Summer School and Advanced Workshop on Trends and

 Developments in Linear Algebra22 June - 10 July, 2009

Matrix analysis quantum theory

Dénes Petz
Hungarian Academy of Sciences
Budapest
Hungary

Matrix analysis \bigcap quantum theory

Dénes Petz

Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences

E-mail: petz@math.bme.hu
Home page: http://www.renyi.hu/~ petz

Density matrices

In the mathematical formalism of quantum mechanics, instead of n-tuples of numbers one works with $n \times n$ complex matrices.

They form a non-commutative algebra and this allows an algebraic approach.

In this approach, a probability density is replaced by a positive semidefinite matrix of trace 1 which is called density matrix.

Statistical operator is an alternative terminology.
The eigenvalues of a density matrix give a probability density.

Entropies

Von Neumann entropy (von Neumann, 1927):

$$
S(D):=-\mathrm{Tr} D \log D
$$

Relative entropy (Umegaki, 1962):

$$
S\left(D_{1} \| D_{2}\right):=\operatorname{Tr} D_{1}\left(\log D_{1}-\log D_{2}\right)
$$

Here the functional calculus is used. If D_{1} and D_{2} commute, then the relative entropy is the same as in the classical case.

Old results

Theorem (von Neumann, 1932): If $f: \mathbb{R} \hookrightarrow \mathbb{R}$ is concave, then $A \mapsto \operatorname{Tr} f(A)$ is concave.

Corollary: The von Neumann entropy is concave.
Theorem (Klein \rightarrow DP): If $f_{i}, g_{i}: \mathbb{R} \hookrightarrow \mathbb{R}$ and

$$
\sum_{i} f_{i}(x) g_{i}(y) \geq 0, \quad \text { then } \quad \sum_{i} \operatorname{Tr} f_{i}(A) g_{i}(B) \geq 0
$$

Corollary (Streater, 1985):

$$
S\left(D_{1} \| D_{2}\right) \geq \frac{1}{2} \operatorname{Tr}\left(D_{1}-D_{2}\right)^{2}+\operatorname{Tr} D_{1}-\operatorname{Tr} D_{2}
$$

Development

Theorem (Lieb concavity, 1973): If $0<t<1$ f, then

$$
0 \leq A \mapsto \operatorname{Tr} A^{t} K A^{1-t} K^{*}
$$

is concave.
Relative modular operator (cca. 1980):

$$
\Delta\left(D_{2}, D_{1}\right) X=D_{2} X D_{1}^{-1}
$$

Quasi-entropy (DP, 1986): $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$

$$
S_{f}^{K}\left(D_{1}, D_{2}\right):=\left\langle K D_{1}^{1 / 2}, f\left(\Delta\left(D_{2}, D_{1}\right)\right) K D_{1}^{1 / 2}\right\rangle
$$

where \langle,$\rangle is the Hilbert-Schmidt inner product.$
Quasi-entropy is jointly concave \rightarrow Lieb concavity. Relative entropy is quasi-entropy.

Monotonicity of quasi-entropy

Let $\alpha: \mathcal{M}_{0} \rightarrow \mathcal{M}$ be a mapping between two matrix algebras. The dual $\alpha^{*}: \mathcal{M} \rightarrow \mathcal{M}_{0}$ with respect to the Hilbert-Schmidt inner product is positive if and only if α is positive. $\alpha: \mathcal{M}_{0} \rightarrow \mathcal{M}$ is called a Schwarz mapping if

$$
\alpha\left(B^{*} B\right) \geq \alpha\left(B^{*}\right) \alpha(B) \quad\left(B \in \mathcal{M}_{0}\right)
$$

Theorem 1 Assume that $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ is an operator monotone function with $f(0) \geq 0$ and $\alpha: \mathcal{M}_{0} \rightarrow \mathcal{M}$ is a unital Schwarz mapping. Then

$$
S_{f}^{K}\left(\alpha^{*}\left(\rho_{1}\right), \alpha^{*}\left(\rho_{2}\right)\right) \geq S_{f}^{\alpha(K)}\left(\rho_{1}, \rho_{2}\right)
$$

holds for $K \in \mathcal{M}_{0}$ and for invertible density matrices ρ_{1} and ρ_{2} from the matrix algebra \mathcal{M}.

Reduced density

D_{12} is a density matrix in $M_{n} \otimes M_{m}$. If $A \leftrightarrow A \otimes I_{m}$, then $M_{n} \subset M_{n} \otimes M_{m}$.
The reduced density D_{1} is defined by

$$
\operatorname{Tr} D_{12}(A \otimes B)=\left(\operatorname{Tr} D_{1} A\right) \operatorname{Tr} B \quad\left(A \in M_{n}, B \in M_{m}\right)
$$

(Physicists notation $D_{1}=\mathrm{Tr}_{2} D$, partial trace.)

Example: Let

$$
D_{12}=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \in M_{2} \otimes M_{n}
$$

Then

$$
D_{1}=\left[\begin{array}{cc}
\operatorname{Tr} A_{11} & \operatorname{Tr} A_{12} \\
\operatorname{Tr} A_{21} & \operatorname{Tr} A_{22}
\end{array}\right], \quad D_{2}=A_{11}+A_{22}
$$

Strong subadditivity of entropy

(Lieb-Ruskai 1973)

$$
S\left(D_{123}\right)+S\left(D_{2}\right) \leq S\left(D_{12}\right)+S\left(D_{23}\right)
$$

where D_{123} is a density in $M_{k} \otimes M_{m} \otimes M_{n}$ and D_{12}, D_{2}, D_{23} are reduced densities. Equivalalent form:

$$
S\left(D_{12} \| D \otimes D_{2}\right) \leq S\left(D_{123} \| D \otimes D_{23}\right)
$$

This is a particular case of monotonicity,

$$
\alpha: M_{k} \otimes M_{m} \rightarrow M_{k} \otimes M_{m} \otimes M_{n}
$$

is the embedding.
What is the necessary and sufficient condition for the equivality?
(This is related to sufficient statistics.)

Equality in monotonicity

If $C_{12}, D_{12} \in M_{m} \otimes M_{n}$ and C_{1}, D_{1} are the reduced densities, then

$$
S\left(C_{1} \| D_{1}\right) \leq S\left(C_{12} \| D_{12}\right)
$$

holds. This is a particular case of the monotonicity thm, but enough for the proof of the SSA.
Conditions for equality (DP 1986, also in the setting of von Neumann algebras) are the following:

1. $C_{1}^{\mathrm{it}} D_{1}^{-\mathrm{it}}=C_{12}^{\mathrm{it}} D_{12}^{-\mathrm{it}}$ for every real t
2. $C_{12}^{\mathrm{it}} D_{12}^{-\mathrm{it}} \in M_{m}$ for every real t
3. $\log C_{1}-\log D_{1}=\log C_{12}-\log D_{12}$,

Markov property

The following conditions are equivalent.

1. $S\left(D_{123}\right)-S\left(D_{23}\right)=S\left(D_{12}\right)-S\left(D_{2}\right)$
2. $D_{123}^{\mathrm{it}} D_{23}^{-\mathrm{it}}=D_{12}^{\mathrm{it}} D_{2}^{-\mathrm{it}}$ for every real t,
3. $D_{123}^{1 / 2} D_{23}^{-1 / 2}=D_{12}^{1 / 2} D_{2}^{-1 / 2}$
4. $\quad \log D_{123}-\log D_{23}=\log D_{12}-\log D_{2}$
5. $\quad D_{123}=X Z, \quad D_{23}=Y Z$, where Z commutes with X and Y, moreover X and Y are in the algebra generated by the operators $D_{123}^{\mathrm{it}} D_{23}^{-\mathrm{it}}$.

Remark: $D_{123} D_{23}^{-1}=D_{12} D_{2}^{-1}$ is weaker.
Problem: What about $D_{123}^{n} D_{23}^{-n}=D_{12}^{n} D_{2}^{-n}$ for all $n \in \mathbb{Z}$?

Golden-Thompson inequality

Theorem (Golden, Thompson, 1965) For self-adjoint $A, B \in M_{n}$

$$
\operatorname{Tr} e^{A+B} \leq \operatorname{Tr} e^{A} e^{B}
$$

(DP, 1994) Equality iff $A B=B A$.
Theorem (Lieb, 1973) For self-adjoint $A, B, C \in M_{n}$

$$
\mathrm{T} r e^{A+B+C} \leq \int_{0}^{\infty} \operatorname{Tr}\left(t+e^{-A}\right)^{-1} e^{B}\left(t+e^{-A}\right)^{-1} e^{C} d t
$$

My problem: Give a new proof and find the equality condition.

Application to SSA

The operator

$$
\exp \left(\log D_{12}-\log D_{2}+\log D_{23}\right)
$$

is positive and can be written as $\lambda \omega$ for a density matrix ω. We have

$$
\begin{aligned}
S\left(D_{12}\right)+ & S\left(D_{23}\right)-S\left(D_{123}\right)-S\left(D_{2}\right) \\
& =\operatorname{Tr} D_{123}\left(\log D_{123}-\left(\log D_{12}-\log D_{2}+\log D_{23}\right)\right) \\
& =S\left(D_{123} \| \lambda \omega\right)=S\left(D_{123} \| \omega\right)-\log \lambda
\end{aligned}
$$

Therefore, $\lambda \leq 1$ implies the positivity of the left-hand-side (and the strong subadditivity).

Application to SSA (2)

Due to the Golden-Thompson-Lieb inequality, we have

$$
\begin{aligned}
& \left.\operatorname{Tr} \exp \left(\log D_{12}-\log D_{2}+\log D_{23}\right)\right) \\
\leq & \int_{0}^{\infty} \operatorname{Tr} D_{12}\left(t I+D_{2}\right)^{-1} D_{23}\left(t I+D_{2}\right)^{-1} d t
\end{aligned}
$$

Applying the partial traces we have
$\operatorname{Tr} D_{12}\left(t I+D_{2}\right)^{-1} D_{23}\left(t I+D_{2}\right)^{-1}=\operatorname{Tr} D_{2}\left(t I+D_{2}\right)^{-1} D_{2}\left(t I+D_{2}\right)^{-1}$ and that can be integrated out. Hence

$$
\int_{0}^{\infty} \operatorname{Tr} D_{12}\left(t I+D_{2}\right)^{-1} D_{23}\left(t I+D_{2}\right)^{-1} d t=\operatorname{Tr} D_{2}=1
$$

and $\lambda \leq 1$. This gives the strong subadditivity.

Equality in SSA

If the equality holds in the SSA, then
$\exp \left(\log D_{12}-\log D_{2}+\log D_{23}\right)$ is a density matrix and

$$
S\left(D_{123} \| \exp \left(\log D_{12}-\log D_{2}+\log D_{23}\right)\right)=0
$$

implies

$$
\log D_{123}=\log D_{12}-\log D_{2}+\log D_{23}
$$

This is the necessary and sufficient condition for the equality.
Proof is due to József Pitrik, see

- D. Petz, Quantum Information Theory and Quantum Statistics, Springer, Berlin, Heidelberg, 2008.

Gaussian random triplet

$\mathbf{X}_{1}, \mathbf{X}_{2}$ and \mathbf{X}_{3} are random vectors with Gaussian joint distribution

$$
f\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)=\sqrt{\frac{\operatorname{Det} M}{(2 \pi)^{n}}} \exp \left(-\frac{1}{2}\langle\mathbf{x}, M \mathbf{x}\rangle\right)
$$

where the quadratic matrix M is $3 n \times 3 n$ or a 3×3 block matrix:

$$
M=\left[\begin{array}{ccc}
A_{1} & A_{2} & B_{1} \\
A_{2}^{*} & A_{3} & B_{2} \\
B_{1}^{*} & B_{2}^{*} & D
\end{array}\right]
$$

Let the distribution of the appropriate marginals be $f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$, $f\left(\mathbf{x}_{2}, \mathbf{x}_{3}\right)$ and $f\left(\mathbf{x}_{2}\right)$.

Gaussian Markov triplet

(Ando-DP, 2008) Equivalent conditions:
(1) $\quad f\left(\mathbf{x}_{3} \mid \mathbf{x}_{1}, \mathbf{x}_{2}\right)=f\left(\mathbf{x}_{3} \mid \mathbf{x}_{2}\right)$
(2) $\quad B_{1}=0$.
(3) The conditional distribution $f\left(\mathbf{x}_{3} \mid \mathbf{x}_{1}, \mathbf{x}_{2}\right)$ does not depend on \mathbf{x}_{1}.
(4) The covariance matrix of $\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}\right)$ is of the form

$$
M^{-1}=\left[\begin{array}{ccc}
S_{11} & S_{12} & S_{12} S_{22}^{-1} S_{23} \\
S_{12}^{*} & S_{22} & S_{23} \\
S_{23}^{*} S_{22}^{-1} S_{12}^{*} & S_{23}^{*} & S_{33}
\end{array}\right]
$$

$$
\begin{equation*}
h\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}\right)-h\left(\mathbf{X}_{2}, \mathbf{X}_{3}\right)=h\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)-h\left(\mathbf{X}_{2}\right) \tag{5}
\end{equation*}
$$

where h denotes the Boltzmann-Gibbs entropy.

$C C R$-algebra

Let \mathcal{H} be a finite dimensional Hilbert space. Assume that for every $f \in \mathcal{H}$ a unitary operator $W(f)$ is given such that the relations

$$
W\left(f_{1}\right) W\left(f_{2}\right)=W\left(f_{1}+f_{2}\right) \exp \left(\mathrm{i} \sigma\left(\mathrm{f}_{1}, \mathrm{f}_{2}\right)\right)
$$

and

$$
W(-f)=W(f)^{*}
$$

hold for $f_{1}, f_{2}, f \in \mathcal{H}$ with $\sigma\left(f_{1}, f_{2}\right):=\operatorname{Im}\left\langle f_{1}, f_{2}\right\rangle$.
The C^{*}-algebra generated by these unitaries is unique and denoted by $\operatorname{CCR}(\mathcal{H})$.

$$
C C R\left(\mathcal{H}_{1} \oplus \mathcal{H}_{2}\right)=C C R\left(\mathcal{H}_{1}\right) \otimes C C R\left(\mathcal{H}_{2}\right)
$$

Quasi-free state

For $0 \leq A \in B(\mathcal{H})$ set

$$
\omega_{A}(W(f)):=\exp \left(-\|f\|^{2} / 2-\langle f, A f\rangle\right) .
$$

Assume that $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$ and write the positive mapping $A \in B(\mathcal{H})$ in the form of block matrix:

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] .
$$

If $f \in \mathcal{H}_{1}$, then

$$
\omega_{A}(W(f \oplus 0))=\exp \left(-\|f\|^{2} / 2-\left\langle f, A_{11} f\right\rangle\right) .
$$

Therefore the restriction of the quasi-free state ω_{A} to $\operatorname{CCR}\left(\mathcal{H}_{1}\right)$ is the quasi-free state $\omega_{A_{11}}$.

Quasi-free state (2)

Let the spectral decomposition of $0 \leq A \in B(\mathcal{H})$ be

$$
A=\sum_{i=1}^{m} \lambda_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right| .
$$

Then the von Neumann entropy of the quasi-free state ω_{A} is

$$
S\left(\omega_{A}\right)=\operatorname{Tr} \eta(A)-\operatorname{Tr} \eta(A+I),
$$

where $\eta(t)=-t \log t$.
Remark: The function $\kappa(x):=-x \log x+(x+1) \log (x+1)$ is matrix monotone.

Markov triplet

Let $\operatorname{CCR}(\mathcal{H})=\mathrm{C} C R\left(\mathcal{H}_{1}\right) \otimes \mathrm{C} C R\left(\mathcal{H}_{2}\right) \otimes \mathrm{C} C R\left(\mathcal{H}_{3}\right)$, where $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2} \oplus \mathcal{H}_{3}$ and let ω_{123} be a quasi-free state. Then

$$
\begin{gathered}
\omega_{123} \leftrightarrow\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right], \quad \omega_{2} \leftrightarrow\left[A_{22}\right], \\
\omega_{12} \leftrightarrow\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right], \quad \omega_{23} \leftrightarrow\left[\begin{array}{ll}
A_{22} & A_{23} \\
A_{32} & A_{33}
\end{array}\right]
\end{gathered}
$$

Definition:

$$
S\left(\omega_{123}\right)-S\left(\omega_{23}\right)=S\left(\omega_{12}\right)-S\left(\omega_{1}\right)
$$

Block matrices

Theorem. (Jenčova-DP-Pitrik, 2008) For a quasi-free state ω_{A} the Markov property is equivalent to the condition

$$
A^{\mathrm{it}}(I+A)^{-\mathrm{it}} D^{-\mathrm{it}}(I+D)^{\mathrm{it}}=B^{\mathrm{it}}(I+B)^{-\mathrm{it}} C^{-\mathrm{it}}(I+C)^{\mathrm{it}}
$$

for every real t, where

$$
A=\left[\begin{array}{ccc}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right], \quad D=\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & A_{22} & A_{23} \\
0 & A_{32} & A_{33}
\end{array}\right]
$$

and

$$
B=\left[\begin{array}{ccc}
A_{11} & A_{12} & 0 \\
A_{21} & A_{22} & 0 \\
0 & 0 & I
\end{array}\right], \quad C=\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & A_{22} & 0 \\
0 & 0 & I
\end{array}\right]
$$

Example and result

Proof idea: Von Neumann entropy formula and second quantization.

Example: The following matrix satisfies the Markov condition.

$$
A=\left[\begin{array}{ccc}
A_{11} & {\left[\begin{array}{ll}
a & 0
\end{array}\right]} & 0 \\
{\left[\begin{array}{c}
a^{*} \\
0
\end{array}\right]} & {\left[\begin{array}{ll}
c & 0 \\
0 & d
\end{array}\right]} & {\left[\begin{array}{l}
0 \\
b
\end{array}\right]} \\
0 & {\left[\begin{array}{ll}
0 & b^{*}
\end{array}\right]} & A_{33}
\end{array}\right]=\left[\begin{array}{cc}
{\left[\begin{array}{cc}
A_{11} & a \\
a^{*} & c
\end{array}\right]} & 0 \\
& \\
0 & {\left[\begin{array}{cc}
d & b \\
b^{*} & A_{33}
\end{array}\right]}
\end{array}\right],
$$

where the parameters a, b, c, d (and 0) are matrices.
Theorem. (Jenčova-DP-Pitrik, 2008) This is the only possibility.

References

D. Petz, Quasi-entropies for finite quantum systems, Rep. Math. Phys., 23(1986), 57-65.

- D. Petz, Sufficient subalgebras and the relative entropy of states of a von Neumann algebra, Commun. Math. Phys. 105(1986), 123-131.
- M. Ohya and D. Petz, Quantum Entropy and Its Use: Springer-Verlag, Heidelberg, 1993. Second edition 2004.
- D. Petz, Monotone metrics on matrix spaces, Linear Algebra Appl. 244(1996), 81-96.

Recent references

A. Jenčova and D. Petz, Sufficiency in quantum statistical inference, Commun. Math. Phys. 263(2006), 259-276.

- D. Petz, Quantum Information Theory and Quantum Statistics, Springer, Berlin, Heidelberg, 2008.
- A. Jenčova, D. Petz and J. Pitrik, Markov triplets on CCR-algebras, to be published in Acta Szeged.
- T. Ando and D. Petz, Gaussian Markov triplets approached by block matrices, Acta Sci. (Szeged) 75(2009), 265-281.

