgebra ofMn generated by all powers and products ofA andB.
Then S(A;B) is a subspace ofMn, so dimS(A;B) � n2. Consider n = 2,
A =

h
0 1
0 0

i
, and B = AT ; show in this case that dimS(A;B) = n2. Use

the Cayley-Hamilton theorem to show that dimS(A; I) � n. Gerstenhaber's
theorem says that if A;B 2Mn commute, then dimS(A;B) � n.

18. Suppose that A =
h
A11 A12

0 A22

i
2 Mn; A11 2 Mk; 1 � k < n;A22 2

Mn�k. Show that A is nilpotent if and only if both A11 and A22 are nilpotent.

19. Suppose that A =
h
A11 A12

0 A22

i
2 Mn; B =

h
B11 B12

0 B22

i
2 Mn;

A11; B11 2 Mk; 1 � k < n;A22; B22 2 Mn�k. Show that A and B are si-
multaneously upper triangularizable if and only if both (a) A11 and B11 are si-
multaneously upper triangularizable, and (b) A22 and B22 are simultaneously
upper triangularizable. Hint: If A and B are simultaneously upper triangu-
larizable and p(s; t) is any polynomial in two noncommuting variables, then
p(A;B)(AB�BA) is nilpotent. (2.4.8.7). Explain why p(Aii; Bii)(AiiBii�
BiiAii) is nilpotent for i = 1; 2.

20. SupposeA;B 2Mn andAB = 0, soC = AB�BA = �BA. Let p(s; t)
be a polynomial in two noncommuting variables. (a) If p(0; 0) = 0, show that
Ap(A;B)B = 0 and hence (p(A;B)C)2 = 0. (b) Show that C2 = 0. (c) Use
(2.4.8.7) to show that A and B are simultaneously upper triangularizable. (d)
Are

h
�3 3
�4 4

i
and

h
2 �1
2 �1

i
simultaneously upper triangularizable?

21. LetA 2Mn have eigenvalues �1; : : : ; �n. The matrixK = [trAi+j�2]ni;j=1
is the moment matrix associated with A. We always take A0 = I , so trA0 =
n. Show that K = V TV , in which V 2 Mn is the Vandermonde matrix
(0.9.11.1) whose ith row is [�i�11 �i�12 : : : �i�1n ]T ; j = 1; : : : ; n. Explain
why detK = (detV )2 =

Q
i<j(�j � �i)2; this product is the discriminant

of A. Conclude that the eigenvalues of A are distinct if and only if its moment
matrix is nonsingular. Explain why K (and hence the discriminant of A) is
invariant under similarity of A.

22. Suppose thatA 2Mn has d distinct eigenvalues �1; : : : ; �d with respective
multiplicities �1 : : : ; �d. The matrix Km = [trAi+j�2]mi;j=1 is the moment
matrix of order m associated with A, m = 1; 2; : : :; if m � n, it is a lead-
ing principal submatrix of the moment matrix K in the preceding problem.
Let v(m)j = [1 �j �

2
j : : : �

m�1
j ]T ; j = 1; : : : ; n and form the m-by-d matrix
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Vm = [v
(m)
1 v

(m)
2 : : : v

(m)
d ]. Let D = diag(�1; : : : ; �d) 2 Md. Show that:

(a) Vm has row rankm ifm � d and has column rank d ifm � d. (b) Km =

VmDV
T
m . Hint: Km = [

Pd
k=1 �k�

i+j�2
k ]mi;j=1 =

Pd
k=1 �kv

(m)
k (v

(m)
k )T . (c)

If 1 � p < q,Kp is a leading principal submatrix ofKq. (d)Kd is nonsingular.
(e) rankKm = d ifm � d. Hint: rankVm = rankD = d) rankKm � d;
Kd nonsingular) rankKm � d. (f) d = maxfm � 1 : Km is nonsingularg
but Kp can be singular for some p < d. (g) Kn+1;Kn; : : : ;Kd+1 are all sin-
gular butKd is nonsingular. (h)Kn = K, the moment matrix in the preceding
problem. Thus, rankK is exactly the number of distinct eigenvalues of A.

23. Suppose that T = [tij ] 2Mn is upper triangular. Show that adjT = [� ij ]
is upper triangular and has main diagonal entries � ii =

Q
j 6=i tjj .

24. Let A 2 Mn have eigenvalues �1; : : : ; �n. Show that the eigenvalues of
adjA are

Q
j 6=i �j ; i = 1; : : : ; n.

25. LetA;B 2M2 and suppose �1; �2 are the eigenvalues ofA. (a) Show that
A is unitarily similar to

h
�1 x
0 �2

i
in which x � 0 and x2 = trAA��j�1j2�

j�2j2. (b) Show that A is unitarily similar to B if and only if trA = trB,
trA2 = trB2, and trAA� = trBB�. Hint: Problem 10.

26. Let B 2 Mn;k and C 2 Mk;m be given. Show that BCp(BC) =
Bp(CB)C for any polynomial p(t).

27. Let A 2Mn be given. (a) If A = BC and B;CT 2Mn;k, use (2.4.3.2) to
show that there is a polynomial q(t) of degree at most k+1 such that q(A) = 0.
Hint: Take p(t) = pCB(t) in the preceding problem.

28. Suppose A 2 Mn is singular and let r = rankA. Show that there is a
polynomial p(t) of degree at most r+ 1 such that p(A) = 0. Hint: (0.4.6(e)).

29. Let A 2 Mn and suppose x; y 2 Cn are nonzero vectors such that Ax =
�x and y�A = �y�. If � is a simple eigenvalue ofA, show thatA��I+�xy�
is nonsingular for all � 6= 0.

30. There is a systematic approach to the calculations illustrated in (2.4.3.3).
Let A 2 Mn be given and suppose that p(t) is a polynomial of degree greater
than n. Use the Euclidean algorithm (polynomial long division) to express
p(t) = h(t)pA(t) + r(t), in which the degree of r(t) is strictly less than n
(possibly zero). Explain why p(A) = r(A).

31. Use (2.4.3.2) to prove that if all the eigenvalues of A 2 Mn are zero, then
An = 0. Hint: What is pA(t) in this case?

Further Readings and Notes. See [RadRos] for a detailed exposition of si-
multaneous triangularization. Theorem (2.4.8.7) and its generalizations were
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proved by N. McCoy, On the Characteristic Roots of Matric Polynomials, Bull.
Amer. Math. Soc. 42 (1936) 592�600. Our proof for (2.4.8.7) is adapted from
M. P. Drazin, J. W. Dungey, and K. W. Gruenberg, Some Theorems on Com-
mutative Matrices, J. Lond. Math. Soc. 26 (1951) 221-228, which contains a
proof of (2.4.8.10) in the general casem � 2. The relationship between eigen-
values and linear combinations is discussed in T. Motzkin and O. Taussky,
Pairs of Matrices with Property L, Trans. Amer. Math. Soc. 73 (1952) 108�
114. A pair A;B 2Mn such that �(aA+ bB) = fa�j+ b�ij : j = 1; : : : ; ng
for all a; b 2 C is said to have property L; the condition (2.4.8.7(c)) is called
property P. Property P implies property L, but not conversely. Property L is
not fully understood, although it is known that a pair of normal matrices with
property L must commute and must therefore be simultaneously unitarily di-
agonalizable.

2.5 Normal matrices
The class of normal matrices, which arises naturally in the context of uni-
tary similarity, is important throughout matrix analysis; it includes the unitary,
Hermitian, skew-Hermitian, real orthogonal, real symmetric, and real skew-
symmetric matrices.

2.5.1 De�nition. A matrix A 2 Mn is normal if A�A = AA�, that is, if A
commutes with its conjugate transpose.

Exercise. If A 2Mn is normal and � 2 C, show that �A is normal. The class
of normal matrices of a given size is closed under multiplication by complex
scalars.

Exercise. If A 2Mn is normal, and if B is unitarily similar to A, show that B
is normal. The class of normal matrices of a given size is closed under unitary
similarity.

Exercise. If A 2Mn and B 2Mm are normal, show that A�B 2Mn+m is
normal. The class of normal matrices is closed under direct sums.

Exercise. If A 2 Mn and B 2 Mm, and if A � B 2 Mn+m is normal, show
that A and B are normal.

Exercise. Show that
h

a b
�b a

i
is normal for all a; b 2 C.

Exercise. Show that every unitary matrix is normal.

Exercise. Show that every Hermitian or skew-Hermitian matrix is normal.
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Exercise. Verify that A =
h

1 ei�=4

�ei�=4 1

i
is normal, but no scalar multiple

of A is unitary, Hermitian, or skew-Hermitian.

Exercise. Explain why every diagonal matrix is normal. If a diagonal matrix
is Hermitian, why must it be real?

Exercise. Show that each of the classes of unitary, Hermitian, and skew-Hermitian
matrices is closed under unitary similarity. If A is unitary and j�j = 1, show
that �A is unitary. If A is Hermitian and � is real, show that �A is Hermitian.
If A is skew-Hermitian and � is real, show that �A is skew-Hermitian.

Exercise. Show that a Hermitian matrix must have real main diagonal entries
and a skew-Hermitian matrix must have pure imaginary main diagonal entries.
What are the main diagonal entries of a real skew-symmetric matrix?

Exercise. Review the proof of (1.3.7) and conclude that A 2 Mn is unitarily
diagonalizable if and only if there is a set of n orthonormal vectors inCn, each
of which is an eigenvector of A.

There is something special about certain zero blocks in a normal matrix.

2.5.2 Lemma. Suppose A 2Mn is partitioned as

A =

�
A11 A12
0 A22

�
in whichA11 andA22 are square. ThenA is normal if and only ifA11 andA22
are normal, and A12 = 0. A block upper triangular matrix is normal if and
only if each of its off-diagonal blocks is zero and each of its diagonal blocks
is normal; in particular, an upper triangular matrix is normal if and only if it is
diagonal.

Proof: If A11 and A22 are normal and A12 = 0, then A = A11 � A22 is a
direct sum of normal matrices, so it is normal. Conversely, ifA is normal, then

AA� =

�
A11A

�
11 +A12A

�
12 F

F F

�
=

�
A�11A11 F
F F

�
= A�A

so A�11A11 = A11A�11 +A12A�12, which implies that

trA�11A11 = tr(A11A
�
11 +A12A

�
12)

= tr(A11A
�
11) + tr(A12A

�
12) = tr(A

�
11A11) + tr(A12A

�
12)

and hence tr(A12A�12) = 0. Since tr(A12A�12) is the sum of squares of the
absolute values of the entries of A12 (0.2.5.1), it follows that A12 = 0. Then
A = A11 �A22 is normal, so A11 and A22 are normal.
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Suppose B = [Bij ]
k
i;j=1 2 Mn is normal and block upper triangular, that

is, Bii 2Mni for i = 1; : : : ; k and Bij = 0 if i > j). Partition it as

B =

�
B11 X

0 ~B

�
in which X = [B12 : : : B1k] and ~B = [Bij ]

k
i;j=2 is block upper triangular.

Then X = 0 and ~B is normal, so a �nite induction permits us to conclude
that B is block diagonal. For the converse, we have observed in a preceding
exercise that a direct sum of normal matrices is normal.

Exercise. Let A 2Mn be normal and let � 2 f1; : : : ; ng be a given index set.
If A[�; �c] = 0, show that A[�c; �] = 0.

We next catalog the most fundamental facts about normal matrices. The
equivalence of (a) and (b) in the following theorem is often called the spectral
theorem for normal matrices.

2.5.3 Theorem. Let A = [aij ] 2 Mn have eigenvalues �1; : : : ; �n. The fol-
lowing statements are equivalent:

(a) A is normal;
(b) A is unitarily diagonalizable;
(c)

Pn
i;j=1 jaij j2 =

Pn
i=1 j�ij2; and

(d) There is an orthonormal set of n eigenvectors of A.

Proof: Use (2.3.1) to write A = UTU�, in which U = [u1 : : : un] is unitary
and T = [tij ] 2Mn is upper triangular.
If A is normal, then so is T (as is every matrix that is unitarily similar to

A). The preceding lemma ensures that T is actually a diagonal matrix, so A is
unitarily diagonalizable.
If there is a unitary V such that A = V �V � and � = diag(�1; : : : ; �n),

then trA�A = tr��� by (2.2.2), which is the assertion in (c).
The diagonal entries of T are �1; : : : ; �n in some order, and hence trA�A =

trT �T =
Pn
i=1 j�ij2 +

P
i<j jtij j2. Thus, (c) implies that

Pn
i<j jtij j2 = 0,

so T is diagonal. The factorization A = UTU� is equivalent to the identity
AU = UT , which says that Aui = tiiui for each i = 1; : : : ; n. Thus, each
column of U (an orthonormal set) is an eigenvector of A.
Finally, an orthonormal set is linearly independent, so (d) ensures that A is

diagonalizable and that a diagonalizing similarity can be chosen with ortho-
normal columns (1.3.7). This means that A is unitarily similar to a diagonal
(and hence normal) matrix, so A is normal.
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A representation of a normal matrix A 2Mn as A = U�U�, in which U is
unitary and � is diagonal, is called a spectral decomposition of A.

Exercise. Explain why a normal matrix is nondefective, that is, the geometric
multiplicity of every eigenvalue is the same as its algebraic multiplicity.

Exercise. If A 2 Mn is normal, show that x 2 Cn is a right eigenvector of A
corresponding to the eigenvalue � of A if and only if x is a left eigenvector of
A corresponding to �; that is, Ax = �x is equivalent to x�A = �x� if A is
normal. Hint: Normalize x and write A = U�U� with x as the �rst column of
U. Then what is A�? A�x? See Problem 20 for another proof.

Exercise. If A 2 Mn is normal, and if x and y are eigenvectors of A corre-
sponding to distinct eigenvalues, use the preceding exercise and the principle
of biorthogonality to show that x and y are orthogonal.

Once the distinct eigenvalues �1; : : : ; �d of a normal matrix A 2 Mn are
known, it can be unitarily diagonalized via the following conceptual prescrip-
tion: For each eigenspace fx 2 Cn : Ax = �xg, determine a basis and
orthonormalize it (use the Gram�Schmidt procedure, for example) to obtain
an orthonormal basis. The eigenspaces are mutually orthogonal and the di-
mension of each eigenspace is equal to the multiplicity of the corresponding
eigenvalue (normality of A is the reason for both), so the union of these bases
is an orthonormal basis forCn. Arraying these basis vectors as the columns of
a matrix U produces a unitary matrix such that U�AU is diagonal.
However, an eigenspace always has more than one orthonormal basis (Why?),

so the diagonalizing unitary matrix constructed in the preceding conceptual
prescription is never unique. If X;Y 2 Mn;k have orthonormal columns
(X�X = Ik = Y �Y ), and if rangeX = rangeY , then each column of
X is a linear combination of the columns of Y , that is, X = Y G for some
G 2 Mk. Then Ik = X�X = (Y G)�(Y G) = G�(Y �Y )G = G�G, so G
must be unitary. This observation gives a geometric interpretation for the �rst
part of the following uniqueness theorem.

2.5.4 Theorem. LetA 2Mn be normal and have distinct eigenvalues �1; : : : ; �d,
with respective multiplicities n1; : : : ; nd. Let � = �1In1 � � � � � �dInd , and
suppose that U 2 Mn is unitary and A = U�U�. (a) A = V �V � for some
unitary V 2 Mn if and only if there are unitary matrices W1; : : : ;Wd with
eachWi 2Mni such that U = V (W1 � � � � �Wd). (b) Two normal matrices
are unitarily similar if and only if they have the same eigenvalues.
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Proof: (a) IfU�U� = V �V �, then�U�V = U�V �, soW = U�V is unitary
and commutes with �; (2.4.4.2) ensures thatW is block diagonal conformal to
�. Conversely, if U = VW andW = W1 � � � � �Wd with eachWi 2 Mni ,
then W commutes with � and U�U� = VW�W �V � = V �WW �V � =

V �V �. (b) If B = V �V � for some unitary V , then (UV �)B(UV �)� =
(UV �)V �V �(UV �)� = U�U� = A. Conversely, if B is similar to A, then
they have the same eigenvalues; if B is unitarily similar to a normal matrix,
then it is normal.

We next note that commuting normal matrices may be simultaneously uni-
tarily diagonalized.

2.5.5 Theorem. Let N � Mn be a nonempty family of normal matrices.
Then N is a commuting family if and only if it is a simultaneously unitar-
ily diagonalizable family. For any given A0 2 N and for any given ordering
�1; : : : ; �n of the eigenvalues of A0, there is a unitary U 2 Mn such that
U�A0U = diag(�1; : : : ; �n) and U�BU is diagonal for every B 2 N .

Exercise. Use (2.3.3) and the fact that a triangular normal matrix must be di-
agonal to prove (2.5.5). The �nal assertion about A0 follows as in the proof of
(1.3.21), since every permutation matrix is unitary.

Application of (2.5.3) to the special case of Hermitian matrices yields a
fundamental result called the spectral theorem for Hermitian matrices.

2.5.6 Theorem. If A 2 Mn is Hermitian, then (a) the eigenvalues �1; : : : ; �n
of A are real; (b) A is unitarily diagonalizable; and (c) there is a unitary U 2
Mn such that A = U�U�, in which � = diag(�1; : : : ; �n). If A 2Mn(R) is
symmetric, thenA has real eigenvalues and is real orthogonally diagonalizable.

Proof: A diagonal Hermitian matrix must have real diagonal entries, so (a)
follows from (b) and the fact that the set of Hermitian matrices is closed under
unitary similarity. Statement (b) follows from (2.5.3) because Hermitian matri-
ces are normal. Statement (c) restates (b) and incorporates the information that
the diagonal entries of � are necessarily the eigenvalues of A. If A 2Mn(R)

is symmetric, then it is Hermitian, but since it is real, has real eigenvalues, and
is nondefective, all calculations necessary to diagonalize A (determine each
eigenspace and �nd an orthonormal basis of it) can take place over the real
�eld.

Exercise. Modify the proof of Theorem 2.5.4 to show that ifA is real symmet-
ric and U; V are real orthogonal, then the matricesW1; : : : ;Wd may be taken
to be real orthogonal.
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In contrast to the discussion of diagonalizability in Chapter 1, there is no
reason to assume distinctness of eigenvalues in (2.5.4) and (2.5.6), and diago-
nalizability need not be assumed in (2.5.5). A full linearly independent set of
eigenvectors (in fact, an orthonormal set) is structurally guaranteed by normal-
ity. This is one reason why Hermitian and normal matrices are so important
and have such pleasant properties.
We conclude with a discussion of real normal matrices. Such matrices can

be diagonalized by a complex unitary similarity, but what special form can they
can be put into by a real orthogonal similarity? Since a real normal matrix can
have non-real eigenvalues, it might not be possible to diagonalize it with a real
similarity. On the other hand, any real matrix can be put into a special block
upper triangular form by a real orthogonal similarity (2.3.4), and this suggests
what to do if the matrix is also normal. Our proof uses (2.3.4) in the same way
that (2.3.1) was used in the proof of (2.5.4).

Exercise. Let x 2 Cn be given and write x = u + iv, in which u; v 2 Rn.
Show that x is orthogonal to �x if and only if u is orthogonal to v and kuk2 =
kvk2.

2.5.7 Theorem. Suppose that A 2 Mn(R) has p complex conjugate pairs of
non-real eigenvalues

�1 = a1 + ib1; �1 = a1 � ib1; : : : ; �p = ap + ibp; �p = ap � ibp (2.5.8)

in which all aj ; bj 2 R and all bj > 0, and, if 2p < n, an additional n � 2p
real eigenvalues �1; : : : ; �n�2p. If A is normal, then there is a real orthogonal
Q 2Mn(R) such that

QTAQ =

264 A1 0
. . .

0 An�p

375 (2.5.9)

is real and block diagonal, and each diagonal block is either 1-by-1 or 2-by-
2. There are n � 2p real blocks of the form [�j ], one for each of the real
eigenvalues �1; : : : ; �n�2p. There are p real blocks of the form�

aj bj
�bj aj

�
, aj ; bj 2 R; bj > 0 (2.5.10)

one for each complex conjugate pair of non-real eigenvalues �j ; �j = aj�ibj .
The p 2-by-2 blocks and the n � 2p 1-by-1 blocks may appear in the block
diagonal of (2.5.9) in any prescribed order. Any matrix of the form (2.5.9) is
normal. Two real normal matrices are real orthogonally similar if and only if
they have the same eigenvalues.
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Proof: Follow the proof of (2.3.4). Every de�ation involving a real eigenvalue
is achieved with a real orthogonal similarity. For a conjugate pair of non-real
eigenvalues �j ; ��j = aj � ibj with associated eigenvectors xj and �xj , the
de�ation is achieved with a real orthogonal similarity that yields a block of
the form (2.5.10) provided that xj and �xj are orthogonal and normalized so
that kxjk22 = kujk22 + kvjk

2
2 = 2 (uj and vj are then real orthogonal unit

vectors, per the preceding exercise). Since A is normal, a previous exercise
ensures that xj and �xj are indeed orthogonal, and there is no loss of generality
to assume that kxjk22 = 2. Invoking (2.5.2), we use normality of A once again
to conclude that every off-diagonal block in (2.3.5) is zero. For the converse,
a computation reveals that any matrix of the form (2.5.10) is normal and has
eigenvalues aj � ibj . The �nal assertion follows from our construction: the
diagonal blocks in (2.5.9) are completely determined by the eigenvalues of the
real normal matrix A.

As a consequence of this theorem for real normal matrices, we can deduce
real canonical forms for real matrices that are symmetric, skew-symmetric, or
real orthogonal.

2.5.11 Corollary. Let A 2Mn(R). Then

(a) A = AT if and only if there is a real orthogonalQ 2Mn(R) such that

QTAQ =

264 �1 0
. . .

0 �n

375 , all �i 2 R (2.5.12)

The parameters �1; : : : ; �n are the eigenvalues of A. Two real sym-
metric matrices are real orthogonally similar if and only if they have
the same eigenvalues.

(b) A = �AT if and only if there is a real orthogonal Q 2 Mn(R) such
that

QTAQ =

�
0n�2p 0

0 ~A

�
(2.5.13)

in which

~A =

�
0 b1
�b1 0

�
� � � � �

�
0 bp
�bp 0

�
and all bj 2 R are nonzero. The nonzero eigenvalues ofA are�ib1; : : : ;�ibp.
Two real skew-symmetric matrices are real orthogonally similar if and
only if they have the same eigenvalues.
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(c) AAT = I if and only if there is a real orthogonal Q 2 Mn(R) such
that

QTAQ =

�
�n�2p 0

0 ~A

�
(2.5.14)

in which �n�2p = diag(�1; : : : ;�1) 2Mn�2p(R) and

~A =

�
cos �1 sin �1
� sin �1 cos �1

�
�� � ��

�
cos �p sin �p
� sin �p cos �p

�
, 0 < �j < �

The eigenvalues of A are the diagonal entries of �n�2p together with
e�i�1 ; : : : ; e�i�p . Two real orthogonal matrices are real orthogonally
similar if and only if they have the same eigenvalues.

Proof: In each case, the hypothesis guarantees that A is real and normal, so
it can be written in the form (2.5.9). If A = AT , then there can be no 2-by-2
diagonal blocks. If A = �AT , then every 1-by-1 diagonal block is zero and
every 2-by-2 diagonal block has a zero main diagonal. If AAT = I , then each
1-by-1 block must be [�1] and each 2-by-2 block has determinant �1, so each
a2j + b

2
j = 1 and so we may write each aj = cos �j ; jbj j = sin �j , that is,

aj � ibj = e�i�j .

If one has a family of commuting real normal matrices, they might not be
simultaneously real orthogonally diagonalizable, but they can all be brought
simultaneously into the block diagonal form (2.5.9).

Exercise. Let A1 =
h

a1 b1
�b1 a1

i
and A2 =

h
a2 b2
�b2 a2

i
. Show that A1

commutes with A2 for all a1; a2; b1;b2 2 C.

Exercise. Let A =
h

a b
�b a

i
and � =

h
�1 0
0 �2

i
in which a; b; �1; �2 2 C

and b 6= 0. Show that A commutes with � if and only if �1 = �2.

2.5.15 Theorem. Let N � Mn(R) be a commuting family of real normal
matrices. Suppose that the non-real eigenvalues of a given A0 2 N are
�1; �1; : : : ; �p; �p, in which �j = aj+ ibj with all aj ; bj 2 R and bj > 0. Let
�1; : : : ; �n�2p be the real eigenvalues of A0. Then:
(a) There is a single real orthogonal matrix Q such that QTAQ has the block
diagonal form (2.5.9) for each A 2 N and

QTA0Q = diag(�1; : : : ; �n�2p)�
h

a1 b1
�b1 a1

i
� � � � �

h
ap bp
�bp ap

i
(b) Let Q be as in (a) and consider a given index set  = fj; j + 1g with
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1 � j < n� 2p, for which (QTA0Q)[] =
h
�j 0
0 �j+1

i
. If �j 6= �j+1, then

(QTAQ)[] is a diagonal matrix for every A 2 N .
(c) LetQ be as in (a) and consider a given index set  = fn�2p+2j�1; n�
2p + 2jg with 1 � j � p. Then for each A 2 N , (QTAQ)[] =

h
a b
�b a

i
for some a; b 2 R (b = 0 is possible).

Proof: Use (2.3.6) to reduce every member of N to the form (2.3.5) via one
real orthogonal similarity Q. The argument in the proof of (2.5.7) shows that
they have the form (2.5.9). If necessary, a �nal simultaneous permutation sim-
ilarity achieves the desired presentation of QTA0Q and preserves the block
diagonal structure of QTNQ. The assertions in (b) and (c) about the common
block form of all the matrices in QTNQ follow from commutativity and the
two preceding exercises.

A matrix identity of the form AX = XB is known as an intertwining re-
lation. A familiar intertwining relation is the commutativity equation AB =

BA; other examples are AB = BAT , AB = B �A, and AB = BA�. In (2.4.4)
we made use of the important fact that if AX = XB and A;B 2 Mn, then
p(A)X = Xp(B) for any polynomial p(t).
A fundamental principle worth keeping in mind is that if AX = XB and if

there is something special about the structure of A and B, then there is likely
to be something special about the structure ofX . One may be able to discover
what that special structure is by replacing A and B by canonical forms and
studying the resulting intertwining relation involving the canonical forms and
a transformed X .
If A and B are normal (either complex or real) and satisfy an intertwining

relation, the Fuglede-Putnam theorem says that A� and B� satisfy the same
intertwining relation. The key to understanding this result is the scalar case: if
a; b 2 C, then ab = 0 if and only if a�b = 0.

2.5.16 Theorem (Fuglede-Putnam). Let A 2 Mn and B 2 Mm be normal
and let X 2Mn;m be given. Then AX = XB if and only if A�X = XB�.

Proof: Let A = U�U� and B = VMV � be spectral decompositions in
which � = diag(�1; : : : ; �n) and M = diag(�1; : : : ; �m). Let U�XV =

[�ij ]. Then AX = XB () U�U�X = XVMV � () �(U�XV ) =

(U�XV )M () �i�ij = �ij�j for all i; j () �ij(�i � �j) = 0 for
all i; j () �ij(�i � �j) = 0 for all i; j () �i�ij = �ij�j for all
i; j () ��(U�XV ) = (U�XV ) �M () U ��U�X = XV �MV � ()
A�X = XB�.
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The preceding two theorems lead to a useful representation for normal ma-
trices that commute with their transpose or, equivalently, with their complex
conjugate.

Exercise. If A 2Mn, explain why �AA = A �A if and only if A �A is real.

Exercise. Let A =
h

a b
�b a

i
2 M2 be given. Explain why: (a) A is non-

singular if and only if A = c
h

� �
�� �

i
; c 6= 0, and �2 + �2 = 1. (b) A is

singular and nonzero if and only A is a nonzero scalar multiple of
h

1 i
�i 1

i
or its complex conjugate.

2.5.17 Theorem. Let A 2Mn be normal. The following three statements are
equivalent:
(a) �AA = A �A;
(b) ATA = AAT ; and
(c) There is a real orthogonal Q such that QTAQ is a direct sum of blocks,
each of which is either a zero block or a nonzero scalar multiple of

[1];

�
0 1

�1 0

�
;

�
a b

�b a

�
;

�
1 i

�i 1

�
; or

�
1 �i
i 1

�
; a; b 2 C;

(2.5.18)
in which a 6= 0 6= b and a2 + b2 = 1.
Conversely, if A is real orthogonally similar to a direct sum of complex scalar
multiples of blocks of the form (2.5.18), then A is normal and A �A = �AA.

Proof: Equivalence of (a) and (b) follows from the preceding theorem: �AA =
A �A if and only if ATA = ( �A)�A = A( �A)� = AAT .
Suppose that �AA = A �A and write A = B + iC, in which B;C 2 Mn(R).

Then B = (A + �A)=2 and C = (A � �A)=2i are real, normal, and commute
because the normal matricesA and �A commute. Suppose thatB has � complex
conjugate pairs of non-real nonzero eigenvalues and that C has  complex
conjugate pairs of non-real nonzero eigenvalues. If � < , (2.5.15) ensures
that there is a real orthogonal Q such that

QTBQ = �B �B1 � � � � �B� � B̂1 � � � � � B̂��
QTCQ = �C � C1 � � � � � C� � C�+1 � � � � � C

in which �B ;�C 2 Mn�2 are real diagonal, each of the 2-by-2 real blocks
B1; : : : ; B� ; C1; : : : ; C has the form (2.5.10), and B̂j = �jI2 for some real
�j for each j = 1; : : : ; ��. ThenQTAQ = QT (B+ iC)Q is the direct sum
of the complex diagonal matrix �B + i�C and blocks of the form

h
a b
�b a

i
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for some complex a; b (a = 0 and/or b = 0 are possible). A similar argument
reaches the same conclusion if � =  or � > . Any nonzero 1-by-1 direct
summand of QTAQ is a nonzero scalar multiple of the �rst block in (2.5.18);
any 2-by-2 direct summand of QTAQ in which a = 0 and b 6= 0 is a nonzero
scalar multiple of the second block; any nonsingular 2-by-2 direct summand
of QTAQ in which a 6= 0 6= b is a nonzero scalar multiple of the third block;
and any singular nonzero 2-by-2 direct summand ofQTAQ is a nonzero scalar
multiple of the fourth block or its complex conjugate.

Two special cases of the preceding theorem play an important role in the
next section: unitary matrices that are either symmetric or skew-symmetric.

Exercise. Show that: the �rst two blocks in (2.5.18) are unitary; the third block
is complex orthogonal but not unitary; the fourth and �fths blocks are neither
unitary nor complex orthogonal.

2.5.18 Corollary. Let U 2 Mn be unitary. If U = UT , then there are real
scalars �1; : : : ; �n 2 R and a real orthogonal Q 2Mn(R) such that

U = Q

264 ei�1 0
. . .

0 ei�n

375QT (2.5.19.1)

If U = �UT , then n is even and there are real scalars �1; : : : ; �n=2 2 R and a
real orthogonal Q 2Mn(R) such that

U = Q

�
ei�1

�
0 1

�1 0

�
� � � � � ei�n=2

�
0 1

�1 0

��
QT (2.5.19.2)

Conversely, any matrix of the form (2.5.19.1) is unitary and symmetric; any
matrix of the form (2.5.19.2) is unitary and skew symmetric.

Proof: Suppose that U is symmetric. In the representation described in the
preceding theorem, only symmetric unitary blocks can appear, so QTUQ is a
direct sum of blocks of the form c[1], in which jcj = 1.
Now suppose that U is skew symmetric. In the representation described in

the preceding theorem, only unitary skew-symmetric blocks can appear, so the
only blocks that can occur are of the form c

h
0 1
�1 0

i
in which jcj = 1. In

particular, n must be even.

Problems

1. Show that A 2 Mn is normal if and only if (Ax)�(Ax) = (A�x)�(A�x)

for all x 2 Cn, that is, kAxk2 = kA�xk2 for all x 2 Cn.
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2. Show that a normal matrix is unitary if and only if all its eigenvalues have
absolute value 1.

3. Show that a normal matrix is Hermitian if and only if all its eigenvalues are
real.

4. Show that a normal matrix is skew-Hermitian if and only if all its eigenval-
ues are pure imaginary (have real part equal to 0).

5. If A 2 Mn is skew Hermitian (respectively Hermitian), show that iA is
Hermitian (respectively skew Hermitian).

6. Show that A 2 Mn is normal if and only if it commutes with some normal
matrix with distinct eigenvalues.

7. Consider matrices A 2 Mn of the form A = B�1B� for a nonsingular
B 2 Mn, as in (2.1.9). (a) Show that A is unitary if and only if B is normal.
(b) If B has the form B = HNH , in which N is normal and H is Hermitian
(and both are nonsingular), show that A is similar to a unitary matrix.

8. Write A 2 Mn as A = H(A) + iK(A) in which H(A) and K(A) are
Hermitian. Show that A is normal if and only if H(A) andK(A) commute.

9. Write A 2 Mn as A = H(A) + iK(A) in which H(A) and K(A) are
Hermitian. (0.2.5) If every eigenvector of H(A) is an eigenvector of K(A),
show that A is normal. What about the converse? Consider A =

h
1 i
�i 1

i
.

10. Suppose A;B 2 Mn are both normal. If A and B commute, show that
AB and A � B are all normal. What about the converse? Verify that A =h
1 �1
1 1

i
, B =

h
�1 1
1 1

i
, AB, and BA are all normal, but A and B do not

commute.

11. For any complex number z 2 C, show that there are �; � 2 R such that
�z = ei�z and jzj = ei�z. Notice that [ei�] 2 M1 is a unitary matrix. What do
diagonal unitary matrices U 2Mn look like?

12. Generalize Problem 11 to show that if � = diag(�1; : : : ; �n) 2 Mn, then
there are diagonal unitary matrices U and V such that �� = U� = �U and
j�j = diag(j�1j; : : : ; j�nj) = V � = �V .

13. Use Problem 12 to show that A 2 Mn is normal if and only if there is a
unitary V 2Mn such that A� = AV .

14. LetA 2Mn(R) be given. Explain whyA is normal and all its eigenvalues
are real if and only if A is symmetric.
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15. Show that two normal matrices are similar if and only if they have the
same characteristic polynomial. Is this true if we omit the assumption that
both matrices are normal? Consider

h
0 0
0 0

i
and

h
0 1
0 0

i
.

16. If U; V;� 2 Mn and U; V are unitary, show that U�U� and V �V � are
unitarily similar. Deduce that two normal matrices are similar if and only if
they are unitarily similar. Give an example of two diagonalizable matrices that
are similar but not unitarily similar.

17. If A 2 Mn is normal and p(t) is a given polynomial, use (2.5.1) to show
that p(A) is normal. Give another proof of this fact using (2.5.4).

18. If A 2Mn and there is nonzero polynomial p(t) such that p(A) is normal,
does it follow that A is normal? Hint: Consider A =

h
0 1
2 0

i
and A2.

19. Let A 2 Mn and a 2 C be given. Show that A is normal if and only if
A+ aI is normal.

20. Let A 2 Mn be normal and suppose x 2 Cn is a right eigenvector of
A corresponding to the eigenvalue �. Use Problems 1 and 19 to show that
x is a left eigenvector of A corresponding to the same eigenvalue �. Hint:
k(A� �I)xk2 = k(A� �I)�xk2.

21. Suppose A 2 Mn is normal. Use the preceding problem to show that
Ax = 0 if and only if A�x = 0, that is, the null space of A is the same as
that of A�. Consider B =

h
0 1
0 1

i
to show that the null space of a non-

normal matrix B need not be the same as the null space B�, even if B is
diagonalizable.

22. Use (2.5.6) to show that the characteristic polynomial of a complex Her-
mitian matrix has real coef�cients.

23. Show that
h
1 i
i 1

i
and

h
i i
i �1

i
are both symmetric, but one is normal

and the other is not. This is an important difference between real symmetric
matrices and complex symmetric matrices.

24. If A 2Mn is both normal and nilpotent, show that A = 0.

25. Suppose A 2 Mn and B 2 Mm are normal and let X 2 Mn;m be
given. Explain why �B is normal and deduce that AX = X �B if and only if
A�X = XBT . Hint: (2.5.16)

26. Let A 2 Mn be given. (a) If there is a polynomial p(t) such that A� =
p(A), show that A 2 Mn is normal. (b) If A is normal, show that there is
a polynomial p(t) of degree at most n � 1 such that A� = p(A). (c) If A
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is real and normal, show that there is a polynomial p(t) with real coef�cients
and degree at most n� 1 such that AT = p(A). (d) If A is normal, show that
there is a polynomial p(t) with real coef�cients and degree at most 2n�1 such
that A� = p(A). (e) If A is normal and B 2 Mm is normal, show that there
is a polynomial p(t) of degree at most n +m � 1 such that A� = p(A) and
B� = p(B). (f) If A is normal and B 2 Mm is normal, show that there is a
polynomial p(t) with real coef�cients and degree at most 2n + 2m � 1 such
that A� = p(A) and B� = p(B). (g) Use (e) to prove (2.5.16). (h) Use (f)
to prove the assertion in Problem 25. Hint: These are all classical polynomial
interpolation problems. Look carefully at (0.9.11.4).

27. Let A;B 2 Mn;m be given. (a) If AB� and B�A are both normal, show
that BA�A = AA�B. Hint: (2.5.16). (AB�)A = A(B�A). (b) Suppose
that n = m. Prove that A �A is normal (such a matrix is called congruence
normal) if and only if AA�AT = ATA�A. Hint: AA�AT = A(A �A)T and
ATA�A = (A �A)�A.

28. Let Hermitian matrices A;B 2 Mn be given and assume that AB is
normal. (a) Why is BA normal? (b) Show that A commutes with B2 and
B commutes with A2. Hint: (AB)A = A(BA). (2.5.16). (c) If there is a
polynomial p(t) such that either A = p(A2) or B = p(B2), show that A com-
mutes with B and AB is actually Hermitian. (d) Explain why the condition
in (c) is met if either A or B has the property that whenever � is a nonzero
eigenvalue, then �� is not also an eigenvalue. For example, if either A or B
has all nonnegative eigenvalues, this condition is met. (d) Discuss the example
A =

h
0 1
1 0

i
; B =

h
0 i
�i 0

i
.

29. Let A =
h
a b
c d

i
2 M2 and assume that bc 6= 0. (a) Show that A is

normal if and only if there is some � 2 R such that c = ei�b and a � d =
ei�b(�a � �d)=�b. In particular, if A is normal it is necessary that jcj = jbj. (b)
If A is real, deduce from part (a) that it is normal if and only if either c = b

(A = AT ) or c = �b and a = d (AAT = (a2+ b2)I and A = �AT if a = 0).

30. Show that a given A 2 Mn is normal if and only if (Ax)�(Ay) =
(A�x)�(A�y) for all x; y 2 Cn, that is, for all x and y, the angle between
Ax and Ay is the same as the angle between A�x and A�y. Compare with
Problem 1. What does this condition say if we take x = ei and y = ej (the
standard Euclidean basis vectors)? If (Aei)�(Aej) = (A�ei)

�(A�ej) for all
i; j = 1; : : : ; n, show that A is normal.

31. Let A 2 Mn(R) be a real normal matrix, that is, AAT = ATA. If AAT

has n distinct eigenvalues, show that A is symmetric. Hint: Use (2.5.7).
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32. IfA 2M3(R) is real orthogonal, observe thatA has either one or three real
eigenvalues. If it has a positive determinant, use (2.5.11) to show that it is or-
thogonally similar to the direct sum of [1] 2M1 and a plane rotation. Discuss
the geometrical interpretation of this as a rotation by an angle � around some
�xed axis passing through the origin in R3. This is part of Euler's theorem in
mechanics: Every motion of a rigid body is the composition of a translation
and a rotation about some axis.

33. If F � Mn is a commuting family of normal matrices, show that there
exists a single Hermitian matrix B such that for each A� 2 F there is a
polynomial p�(t) of degree at most n � 1 such that A� = p�(B). Notice
that B is �xed for all of F but the polynomial may depend on the element of
F . Hint: Let U 2 Mn be a unitary matrix that simultaneously diagonalizes
every member of F , let B = Udiag(1; 2; : : : ; n)U�, let A� = U��U

� with
�� = diag(�

(�)
1 ; : : : ; �(�)n ), and take p�(t) to be the Lagrange interpolation

polynomial such that p�(k) = �
(�)
k ; k = 1; 2; : : : ; n.

34. LetA 2Mn. We say that x is a normal eigenvector ofA if it is both a right
and left eigenvector ofA (necessarily associated with the same eigenvalue). (a)
If x is a normal eigenvector of A associated with an eigenvalue �, show that
A is unitarily similar to [�] � A1, in which A1 2 Mn�1 is upper triangular.
(b) Show that A is normal if and only if every eigenvector of A is a normal
eigenvector. Hint: Let U1 2 Mn be a unitary matrix whose �rst column is an
eigenvector of A and of A�. Inspect the �rst row of U�1AU1 in the proof of
(2.3.1) and continue.

35. Let x; y 2 Cn be given. Show that xx� = yy� if and only if there
is some real � such that x = ei�y. Hint: If xx� = yy� and xk 6= 0 then
xj = (yk=xk)yj for all j = 1; : : : ; n.

36. For any A 2 Mn, show that
h

A A�

A� A

i
2 M2n is normal. Thus, any

square matrix can be a principal submatrix of a normal matrix. Can any square
matrix be a principal submatrix of a Hermitian matrix? of a unitary matrix?

37. Let n � 2 and suppose A =
h
a x�

y B

i
2 Mn is normal with B 2

Mn�1 and x; y 2 Cn�1. (a) Show that kxk2 = kyk2 and xx� � yy� =
BB� � B�B. (b) Explain why rank(FF � � F �F ) 6= 1 for every square
complex matrix F . Hint: Problem 14 in (1.3). (c) Explain why there are two
mutually exclusive possibilities: Either (i) the principal submatrix B is normal
or (ii) rank(BB� � B�B) = 2. (d) Explain why B is normal if and only
if x = ei�y for some real �. Hint: Problem 35. (e) Discuss the example
B =

h
0 1
0 0

i
; x = [�

p
2 1]T ; y = [1 �

p
2]T ; a = 1�

p
2.
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38. Let A 2 Mn and let C = AA� � A�A. Explain why C is Hermitian.
Conclude that C is nilpotent if and only if C = 0. Use Problem 12 in (2.4) to
prove that A is normal if and only if it commutes with C.

39. Suppose that U 2 Mn is unitary, so all its eigenvalues have modulus
one. (a) If U is symmetric, show that its eigenvalues uniquely determine its
representation (2.5.19.1), up to permutation of the diagonal entries. (b) If U
is skew symmetric, explain how the scalars ei�j in (2.5.19.2) are related to its
eigenvalues. Why must the eigenvalues of U occur in � pairs? Show that
the eigenvalues of U uniquely determine its representation (2.5.19.2), up to
permutation of direct summands.

40. Let A =
h
0 B
0 0

i
2 M4, in which B =

h
1 i
�i 1

i
. Verify that A

commutes with AT , A commutes with �A, but A does not commute with A�,
that is, A is not normal.

41. Let z 2 Cn be nonzero and write z = x+iy with x; y 2 Rn. (a) Show that
the following three statements are equivalent: (1) fz; �zg is linearly dependent;
(2) fx; yg is linearly dependent; (3) There is a unit vector u 2 Rn and a
nonzero c 2 C such that z = cu. (b) Show that the following are equivalent:
(1) fz; �zg is linearly independent; (2) fx; yg is linearly independent; (3) There
are real orthonormal vectors v; w 2 Rn such that spanfz; �zg = spanfv; wg
(over C).

42. For A 2Mn with eigenvalues �1; : : : ; �n, the function�(A) = trA�A�Pn
i=1 j�ij2 is called the defect from normality. The identity (2.3.2a) ensures

that �(A) � 0 and 2.5.3(c) tells us that A is normal if and only if �(A) = 0.
LetA;B 2Mn, supposeA,B, andAB are all normal, and let �i(AB); �i(BA); i =
1; : : : ; n be the eigenvalues of AB and BA, respectively. Provide details for
the following computation:

nX
i=1

j�i(BA)j2 =
nX
i=1

j�i(AB)j2 = tr ((AB)�(AB))

= tr (B�A�AB) = tr (A�B�BA) = tr ((BA)�(BA))

Now explain why BA is normal.

43. Suppose A 2 Mn is normal. Show that the main diagonal entries of A
are its eigenvalues if and only if A is a diagonal matrix. If n = 2 and one of
the main diagonal entries of A is an eigenvalue of A, explain why A must be a
diagonal matrix.
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44. (a) Show that A 2 Mn is Hermitian if and only if trA2 = trA�A. (b)
Show that Hermitian matrices A;B 2Mn commute if and only if tr(AB)2 =
tr(A2B2). Hint: tr(A2B2) = tr((AB)(AB)�).

45. Let N � Mn(R) be a commuting family of real symmetric matrices.
Show that there is a single real orthogonal matrix Q such that QTAQ is diag-
onal for every A 2 N :

46. Use (2.3.1) to show that any non-real eigenvalues of a real matrix must
occur in complex conjugate pairs. Hint: If A 2 Mn(R) and T = U�AU is
upper triangular, then �T = UTA �U is unitarily similar to A and hence to T , so
the sets of main diagonal entries of T and �T are identical.

47. Suppose A 2 Mn is normal and has eigenvalues �1; : : : ; �n. Show that:
(a) adjA is normal and has eigenvalues

Q
j 6=i �j ; i = 1; : : : ; n. (b) adjA is

Hermitian if A is Hermitian. (c) adjA has positive (respectively, nonnegative)
eigenvalues ifA has positive (respectively, nonnegative) eigenvalues. (c) adjA
is unitary if A is unitary.

48. Let A 2Mn be normal, suppose rankA = r, and suppose the �rst r rows
of A are linearly independent. Let A = U�U�, in which � = �1 � 0n�r
and �1 2 Mr is a nonsingular diagonal matrix. Partition A = [Aij ]2i;j=1 and
U = [Uij ]

2
i;j=1 conformal to �. (a) Show that [A11 A12] = U11�1[U

�
11 U

�
21]

and conclude that U11 is nonsingular. (b) Explain why every normal matrix is
rank principal. (0.7.6) (c) Consider

h
0 1
0 1

i
and explain why the hypothesis

of normality in (b) may not be weakened to diagonalizability.

49. Suppose A 2 Mn is upper triangular and diagonalizable. Show that it can
be diagonalized via an upper triangular similarity. Hint: If A = S�S�1, let
S = RQ be an RQ factorization. Then R�1AR is normal.

50. The reversal matrix Kn (0.9.5.1) is real symmetric. Check that it is also
real orthogonal, and explain why its eigenvalues can only be �1. Check that
trKn = 0 if n is even and trKn = 1 if n is odd. Explain why: if n is even,
the eigenvalues of Kn are �1, each with multiplicity n=2; if n is odd, the
eigenvalues ofKn are+1with multiplicity (n+1)=2 and�1with multiplicity
(n� 1)=2.

51. Let A 2 Mn be normal, let A = U�U� be a spectral decomposition in
which � = diag(�1; : : : ; �n), let x 2 Cn be any given unit vector, and let
� = [�i] = Ux. Explain why x�Ax =

Pn
i=1 j�ij2�i, why the x�Ax lies in

the convex hull of the eigenvalues of A, and why each complex number in the
convex hull of the eigenvalues of A equals x�Ax for some unit vector x. Thus,
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if A is normal, x�Ax 6= 0 for every unit vector x if and only if 0 is not in the
convex hull of the eigenvalues of A.

52. Let A;B 2 Mn be nonsingular. The matrix C = ABA�1B�1 is the
multiplicative commutator of A and B. Explain why C = I if and only if A
commutes withB. Suppose thatA andC are normal and 0 is not in the convex
hull of the eigenvalues ofB. Provide details for the following sketch of a proof
thatA commutes withC if and only ifA commutes withB (this is theMarcus-
Thompson theorem): Let A = U�U� and C = UMU� be spectral decom-
positions in which � = diag(�1; : : : ; �n) and M = diag(�1; : : : ; �n). Let
B = U�BU = [�ij ]. Then all �ii 6= 0 and M = U�CU = �B��1B�1 )
MB = �B��1 ) �i�ii = �ii )M = I ) C = I . Compare with Problem
12(c) in (2.4).

53. Let U; V 2Mn be unitary and suppose that all of the eigenvalues of V lie
on an open arc of the unit circle of length �; such a matrix is called a cramped
unitary matrix. Let C = UV U�V � be the multiplicative commutator of U and
V . Use the preceding problem to prove Frobenius's theorem: U commutes
with C if and only if U commutes with V .

54. If A;B 2Mn are normal, show that: (a) The null space of A is orthogonal
to the range of A. (b) The null space of A is contained in the null space of B
if and only if the range of A contains the range of B.

55. Verify the following improvement of (2.2.8) for normal matrices: IfA;B 2
Mn are normal, thenA is unitarily similar toB if and only if trAk = trBk; k =
1; 2; : : : ; n. Hint: Problem 15, and Problem 10 in (2.4).

56. Let A 2Mn and an integer k � 2 be given, and let ! = e2�i=(k+1). Show
that Ak = A� if and only if A is normal and its spectrum is contained in the
set f0; 1; !; !2; : : : ; !kg. If Ak = A� and A is nonsingular, explain why it is
unitary. Hint: Problem 26.

57. Let A 2Mn be given. Use (2.5.17) to show that A is normal and symmet-
ric if and only if there is a real orthogonal Q 2 Mn and a diagonal � 2 Mn

such that A = Q�QT . Hint: Which of the blocks in (2.5.18) are symmetric?

58. Let A 2 Mn be normal. Then A �A = 0 if and only if AAT = ATA = 0.
(a) Use (2.5.17) to prove this. (b) Provide details for an alternative proof:
A �A = 0 ) 0 = A�A �A = AA� �A ) �AATA = 0 ) (ATA)�(ATA) = 0 )
ATA = 0 (0.2.5.1).
Further readings. For a discussion of 89 characterizations of normality, see

R. Grone, C. Johnson, E. Sa, and H. Wolkowicz, Normal Matrices, Linear Al-
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gebra Appl. 87 (1987) 213-225 as well as L. Elsner and Kh. Ikramov, Normal
Matrices: An Update, Linear Algebra Appl. 285 (1998) 291-303.

2.6 Unitary equivalence and the singular value decomposition

Suppose that a given matrix A is the basis representation of a linear transfor-
mation T : V ! V on an n-dimensional complex vector space, with respect
to a given orthonormal basis. A unitary similarity A! UAU� corresponds to
changing the basis from the given one to another orthonormal basis; the unitary
matrix U is the change of basis matrix.
If T : V1 ! V2 is a linear transformation from an n-dimensional com-

plex vector space into an m-dimensional one, and if A 2 Mm;n is its basis
representation with respect to given orthonormal bases of V1 and V2, then the
unitary equivalence A! UAW � corresponds to changing the bases of V and
W from the given ones to other orthonormal bases.
A unitary equivalence A! UAV involves two unitary matrices that can be

selected independently. This additional �exibility permits us to achieve some
reductions to special forms that are unattainable with unitary similarity.
In order to ensure that we can reduce A;B 2 Mn to upper triangular form

by the same unitary similarity, some condition (commutativity, for example)
must be imposed on them. However, we can reduce any two given matrices to
upper triangular form by the same unitary equivalence.

2.6.1 Theorem. Let A;B 2 Mn. There are unitary V;W 2 Mn such that
A = V TAW

�, B = V TBW
�, and TA; TB are upper triangular. If B is

nonsingular, the main diagonal entries of T�1B TA are the eigenvalues ofB�1A.

Proof: Suppose that B is nonsingular, and use (2.3.1) to write B�1A =

UTU�, in which U is unitary and T is upper triangular. Then use the QR
factorization (2.1.14) to write BU = QR, in which Q is unitary and R is up-
per triangular. Then A = BUTU� = Q(RT )U�, RT is upper triangular, and
B = QRU�. Moreover, the eigenvalues of B�1A = UR�1Q�QRTU� =

UTU� are the main diagonal entries of T .
If both A and B are singular, there is a � > 0 such that B" = B + "I is

nonsingular whenever 0 < " < �. (1.2.17) For any " satisfying this constraint,
we have shown that there are unitary V";W" 2 Mn such that V �" AW" and
V �" BW" are both upper triangular. Choose a sequence of nonzero scalars "k
such that "k ! 0 and both limk!1 V" = V and limk!1W" =W exist; each
of the limits V and W is unitary. (2.1.8) Then each of limk!1 V

�
" AW" =
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V �AW � TA and limk!1 V
�
" BW" = V

�BW � TB is upper triangular. We
conclude that A = V TAW � and B = V TBW �, as asserted.

There is also a real version of this theorem, which uses the following fact.

Exercise. Suppose that A;B 2 Mn, A is upper triangular, and B is upper
quasi-triangular. Show that AB is upper quasi-triangular conformal to B.

2.6.2 Theorem. Let A;B 2 Mn(R). There are real orthogonal V;W 2 Mn

such thatA = V TAWT ,B = V TBWT , TA is real and upper quasi-triangular,
and TB is real and upper triangular.

Proof: If B is nonsingular, one uses (2.3.4) to write B�1A = UTUT , in
which U is real orthogonal and T is real and upper quasi-triangular. Use
(2.1.14(d)) to write BU = QR, in which Q is real orthogonal and R is real
and upper triangular. ThenRU is upper quasi-triangular,A = Q(RT )UT , and
B = QRUT . If both A and B are singular, one can use a real version of the
limit argument in the preceding proof.

Although only square matrices that are normal can be diagonalized by uni-
tary similarity, any complex matrix can be diagonalized by unitary equiva-
lence.

2.6.3 Theorem (Singular Value Decomposition). Let A 2 Mn;m be given,
let q = minfm;ng, and suppose rankA = r.
(a) There are unitary matrices V 2 Mn andW 2 Mm, and a square diagonal
matrix

�q =

264 �1 0
. . .

0 �q

375 ; �1 � �2 � � � � � �r > 0 = �r+1 = � � � = �q

(2.6.3.1)
such that A = V �W �, in which � = �q ifm = n,

� =
�
�q 0

�
2Mn;m ifm > n, and � =

�
�q
0

�
2Mn;m if n > m

(2.6.3.2)
(b) The parameters �1; : : : ; �r are the positive square roots of the decreasingly
ordered nonzero eigenvalues of AA�, which are the same as the decreasingly
ordered nonzero eigenvalues of A�A.

Proof: First suppose that m = n. The Hermitian matrices AA� 2 Mn and
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A�A 2 Mn have the same eigenvalues (1.3.22), so they are unitarily similar
(2.5.4(d)) and hence there is a unitary U such that A�A = U(AA�)U�. Then

(UA)�(UA) = A�U�UA = A�A = UAA�U� = (UA)(UA)�

so UA is normal. Let �1 = j�1jei�1 ; : : : ; �n = j�njei�n be the eigenvalues
of UA, ordered so that j�1j � � � � � j�nj. Then r = rankA = rankUA is
the number of nonzero eigenvalues of the normal matrix UA, so j�rj > 0 and
�r+1 = � � � = �n. Let � = diag(�1; : : : ; �n), let D = diag(ei�1 ; : : : ; ei�n),
let �q = diag(j�1j; : : : ; j�nj), and let X be a unitary matrix such that UA =
X�X�. ThenD is unitary andA = U�X�X� = U�X�qDX

� = (U�X)�q(DX
�)

exhibits the desired factorization, in which V = U�X andW = XD� are uni-
tary, and �j = j�j j; j = 1; : : : ; n.
Now suppose thatm > n. Then r � n, so the null space ofA has dimension

m � r � m � n. Let fx1; : : : ; xm�ng be any set of orthonormal vectors in
the null space of A, let X2 = [x1 ; : : : xm�n] 2 Mn;m�n, and let X =

[X1 X2] 2 Mm be unitary, that is, extend the given orthonormal set to a basis
of Cm. Then AX = [AX1 AX2] = [AX1 0] and AX1 2 Mn. Using the
preceding case, write AX1 = V �qW �, in which V;W 2 Mn are unitary and
�q is as in (2.6.3.1). This gives

A = [AX1 0]X
� = [V �qW

� 0]X� = V [�q 0]

��
W � 0

0 Im�n

�
X�
�

which is a factorization of the asserted form.
If n > m, apply the preceding case to A�.
Using the factorization A = V �W �, notice that rankA = rank� since

V and W are nonsingular. But rank� equals the number of nonzero (and
hence positive) diagonal entries of �, as asserted. Now compute AA� =
V �W �W�TV � = V ��TV �, which is unitarily similar to ��T . If n = m,
then��T = �2q = diag(�21; : : : ; �2n). Ifm > n, then��T = [�q 0][�q 0]T =
�2q + 0n = �

2
q . Finally, if n > m, then

��T =

�
�q
0

� �
�q 0

�
=

�
�2q 0

0 0n�m

�
In each case, the nonzero eigenvalues of AA� are �21; : : : ; �2r , as asserted.

The diagonal entries of the matrix� in (2.6.3) (that is, the scalars �1; : : : ; �q)
are the singular values of A. The multiplicity of a singular value � of A is the
multiplicity of �2 as an eigenvalue ofAA� or, equivalently, ofA�A. The rank
of A is equal to the number of its nonzero singular values, while it is not less
than (and can be greater than) the number of its nonzero eigenvalues.
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The singular values of A are uniquely determined by the eigenvalues of
A�A (equivalently, by the eigenvalues of AA�), so the diagonal factor � in
the singular value decomposition of A is determined up to permutation of its
diagonal entries; a conventional choice that makes � unique is to require that
the singular values be arranged in non-increasing order, but other choices are
possible. The following theorem gives a precise formulation of the assertion
that the singular values of a matrix depend continuously on its entries.

2.6.4 Theorem. Let an in�nite sequence A1; A2; : : : 2 Mn;m be given, sup-
pose that limk!1Ak = A (entry-wise convergence), and let q = minfm;ng.
Let �1(A) � � � � � �q(A) and �1(Ak) � � � � � �q(Ak) be the non-increasingly
ordered singular values of A and Ak, respectively, for k = 1; 2; : : :. Then
limi!1 �i(Ak) = �i(A) for each i = 1; : : : ; q.

Proof: If the assertion of the theorem is false, then there is some "0 > 0 and
an in�nite sequence of positive integers k1 < k2 < � � � such that for every
j = 1; 2; : : : we have

max
i=1;:::;q

���i(Akj )� �i(A)�� > "0 (2.6.4.1)

For each j = 1; 2; : : : let Akj = Vkj�kjW �
kj
, in which Vkj 2 Mn andWkj 2

Mm are unitary and �kj 2Mn;m is the nonnegative diagonal matrix such that
diag �kj = [�1(Akj ) : : : �q(Akj )]

T . Lemma (2.1.8) ensures that there is an
in�nite sub-subsequence kj1 < kj2 < � � � and unitary matrices V andW such
that lim`!1 Vkj` = V and lim`!1Wkj`

=W . Then

lim
`!1

�kj` = lim
`!1

V �kj`
Akj`Wkj`

=

�
lim
`!1

V �
��

lim
`!1

A

��
lim
`!1

W

�
= V �AW

exists and is a nonnegative diagonal matrix with non-increasingly ordered di-
agonal entries; we denote it by � and observe that A = V �W �. Uniqueness
of the singular values of A ensures that diag � = [�1(A) : : : �q(A)]

T , con-
tradicts (2.6.4.1), and proves the theorem.

The unitary factors in a singular value decomposition are never unique. For
example, if A = V �W �, we may replace V by �V and W by �W . The
following theorem describes in an explicit and very useful fashion how, given
one pair of unitary factors, all possible pairs of unitary factors can be obtained.

2.6.5 Theorem. Let A 2 Mn;m be given with rankA = r. Let s1 > � � � >
sd > 0 be the decreasingly ordered distinct positive singular values of A, with
respective multiplicities n1; : : : ; nd. LetA = V �W � be a given singular value
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decomposition with� as in (2.6.3.1) or (2.6.3.2), so that�T� = s21In1�� � ��
s2dInd�0n�r and ��T = s21In1�� � ��s2dInd�0m�r (one or both of the zero
direct summands are absent if A has full rank). Let V̂ 2 Mn and Ŵ 2 Mm

be given unitary matrices. Then A = V̂ �Ŵ � if and only if there are unitary
matrices U1 2Mn1 ; : : : ; Ud 2Mnd ;

~V 2Mn�r, and ~W 2Mm�r such that

V̂ = V (U1 � � � � � Ud � ~V ) and Ŵ =W (U1 � � � � � Ud � ~W ) (2.6.5.1)

If A is real and the factors V;W; V̂ ; Ŵ are real orthogonal, then the matrices
U1; : : : ; Ud; ~V ; ~W may be taken to be real orthogonal.

Proof: The Hermitian matrixA�A is represented asA�A = (V �W �)�(V �W �) =

W�T�W � and also as A�A = Ŵ�T�Ŵ �. Theorem 2.5.4 ensures that there
are unitary matricesW1; : : : ;Wd;Wd+1 withWi 2Mni for i = 1; : : : ; d such
that Ŵ = W (W1 � � � � �Wd �Wd+1). We also have AA� = V ��TV � =
V̂ ��T V̂ �, so (2.5.4) again tells us that there are unitary matrices V1; : : : ; Vd; Vd+1
with Vi 2Mni for i = 1; : : : ; d such that V̂ = V (V1�� � ��Vd�Vd+1). Since
A = V �W � = V̂ �Ŵ �, we have � = (V �V̂ )�(Ŵ �W ), that is, siIni =
Vi(siIni)W

�
i for i = 1; : : : ; d + 1, or ViW �

i = Ini for each i = 1; : : : ; d,
which means that Vi = Wi for each i = 1; : : : ; d. The �nal assertion about a
real A follows from the preceding argument and the exercise following Theo-
rem 2.5.6.

The singular value decomposition is a very important tool in matrix analy-
sis, with myriad applications in engineering, numerical computation, statistics,
image compression, and many other areas; for more details see Chapter 7.
We close this chapter with two application of the preceding uniqueness theo-

rem: singular value decompositions of symmetric or skew-symmetric matrices
can be chosen to be unitary congruences, and a real matrix has a singular value
decomposition in which all three factors are real.

2.6.6 Corollary. Let A 2Mn and let r = rankA.
(a) (L. Autonne) A = AT if and only if there is a unitary U 2 Mn and a
nonnegative diagonal matrix � such that A = U�UT . The diagonal entries of
� are the singular values of A.
(b) If A = �AT , then r is even and there is a unitary U 2 Mn and positive
real scalars s1; : : : ; sr=2 such that

A = U

��
0 s1
�s1 0

�
� � � � �

�
0 sr=2

�sr=2 0

�
� 0n�r

�
UT (2.6.6.1)

The nonzero singular values of A are s1; s1; : : : ; sr=2; sr=2. Conversely, any
matrix of the form (2.6.6.1) is skew symmetric.
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Proof: Let s1; : : : ; sd be the distinct positive singular values ofA, with respec-
tive multiplicities n1; : : : ; nd, and let A = V �W � be a given singular value
decomposition in which � = s1In1 �� � �� sdInd �0n�r and V;W 2Mn are
unitary; the zero block is missing if A is nonsingular.
(a) We have V �W � = A = AT = �W�V T = �W��V �, so the preceding theo-
rem ensures that there are unitary matrices UV = U1�� � ��Ud� ~V and UW =

U1 � � � � � Ud � ~W , in which Ui 2 Mni ; i = 1; : : : ; d, such that �V = WUW
and �W = V UV , that is, UW = W � �V and UV = V � �W = UTW . In particular,
Uj = U

T
j for j = 1; : : : ; d, that is, eachUj is unitary and symmetric. Corollary

(2.5.19) tells us that there are real orthogonal matrices Qj and real parameters
�
(j)
1 ; : : : ; �

(j)
nj such that Uj = Qj diag(e

i�
(j)
1 ; : : : ; e

i�(j)nj )QTj ; j = 1; : : : ; d. For

each j = 1; : : : ; d, let Rj = Qj diag(e
i�
(j)
1 =2; : : : ; e

i�(j)nj
=2
)QTj and let R =

R1�� � ��Rd�In�r. ThenR is symmetric and unitary and UV � = R�R, so
A = �W�V T = V UV �V

T = V R�RV T = (V R)�(V R)T is a factorization
of the asserted form.
(b) Starting with the identity V �W � = � �W�V T = � �W��V � and proceed-
ing exactly as in (a), we have �V =WUW , �W = �V UV , that is, UW =W � �V

and UV = �V � �W = �UTW . In particular, Uj = �UTj for j = 1; : : : ; d, that
is, each Uj is unitary and skew symmetric. Corollary (2.5.19) ensures that, for
each j = 1; : : : ; d, nj is even and there are real orthogonal matrices Qj and
real parameters �(j)1 ; : : : ; �

(j)
nj=2

such that

Uj = Qj

�
ei�

(j)
1

�
0 1

�1 0

�
� � � � � ei�

(j)

nj=2

�
0 1

�1 0

��
QTj

De�ne the real orthogonal matrix Q = Q1 � � � � � Qd � In�r and the skew-
symmetric matrices

Sj = e
i�
(j)
1

�
0 1

�1 0

�
� � � � � ei�

(j)

nj=2

�
0 1

�1 0

�
, j = 1; : : : ; d

Let S = S1 � � � � � Sd � 0n�r. Then UV � = QSQT� = QS�QT , so
A = � �W�V T = V UV �V

T = V QS�QTV T = (V Q)S�(V Q)T is a
factorization of the asserted form and rankA = n1 + � � �+ nd is even.

2.6.7 Corollary. Let A 2 Mn;m(R) and suppose that rankA = r. Then
A = P�QT , in which P 2Mn(R) and Q 2Mm(R) are real orthogonal and
� 2Mn;m(R) is nonnegative diagonal and has the form (2.6.3.1) or (2.6.3.2).

Proof: Using the notation of (2.6.4), let A = V �W � be a given singular
value decomposition. We have V �W � = A = �A = �V � �W � and (2.6.4) en-
sures that there are unitary matrices UV = U1 � � � � � Ud � ~V 2 Mn and
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UW = U1 � � � � � Ud � ~W 2 Mm such that �V = V UV and �W = WUW .
Then UV = V � �V = �V T �V and UW = �WTW are unitary and symmetric,
so ~V , ~W , and each Ui is unitary and symmetric. Corollary (2.5.18) tells us
that there are real orthogonal matrices Q1; : : : ; Qd; Q ~V ; Q ~W and real parame-
ters �(j)k such that Uj = Qj diag(e

i�
(j)
1 ; : : : ; ei�

(j)
n�r )QTj ; j = 1; : : : ; d; U ~V =

Q ~V diag(e
i�
(d+1)
1 ; : : : ; e

i�(d+1)nj )QT~V ; andU ~W = Q ~W diag(ei�
(d+2)
1 ; : : : ; ei�

(d+2)
m�r )QT~W .

For each j = 1; : : : ; d, let Rj = Qj diag(ei�
(j)=
1 =2; : : : ; e

i�(j)nj
=2
)QTj ; let R ~V =

Q ~V diag(e
i�
(d+1)
1 =2; : : : ; ei�

(d+1)
n�r =2)QT~V ; and letR ~W = Q ~W diag(ei�

(d+2)
1 =2; : : : ; ei�

(d+2)
m�r =2)QT~W .

Finally, letRV = R1�� � ��Rd�R ~V andRW = R1�� � ��Rd�R ~W . Then
RV and RW are symmetric and unitary, R�1V = R�V = RV , R�1W = R�W =

RW , R2V = UV , R2W = UW , and RV �RW = �, so

A = �V � �W � = V UV �(WUW )
� = V R2V �(WR

2
W )

�

= (V RV )(RV �RW )(WRW )
� = (V RV )�(WRW )

�

We conclude the argument by observing that �V = V UV = V R2V and �W =

WUW = WR2W , so V RV = �V R�V = V RV andWRW = �WR�W = WRW .
That is, both V RV and WRW are unitary and real, so they are both real or-
thogonal.

Problems

1. Let A 2 Mn;m with n � m. Show that A has full column rank if and only
if all of its singular values are positive.

2. Suppose that A;B 2 Mn;m can be simultaneously diagonalized by unitary
equivalence, that is, suppose that there are unitary matrices V 2Mn andW 2
Mm such that each of V �AW = � and V �BW = M is a diagonal matrix
(0.9.1). Show that both AB� and B�A are normal.

3. Let A;B 2 Mn;m be given. Show that AB� and B�A are both normal
if and only if there are unitary matrices X 2 Mn and Y 2 Mm such that
A = X�Y �, B = X�Y �, �;� 2 Mn;m are diagonal, and � 2 Mn;m has
the form (2.6.3.1,2). Hint: We may assume that A = � (write A = V �W �,
so � ~B� and ~B�� are normal, ~B = V �BW ) and n � m (if n > m, consider
B� and A�). If �B� and B�� are normal, then ��TB = B�T� (Problem
27 in (2.5)). Let s1; : : : ; sd be the distinct and decreasingly ordered singular
values of A, write �q = s1In1 � � � � � sdInd , partition B = [B(1) B(2)]

with B(1) 2 Mn, and partition B(1) = [Bij ]
d
i;j=1 conformally to �q. Then

��TB = B�T� ) �2qB
(1) = B

(1)
q �2 and �2qB(2) = 0. If sd > 0, then

B(2) = 0, B(1) = B11 � � � � � Bdd, and every Bii is normal. If sd = 0, then
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B(2) =
h

0
C

i
, in which C is nd-by-(m � n), B(1) = B11 � � � � � Bdd, and

each B11; : : : ; Bd�1;d�1 is normal; replace each normal Bii with its spectral
decomposition and replace [Bdd C] with its singular value decomposition.

4. Let A;B 2 Mn;m be given. (a) Show that AB� and B�A are both Her-
mitian if and only if there are unitary matrices X 2 Mn and Y 2 Mm such
that A = X�Y �, B = X�Y �, �;� 2Mn;m(R) are diagonal, and � has the
form (2.6.3.1,2). (b) If A and B are real, show that ABT and BTA are both
real symmetric if and only if there are real orthogonal matrices X 2 Mn(R)

and Y 2 Mm(R) such that A = X�Y T , B = X�Y T , �;� 2 Mn;m(R)

are diagonal, and � has the form (2.6.3.1,2). (c) In both (a) and (b), show
that � can be chosen to have nonnegative diagonal entries if and only if all the
eigenvalues of AB� and B�A are nonnegative.

5. LetA 2Mn;m be given and writeA = B+iC, in whichB;C 2Mn;m(R).
Show that there are real orthogonal matrices X 2 Mn(R) and Y 2 Mm(R)

such that A = X�Y T and � 2Mn;m(C) is diagonal if and only if both BCT

and CTB are real symmetric.

6. Let A 2 Mn be given and let A = QR be a QR factorization (2.1.14). (a)
Explain why QR is normal if and only if RQ is normal. (b) Show that A is
normal if and only if Q and R� can be simultaneously diagonalized by unitary
equivalence.

7. Show that two complex matrices of the same size are unitarily equivalent if
and only if they have the same singular values.

8. Let A 2Mn;k and B 2Mk;m be given. Use the singular value decomposi-
tion to show that rankAB � minfrankA; rankBg. Hint: Let A = V �W �.
Then rankAB = rank�W �B, and�W �B has at most rankA nonzero rows.

9. Let A 2 Mn be given. Suppose rankA = r, form �1 = diag(�1; : : : ; �r)
from its decreasingly ordered positive singular values, and let� = �1�0n�r..
SupposeW 2 Mn is unitary and A�A = W�2W �. Show that there is a uni-
tary V 2 Mn such that A = V �W �. Hint: Let D = �1 � In�r, show
that (AWD�1)�(AWD�1) = Ir � 0n�r, and conclude that AWD�1 =

[V1 0n;n�r], in which V1 has orthonormal columns. Let V = [V1 V2] be uni-
tary.

10. Let A;B 2Mn be given, let �1 � � � � � �n � 0 be the singular values of
A, and let� = diag(�1; : : : ; �n). Show that the following three statements are
equivalent: (a) A�A = B�B. (b) There are unitary matrices W;X; Y 2 Mn

such that A = X�W � and B = Y �W �. (c) There is a unitary U 2Mn such
that A = UB.
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11. LetA 2Mn;m and a normalB 2Mm be given. Show thatA�A commutes
with B if and only if there are unitary matrices V 2 Mn and W 2 Mm, and
diagonal matrices � 2 Mn;m and � 2 Mm, such that A = V �W � and
B =W�W �. Hint: (2.5.5) and Problem 9.

12. Let A 2 Mn have a singular value decomposition A = V �W �, in which
� = diag(�1; : : : ; �n) and �1 � � � � � �n. (a) Show that adjA has a singular
value decomposition adjA = X�SY in which X = (detW )(adjW ), Y =

(detV )(adjV ), and S = diag(s1; : : : ; sn), in which each si =
Q
j 6=i �j . (b)

Use (a) to explain why adjA = 0 if rankA � n � 2. (c) If rankA = n � 1
and vn; wn 2 Cn are the last columns of V and W , respectively, show that
adjA = �1 � � ��n�1ei�wnv�n, in which det(VW �) = ei�, � 2 R.

13. Let A 2 Mn and let A = V �W � be a singular value decomposition.
(a) Show that A is unitary if and only if � = I . (b) Show that A is a scalar
multiple of a unitary matrix if and only if Ax is orthogonal to Ay whenever
x; y 2 Cn are orthogonal. Hint: It suf�ces to consider only the case in which
A = �.

14. Suppose A 2 Mn is normal and has spectral decomposition A = U�U�,
in which U is unitary, � = diag(�1; : : : ; �n) = diag(ei�1 j�1j; : : : ; ei�n j�nj),
and the eigenvalues are ordered so that j�1j � � � � � j�nj. LetD = diag(ei�1 ; : : : ; ei�n)

and � = diag(j�1j; : : : ; j�nj). Explain why A = (UD)�U� is a singular
value decomposition of A and why the singular values of A are exactly the
absolute values of its eigenvalues.

15. Let A = [aij ] 2 Mn have eigenvalues �1; : : : ; �n ordered so that j�1j �
� � � � j�nj and singular values �1; : : : ; �n ordered so that �1 � � � � � �n.
Show that: (a)

Pn
i;j=1 jaij j2 = trA�A =

Pn
i=1 �

2
i . (b)

Pn
i=1 �

2
i �

Pn
i=1 j�ij2

with equality if and only if A is normal. (c) �i = j�ij for all i = 1; : : : ; n if
and only if A is normal. (d) If jaiij = �i for all i = 1; : : : ; n, then A is diago-
nal. (e) If A is normal and jaiij = j�ij for all i = 1; : : : ; n, then A is diagonal.
Hint: Problem 42 in (4.5).

16. Let U; V 2Mn be unitary. (a) Show that there are always unitary X;Y 2
Mn and a diagonal unitary D 2Mn such that U = XDY and V = Y �DX�.
(b) Explain why the unitary equivalence map A! UAV = XDY AY �DX�

on Mn is the composition of a unitary similarity, a diagonal unitary congru-
ence, and a unitary similarity. Hint: Problem 3.

17. Let A 2 Mn;m. Use the singular value decomposition to explain why
rankA = rankAA� = rankA�A.

18. Let A 2 Mn be idempotent and suppose that rankA = r. (a) Show
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that A is unitarily similar to
h
Ir X
0 0n�r

i
. (Problem 5 in (1.1)) (b) Let X =

V �W � be a singular value decomposition. Show that A is unitarily similar toh
Ir �
0 0n�r

i
via V �W , and hence the singular values of A are the diagonal

entries of (Ir + ��T )� 0n�r; let �1; : : : ; �g be the singular values of A that
are greater than 1. (c) Show that A is unitarily similar to 0n�r�g � Ir�g �h
1 (�21 � 1)1=2

0 0

i
� � � � �

h
1 (�2g � 1)1=2

0 0

i
.

19. Let U =
h
U11 U12
U21 U22

i
2 Mk+` be unitary with U11 2 Mk, U22 2 M`,

and k � `. Let �1(X) � �2(X) � � � � denote the non-increasingly ordered
singular values of a matrix X . Show that

�i(U11) = �i(U22) and �i(U12) = �i(U21) = (1��2i (U11))1=2; i = 1; : : : ; k

and �i(U22) = 1; i = k+1; : : : ; `. In particular, jdetU11j = jdetU22j and
detU12U

�
12 = detU�21U21. Explain why these results imply Lemma 2.1.10.

Hint: Write out the identities U�U = I and UU� = I as block matrices and
use (1.3.22). U11U�11 + U12U�12 = I ) U11U

�
11 = I � U12U�12 ) �2i (U11) =

1� �2i (U12).

20. LetA 2Mn be symmetric. Suppose that the special singular value decom-
position in Corollary (2.6.6a) is known if A is nonsingular. Provide complete
details for the following two approaches to showing that it is valid even if A
is singular. (a) Consider A" = A + "I; use (2.1.8) and (2.6.4). (b) Let the
columns of U1 2Mn;� be an orthonormal basis for the null space of A and let
U = [U1 U2] 2 Mn be unitary. Let UTAU = [Aij ]2i;j=1 (partitioned confor-
mally to U ). Explain why A11, A12, and A21 are zero matrices, while A22 is
nonsingular and symmetric.

21. LetA;B 2Mn be symmetric. Show thatA �B is normal if and only if there
is a unitary U 2 Mn such that A = U�UT , B = U�UT , �;� 2 Mn are
diagonal, and the diagonal entries of � are nonnegative. Hint: (cf. Problem
3) If A �B = AB� is normal, then (A �B)T = �BA = B�A is normal. We
may take A = � (use (2.6.6a) to write A = U�UT , so � ~B is normal and
~B = U�B �U is symmetric). If � �B and �B� are normal and B is symmetric,
then �2B = B�2 (Problem 27 in (2.5)). Write � = s1In1 � � � � � sdInd ,
in which s1 > � � � > sd � 0 and partition B = [Bij ]

d
i;j=1 conformally to �.

Then �2B = B�2 ) B = B11 � � � � � Bdd and each Bii is symmetric; Bii
is also normal if si > 0. If si > 0, replace Bii with Qi�iQTi , in which Qi
is real orthogonal and �i is diagonal (Problem 56 in (2.5)); if sd = 0, replace
Bdd with the special singular value decomposition in (2.6.6a).

22. Let A;B 2 Mn be symmetric. (a) Show that A �B is Hermitian if and
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only if there is a unitary U 2Mn such that A = U�UT , B = U�UT , �;� 2
Mn(R) are diagonal, and the diagonal entries of � are nonnegative. (b) Show
that A �B is Hermitian and has nonnegative eigenvalues if and only if there is
a unitary U 2 Mn such that A = U�UT , B = U�UT , �;� 2 Mn(R) are
diagonal, and the diagonal entries of � and � are nonnegative.

23. Let A 2 Mn be given. Suppose that rankA = r � 1 and A2 = 0.
Provide details for the following outline of a proof that A is unitarily similar
to

�1

h
0 1
0 0

i
� � � � � �r

h
0 1
0 0

i
� 0n�2r (2.6.8)

in which �1 � � � � � �r > 0 are the positive singular values of A. (a)
rangeA � nullspaceA and hence 2r � n. (b) Let the columns of U2 2
Mn;n�r be an orthonormal basis for the null space of A�, so U�2A = 0. Let
U = [U1 U2] 2Mn be unitary. Explain why the columns of U1 2Mn;r are an
orthonormal basis for the range of A and AU1 = 0. (c) U�AU =

h
0 B
0 0

i
,

in which B 2Mr;n�r and rankB = r. (d) B = V [�r 0r;n�2r]W �, in which
V 2 Mr and W 2 Mn�r are unitary, and �r = diag(�1; : : : ; �r). (e) Let
Z = V �W . Then Z�(U�AU)Z =

h
0 �r
0 0

i
� 0n�2r,which is similar to

(2.6.8) via a permutation matrix.

24. Let A 2 Mn be given. Suppose that rankA = r � 1 and A �A = 0.
Provide details for the following outline of a proof thatA is unitarily congruent
to (2.6.8), in which �1 � � � � � �r > 0 are the positive singular values of A.
(a) range �A � nullspaceA and hence 2r � n. (b) Let the columns of U2 2
Mn;n�r be an orthonormal basis for the null space of AT , so UT2 A = 0. Let
U = [U1 U2] 2Mn be unitary. Explain why the columns of U1 2Mn;r are an
orthonormal basis for the range of �A and AU1 = 0. (c) UTAU =

h
0 B
0 0

i
,

in which B 2Mr;n�r and rankB = r. (d) B = V [�r 0r;n�2r]W �, in which
V 2 Mr and W 2 Mn�r are unitary, and �r = diag(�1; : : : ; �r). (e) Let
Z = �V �W . Then ZT (UTAU)Z =

h
0 �r
0 0

i
� 0n�2r, which is unitarily

congruent to (2.6.8) via a permutation matrix.

25. Let A 2 Mn and suppose that rankA = r < n. Let �1 � � � � � �r > 0
be the positive singular values of A and let �r = diag(�1; : : : ; �r). Show that
there is a unitary U 2Mn,K 2Mr, and L 2Mr;n�r such that

A = U

�
�rK �rL

0 0n�r

�
U�; KK� + LL� = Ir (2.6.9)

Hint: LetA = V �W � be a singular value decomposition with� = �r�0n�r,
write A = V �(W �V )V �, and partitionW �V =

h
K L
M N

i
.
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26. Let A 2 Mn, suppose that 1 � rankA = r < n, and consider the
representation (2.6.9). Show that: (a) A is normal if and only if L = 0 and
�rK = K�r. Hint: L = 0)M = 0) K is unitary. (b)A2 = 0 if and only
if K = 0 (in which case LL� = Ir). (c) A2 = 0 if and only if A is unitarily
similar to the direct sum (2.6.8). Hint: Proceed as in Problem 23(c).

Further Readings and Notes. The special singular value decomposition (2.6.6a)
for complex symmetric matrices was published by L. Autonne in 1915; it has
been rediscovered many times since then. Autonne's proof used a version
of the uniqueness theorem (2.6.4), but his approach required that the matrix
be nonsingular; Problem 20 shows how to deduce the singular case from the
nonsingular case. See Section 3.0 of [HJ] for a history of the singular value de-
composition, including an account of Autonne's contributions. The principle
in Problem 10 (A�A = B�B if and only if A = UB for some unitary U ) has
many applications and generalizations; see R. Horn and I. Olkin, When Does
A�A = B�B and Why Does One Want to Know?, Amer. Math. Monthly 103
(1996) 470-482.
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