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Density matrices
In the mathematical formalism of quantum mechanics, instead of

�-tuples of numbers one works with � � � complex matrices.

They form a non-commutative algebra and this allows an
algebraic approach.

In this approach, a probability density is replaced by a positive
semidefinite matrix of trace 1 which is called density matrix.

Statistical operator is an alternative terminology.

The eigenvalues of a density matrix give a probability density.
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Entropies

Von Neumann entropy (von Neumann, 1927):

� � � �� � � 	� � �� � �
Relative entropy (Umegaki, 1962):

� � �� � �� �� � 	 � �� � �� � �� � � � � �� �

Here the functional calculus is used. If

� � and

�� commute, then

the relative entropy is the same as in the classical case.
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Old results
Theorem (von Neumann, 1932): If

�� �� � �

is concave, then�� � �� � � � �

is concave.

Corollary: The von Neumann entropy is concave.

Theorem (Klein � DP): If �
�  
 � � � � �
and



�
 �� �  
 �� �� �� then 


�� �
 � � �  
 �� �� ��

Corollary (Streater, 1985):

� � �	 
 �� �� �
� �� � �	  �� � � � �� �	  � � ��
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Development
Theorem (Lieb concavity, 1973): If

�� �� �

f, then

� � �� � �� � � � ��� � � 	
is concave.
Relative modular operator (cca. 1980):


 � �� � �� 	� 
 �� � �� �
�

Quasi-entropy (DP, 1986):

�� 	 � � 	

� � � �� � �� 	� 
 � � � � � �
� � � � 
 � �� � �� 	 	 � � � � �
� ��

where

� � �

is the Hilbert-Schmidt inner product.

Quasi-entropy is jointly concave � Lieb concavity. Relative
entropy is quasi-entropy. Trieste, July, 2009 – p.5/24



Monotonicity of quasi-entropy
Let �� � � be a mapping between two matrix algebras.
The dual � �� � � with respect to the Hilbert-Schmidt
inner product is positive if and only if � is positive.

�� � � is called a Schwarz mapping if

� �� � � �� � �� � � � �� � �� � � � �

Theorem 1 Assume that

�� � � � �
is an operator monotone

function with

� � � �� �

and �� � � is a unital Schwarz
mapping. Then

� �
�

� � � �� � �	 � � �� � � �� � � � � �
�

�� � 	 � � �

holds for

� � � and for invertible density matrices � � and � �

from the matrix algebra .
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Reduced density

�� � is a density matrix in �
�

�. If

� � � � �
�, then

� � �
�

�.
The reduced density

� � is defined by

�� �� � � � � � 	 
 � �� �� � 	 � � � � � � �� � � �
	

(Physicists notation

� � 
 �� � �

, partial trace.)

Example: Let

�� � 


�� � �� �

�� � �� �

� � �

� �

Then

�� 


�� �� � �� �� �

�� �� � �� �� � � �� 
 �� � � �� � �
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Strong subadditivity of entropy
(Lieb-Ruskai 1973)

� � �� �� � � � � �� � � � � �� � � � � � �� � ��
where

�� �� is a density in � �

�

�

� and
�� � � �� � �� � are

reduced densities. Equivalalent form:

� � �� � � � � �� � � � � �� � � � � � �� � �

This is a particular case of monotonicity,

�	 � �

�

� � �

�

�

�

is the embedding.

What is the necessary and sufficient condition for the equivality?

(This is related to sufficient statistics.) Trieste, July, 2009 – p.8/24



Equality in monotonicity
If

�� �
�

�� � �

�

�

� and

��
�

�� are the reduced densities,
then

� � �� � �� � � � � �� � � �� � �
holds. This is a particular case of the monotonicity thm, but
enough for the proof of the SSA.
Conditions for equality (DP 1986, also in the setting of von
Neumann algebras) are the following:

1.

� ��� �� ��
� 	 � ��� � �� ��
� � for every real �

2.

� ��� � �� ��
� � �

� for every real �

3.


�  �� � 
 �  �� 	 
�  �� � � 
 �  �� � ,
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Markov property
The following conditions are equivalent.

1.

� � �� � � � � � � �� � � � � � �� � � � � � �� �

2.

� ��� � � �� ��

�� � � ��� � �� ��

� for every real �,

3.

� � � �
� � � �� � � �
�� � � � � �
� � �� � � �
�

4.

	� � �� � � � 	� � �� � � 	� � �� � � 	 � � ��

5.

�� � � � � �
�

��� � � �

, where

�

commutes with

�

and

�

, moreover

�

and

�

are in the algebra generated by the
operators

� ��� �� �� ��

� � .

Remark:

� � �� �� �
� � � �� � �� �
� is weaker.

Problem: What about

� �� �� �� ��� � � �� � �� �� for all � � �

?
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Golden-Thompson inequality
Theorem (Golden, Thompson, 1965) For self-adjoint�� � �

�

�� � � � � � � � � � � �
�

(DP, 1994) Equality iff

�� � � �

.

Theorem (Lieb, 1973) For self-adjoint
�� � � � �

�

�� � � � � � � �

�
�

�� � � � �� � �� � � � � � � �� � �� � � �� ��

My problem: Give a new proof and find the equality condition.
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Application to SSA
The operator

� � �
� �� � �� � 	 �� � �� � �� � ��� 

is positive and can be written as

� � for a density matrix �. We
have

� � �� � 
 � � � �� � 
 	 � � �� � � 
 	 � � �� 


 � � �� � � � �� � �� � � 	 � �� � �� � 	 �� � �� � �� � �� � 
 


 � � �� �� � � �

  � � �� � � �

�

 	 �� � �

Therefore,

� � �

implies the positivity of the left-hand-side (and

the strong subadditivity).
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Application to SSA (2)
Due to the Golden-Thompson-Lieb inequality, we have

�� � � �
� �� � 	
 � � �� � 	� � �� � 	��  

�

�
�

�� 	
 � � � � � 	� � 
 	�� � � � � 	� � 
 � �

Applying the partial traces we have

� � 	
 � � � � � 	� � 
 	�� � � � � 	� � 
 � �� 	� � � � � 	� � 
 	� � � � � 	� � 


and that can be integrated out. Hence

�
�

�� 	
 � � � � � 	� � 
 	� � � � � � 	� � 
 � � � �� 	� � �
�

and

� � �

. This gives the strong subadditivity.
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Equality in SSA
If the equality holds in the SSA, then

� � �
� �� � �� 	 
 � � � �	 � � � � �	� �

is a density matrix and

� � �� 	 � 
� � �

� � � � �� 	 
 �� � �	 � �� � �	 � � � � �

implies

�� � �� 	 � � �� � �� 	 
 �� � �	 � �� � �	� �

This is the necessary and sufficient condition for the equality.

Proof is due to József Pitrik, see

D. Petz, Quantum Information Theory and Quantum
Statistics, Springer, Berlin, Heidelberg, 2008.
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Gaussian random triplet

� � , � � and �
� are random vectors with Gaussian joint

distribution

� �� � � � � � �
�

� �

� � �
� �� � �

� � � �
�

�
�� � � �

�

where the quadratic matrix is

� � � � � or a

� � �

block
matrix:

�
�

�
�� �� � �

� �� �
�

� �

� �� � �� �
�

�

Let the distribution of the appropriate marginals be

� �� � � � � �

,� �� � � �
�

�

and
� �� � �

.
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Gaussian Markov triplet
(Ando-DP, 2008) Equivalent conditions:
(1)

� ��
�

� � � � � � � � � ��
�

� � � �

(2)

� � � �

.

(3) The conditional distribution

� ��
�

� � � � � � �
does not

depend on � � .

(4) The covariance matrix of
� � � � � � � �

�

�

is of the form

� � �
�

�

�� � �� � �� � �� �
� �

�� �

� �� �

�� � �� �

� �� �

�� �
� � � �� �

� ���

�
� �

�
�

(5)

� � � � � � � � �
�

� � � � � � � �
�

� � � � � � � � � � � � � � � �

,
where

�

denotes the Boltzmann-Gibbs entropy.
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-algebra
Let

�

be a finite dimensional Hilbert space. Assume that for
every

� � �

a unitary operator

� � �

is given such that the
relations

� �� � � �� � � � �� � �� �
� � �

�� � �� � �
� � � �

and

� � � � � � � � �

hold for

�� �
�� �
� � �

with � � �� �
�� �� � �� � �� �
�� �

.
The C*-algebra generated by these unitaries is unique and
denoted by CCR

� � �

.

� �� � � � 	 � � � � � �� � � � � � � �� � � � �
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Quasi-free state
For

� � � � � � � �

set

� �
� � � � �� � � � �
� � � � � �� � � � �� � � � � �
Assume that

� � � � � � � and write the positive mapping� � � � � �

in the form of block matrix:

� �

�� � �� �

�� � �� � �

If

� � � � , then

� �
� � � � � � � � � � �
� � � � � � � � � � �� �� � � � � �

Therefore the restriction of the quasi-free state � � to CCR

� � � �

is

the quasi-free state � �� � .
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Quasi-free state (2)

Let the spectral decomposition of

� � � � � � � �

be

� �
�

� � �
� � �

� � � �
� � � �

Then the von Neumann entropy of the quasi-free state � � is

� �
� �

� � �� �
� � � 	 � � �
� � � � ��

where �
� � � � 	 � 
�  �.

Remark: The function �
�	 �� � 	 	 
 �  	 � �	 � 
 � 
�  �	 � 
 �

is
matrix monotone.
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Markov triplet
Let C

�� � � � � C

�� � � � � � C

�� � � � � � C

�� � �
�

�

, where� � � � � � � � �
� and let �� �� be a quasi-free state. Then

�� �� �
�

�

�� � �� � �� �

�� � �� � �� �

�
� � �
� � �
� �

�
� � �� � � �� � �

�

�� � �

�� � �� �

�� � �� �

� �� � �

�� � �� �

�
� � �
� �

Definition:

� �
�� � � � � � �
�� � � � � �
�� � � � � �
�� �
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Block matrices
Theorem. (Jenčova-DP-Pitrik, 2008) For a quasi-free state � �

the Markov property is equivalent to the condition

� �� � � � � �� �� �� �� � � � � � �� � � �� � � � � �� �� �� �� � � � � � ��

for every real �, where

� �
�

�

�� � �� � ���

�� � �� � ���

�
� � �
� � �
� �

�
� � � �

�
�

� � �

� �� � �� �

� �
� � �
� �

�
�

and

� �
�

�

�� � �� � �

�� � �� � �

� � �
�

� � � �
�

�

� � �

� �� � �

� � �
�

� �
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Example and result

Proof idea: Von Neumann entropy formula and second
quantization.

Example: The following matrix satisfies the Markov condition.

� �
�

�
�

�
�

�
�

�� � �

� � � �

�
�

�

�

�

� �

�
�

� � � � � � �
� �

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�� � �

�
�

�

�

�

� �

� � �
� �

�
�

�
�

�
�

�

where the parameters ��
�

� ��
�

(and

�

) are matrices.

Theorem. (Jenčova-DP-Pitrik, 2008) This is the only possibility.
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