Matrix Canonical Forms

Roger Horn

University of Utah

ICTP School: Linear Algebra: Tuesday, June 23, 2009

Roger Horn (University of Utah)

イロト イポト イヨト イヨト

- $AK = QR \Rightarrow A = Q(RK_m)$, Q unitary, $RK_m = \begin{bmatrix} R_1K_m \\ 0 \end{bmatrix}$, and R_1K_m has zero entries below the anti-diagonal.
- What do we get if we write $A = Q(RK_m) = (QK_n)(K_nRK_m)$? or $A = QR = (QK_n)(K_nR)$?

・聞き ・ ほき・ ・ ほき・

• (2.4.6) Every square matrix is block diagonalizable by similarity.

• Let $\lambda_1, \ldots, \lambda_d$ be the distinct eigenvalues of A and let A be unitarily similar to an upper triangular matrix $T = [T_{ij}]_{i,j=1}^d$ in which all the diagonal entries of T_{ii} are λ_i .

• Partition
$$T = \begin{bmatrix} T_{11} & Y \\ 0 & S_2 \end{bmatrix}$$
. Let $M = \begin{bmatrix} I & X \\ 0 & I \end{bmatrix}$, so $M^{-1} = \begin{bmatrix} I & -X \\ 0 & I \end{bmatrix}$. Compute

$$M^{-1}TM = \begin{bmatrix} T_{11} & T_{11}X - XS_2 + Y \\ 0 & S_2 \end{bmatrix} = \begin{bmatrix} T_{11} & 0 \\ 0 & S_2 \end{bmatrix}$$

if we choose X so that $T_{11}X - XS_2 = -Y$.

- Repeat the reduction on S₂.
- A is similar to $T_{11} \oplus \cdots \oplus T_{dd}$.

・ロト ・聞 ト ・ 思ト ・ 思ト … 思

Canonical form for normal matrices under unitary similarity

•
$$A \in M_n$$
 is normal if $AA^* = A^*A$

- Example: $A = A^*$ (Hermitian) or $A = -A^*$ (skew Hermitian)
- Example: $UU^* = I$, that is, $U^* = U^{-1}$ (unitary)

• (2.5.2) A (block) upper triangular normal matrix is (block) diagonal

• Example:
$$A = \begin{bmatrix} \lambda_1 & a_{12} \\ 0 & \lambda_2 \end{bmatrix}$$

• $AA^* = \begin{bmatrix} \lambda_1 & a_{12} \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} \overline{\lambda_1} & 0 \\ \overline{a_{12}} & \overline{\lambda_2} \end{bmatrix} = \begin{bmatrix} |\lambda_1|^2 + |a_{12}|^2 & \bigstar \end{bmatrix}$
• $A^*A = \begin{bmatrix} \overline{\lambda_1} & 0 \\ \overline{a_{12}} & \overline{\lambda_2} \end{bmatrix} \begin{bmatrix} \lambda_1 & a_{12} \\ 0 & \lambda_2 \end{bmatrix} = \begin{bmatrix} |\lambda_1|^2 & \bigstar \end{bmatrix}$

- Let U be unitary. Then A is normal if and only if $A = U^*AU$ is normal.
 - $\mathcal{A}\mathcal{A}^* = (U^*AU)(U^*AU)^* = U^*AUU^*A^*U = U^*AA^*U = U^*A^*AU = U^*A^*UU^*AU = \mathcal{A}^*\mathcal{A}$

• (2.5.3) A is normal if and only if it is unitarily diagonalizable, that is, $A = U\Lambda U^*$ with a unitary U and $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$.

Canonical form for normal matrices under unitary similarity

- (2.5.4) Uniqueness of unitary diagonalization of a normal matrix.
 - Suppose that A is normal and has distinct eigenvalues $\lambda_1, \ldots, \lambda_d$. Let $\Lambda = \lambda_1 I_{n_1} \oplus \cdots \oplus \lambda_d I_{n_d}$. Then $A = U \Lambda U^* = V \Lambda V^*$ with unitary U, V if and only if U = VW in which $W = W_1 \oplus \cdots \oplus W_d$ is unitary and conformal to Λ .
- Two normal matrices of the same size are unitarily similar if and only if they have the same eigenvalues.

•
$$A = U\Lambda U^* \Rightarrow \Lambda = U^*AU$$

•
$$B = V\Lambda V^* = V(U^*AU)V^* = (VU^*)A(VU^*)^*$$

• A normal matrix is Hermitian (skew Hermitian) if and only if its eigenvalues are real (pure imaginary)

•
$$A = \pm A^* \Leftrightarrow \Lambda = \pm \Lambda^* = \pm \bar{\Lambda} \Leftrightarrow \lambda = \pm \bar{\lambda}$$

• A normal matrix is unitary if and only its eigenvalues have unit modulus

•
$$U^* = U^{-1} \Leftrightarrow \bar{\Lambda} = \Lambda^{-1} \Leftrightarrow \bar{\lambda} = \lambda^{-1} \Leftrightarrow \lambda \bar{\lambda} = |\lambda|^2 = 1$$

Unitary equivalence and simultaneous triangularization

- $A, B \in M_{n,m}$ are *unitarily equivalent* if there are unitary $V \in M_n$ and $W \in M_m$ such that $A = VBW^*$
- Given matrices A, B ∈ M_n need not be simultaneously upper triangularizable.
 - (2.3.3) Commutativity is a sufficient but not necessary condition.
 - (2.4.8.7) McCoy's Theorem gives a necessary and sufficient condition.
- However any A, B ∈ M_n can be simultaneously upper triangularized by unitary equivalence (2.6.1)
- First suppose *B* is nonsingular.
 - Use Schur to write $B^{-1}A = UTU^*$, then use the QR decomposition to write BU = QR.
 - $A = BUTU^* = (QR)(TU^*) = Q(RT)U^* \Rightarrow Q^*AU$ is upper triangular
 - $B = (BU)U^* = (QR)U^* = QRU^* \Rightarrow Q^*BU$ is upper triangular

イロト イ理ト イヨト イヨトー

- If both A and B are singular, let $B_{\varepsilon} = B + \varepsilon I$ (all sufficiently small ε so that B_{ε} is nonsingular. Why is this possible?) and let Q_{ε} and U_{ε} be unitary and such that $Q_{\varepsilon}^*AU_{\varepsilon}$ and $Q_{\varepsilon}^*B_{\varepsilon}U_{\varepsilon}$ are upper triangular. Let $\varepsilon_k \to 0$ in such a way that $Q_{\varepsilon_k} \to Q$, and $U_{\varepsilon_k} \to U$ (the unitary group is compact). Of course, $B_{\varepsilon_k} = B + \varepsilon_k I \to B$. Then
 - $Q^*_{\varepsilon_k}AU_{\varepsilon_k} o Q^*AU$ is upper triangular
 - $Q_{\varepsilon_k}^* B_{\varepsilon_k} U_{\varepsilon_k} \to Q^* B U$ is upper triangular

・ロト ・聞 と ・ 思 と ・ 思 と … 思

Unitary equivalence and the singular value decomposition

- Only normal matrices can be diagonalized by unitary *similarity*, but any matrix can be diagonalized by unitary *equivalence*.
- First suppose that A is square: $A \in M_n$
 - AA^* and A^*A are Hermitian matrices with the same eigenvalues, so they are unitarily similar: $A^*A = U(AA^*)U^*$

•
$$(UA)(UA)^* = UAA^*U^* = A^*A$$

•
$$(UA)^*(UA) = A^*(U^*U)A = A^*A$$

• Thus, *UA* is normal so $UA = V\Lambda V^*$ in which $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$, $|\lambda_1| \ge \dots \ge |\lambda_n|$, and each $\lambda_j = |\lambda_j|e^{i\theta_j}$

• Let
$$\Sigma = \operatorname{diag}(|\lambda_1|, \ldots, |\lambda_n|)$$

- Let $E = diag(e^{i\theta_1}, \dots, e^{i\theta_n})$, which is unitary; $\Lambda = \Sigma E$
- Then $A = U^* V \Lambda V^* = U^* V (\Sigma E) V^* = (U^* V) \Sigma (EV^*)$
- (2.6.3) This is the SVD for square matrices: A = VΣW* in which V and W are unitary and Σ = diag(σ₁..., σ_n) is a nonnegative diagonal matrix whose diagonal entries are the decreasingly ordered square roots of the eigenvalues of A*A, which are also the eigenvalues of AA*.

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

Unitary equivalence and the singular value decomposition

- Now suppose A ∈ M_{n,m} with n < m. Then rank A ≤ n so the dimension of the null space of A is at least m − n.
- Choose any set of m − n orthonormal vectors in the null space of A and let them be the columns of X₂ ∈ M_{m,m-n}. Let X = [X₁ X₂] ∈ M_m be unitary, so X₁ ∈ M_{m,n}.
- $AX = A[X_1 \ X_2] = [AX_1 \ AX_2] = [AX_1 \ 0]$ and $AX_1 \in M_n$ so the preceding case ensures that $AX_1 = V\Sigma W^*$ with unitary $V, W \in M_n$ and $\Sigma = \text{diag}(\sigma_1 \dots, \sigma_n)$ with $\sigma_1 \ge \dots \ge \sigma_n \ge 0$. Then

$$A = \begin{bmatrix} V \Sigma W^* \ 0 \end{bmatrix} X^* = V \begin{bmatrix} \Sigma \ 0 \end{bmatrix} \begin{pmatrix} X \begin{bmatrix} W & 0 \\ 0 & I_{m-n} \end{bmatrix} \end{pmatrix}^* = V \begin{bmatrix} \Sigma \ 0 \end{bmatrix} Z^*$$

• If n > m, apply the preceding case to A^* to get

$$A = V \begin{bmatrix} \Sigma \\ 0 \end{bmatrix} W^*, \quad \Sigma \in M_m$$

イロト イ理ト イミト イミトー

Some consequences of the SVD

- A = VΣW^{*} and both V and W have full rank, so rank A = rank Σ = the number of positive singular values
- The σ²_i are (all of) the eigenvalues of the smaller of AA* or A*A; the larger one has additional (trivial) zero eigenvalues.
- If A → VAW*, then AA* → V(AA*)V* and A*A → W(A*A)W*, so the eigenvalues are preserved in either case. So...unitarily equivalent matrices have the same singular values.
- If $A = V\Sigma W^*$ and $B = U\Sigma Z^*$ then $\Sigma = U^*BZ$ and $A = (VU^*)B(ZW^*)$, so A and B are unitarily equivalent.
- What is a canonical form for unitary equivalence?

• {Σ}

• The factor Σ is uniquely determined, but the unitary factors are *never* uniquely determined: $V \rightarrow -V$ and $W \rightarrow -W$ leaves the SVD unchanged.

・ロト ・個ト ・ヨト ・ヨト

Some consequences of the SVD

- (2.6.5) Nevertheless, all the possible unitary factors for a given $A \in M_{n,m}$ are related in a simple way. If $A = V\Sigma W^* = \hat{V}\Sigma \hat{W}^*$, then
 - There are unitary matrices $U_1, \ldots, U_d, \tilde{V}, \tilde{W}$ such that

•
$$V = V(U_1 \oplus \cdots \oplus U_d \oplus V)$$

• $\hat{W} = W(U_1 \oplus \cdots \oplus U_d \oplus \tilde{W})$

- d = the number of distinct positive singular values
- the size of each U_i is the multiplicity of σ_i
- Using the preceding uniqueness theorem, one can prove a variety of special SVDs for matrices with special properties. For example:
 - Suppose A is symmetric: $A = A^T$. Then $A = V\Sigma W^* \Rightarrow A = A^T = \bar{W}\Sigma V^T$ • $\hat{V} = \bar{W} = V(U_1 \oplus \cdots \oplus U_d \oplus \tilde{V})$
 - $\hat{W} = V^T = W(U_1 \oplus \cdots \oplus U_d \oplus \tilde{W})$
 - With a little work one discovers that each U_i must be symmetric and that there is a single unitary Z such that A = ZΣZ^T. (L. Autonne, ~ 1915) (2.6.6)

イロン 不問と 不良と 不良とう

Some consequences of the SVD

- If A is normal, $A = U\Lambda U^*$, so $AA^* = U\Lambda U^*U\overline{\Lambda}U^* = U|\Lambda|^2 U^*$ and the singular values of A are $|\lambda_i|$
- For what normal matrices are all $\lambda_i = \sigma_i$?
- Singular values are really more like norms than eigenvalues. For example, the spectral norm is

$$\begin{split} \|A\|^2 &= \max_{\|x\|_2=1} \|Ax\|^2 = \max_{\|x\|_2=1} (Ax)^* (Ax) = \max_{\|x\|_2=1} x^* A^* Ax \\ &= \max_{\|x\|_2=1} x^* W \Sigma^2 W^* x = \max_{\|x\|_2=1} (W^* x)^* \Sigma^2 (W^* x) \\ &= \max_{\|\xi\|_2=1} \xi^* \Sigma^2 \xi = \max_{\|\xi\|_2=1} (\sigma_1^2 |\xi_1|^2 + \dots + \sigma_n^2 |\xi_n|^2) = \sigma_1^2 \end{split}$$

• Thus, $\sigma_1(A) = \|A\|$ (unitarily invariant)

Individually, σ₂,..., σ_n are not norms (they can be zero for a nonzero matrix), but the sums σ₁ + σ₂, σ₁ + σ₂ + σ₃, ..., σ₁ + ··· + σ_n are unitarily invariant norms (very important!).

Roger Horn (University of Utah)

- $A = V \Sigma W^*$ has rank $r \Rightarrow A = \sum_{i=1}^r \sigma_i v_i w_i^*$. For any k = 1, ..., k, $\sum_{i=1}^k \sigma_i v_i w_i^*$ is the best rank k approximation to A (in the Frobenius norm (least squares)) (E. Schmidt, ~ 1905)
- Every decent numerical software package today has an SVD routine that is fast and very accurate. It is at the heart of a great many modern numerical algorithms.
- SIAM News article: "SVD is the Swiss Army knife of matrix computation."

イロン 不問と 不良と 不良とう