

2044-9

Summer School and Advanced Workshop on Trends and Developments in Linear Algebra

22 June - 10 July, 2009

Matrix analysis quantum theory

Dénes Petz Hungarian Academy of Sciences Budapest Hungary

petz@math.bme.hu hetg:@www.kun9ilhu/~petz http://www.renyi.hu/~petz

Matrix analysis \bigcap **quantum theory**

Dénes Petz

Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences

E-mail: petz@math.bme.hu

Home page: http://www.renyi.hu/~ petz

Matrix analysis \bigcap quantum theory – p.1/24

Density matrices

In the mathematical formalism of quantum mechanics, instead of n-tuples of numbers one works with $n \times n$ complex matrices.

They form a non-commutative algebra and this allows an algebraic approach.

In this approach, a probability density is replaced by a positive semidefinite matrix of trace 1 which is called **density matrix**.

Statistical operator is an alternative terminology.

The eigenvalues of a density matrix give a probability density.

Entropies

Von Neumann entropy (von Neumann, 1927):

 $S(D) := -\mathrm{T}rD\log D$

Relative entropy (Umegaki, 1962):

 $S(D_1 || D_2) := \operatorname{Tr} D_1(\log D_1 - \log D_2)$

Here the functional calculus is used. If D_1 and D_2 commute, then the relative entropy is the same as in the classical case.

Old results

Theorem (von Neumann, 1932): If $f : \mathbb{R} \hookrightarrow \mathbb{R}$ is concave, then $A \mapsto \operatorname{Tr} f(A)$ is concave.

Corollary: The von Neumann entropy is concave.

Theorem (Klein \rightarrow DP): If $f_i, g_i : \mathbb{R} \hookrightarrow \mathbb{R}$ and

$$\sum_{i} f_i(x)g_i(y) \ge 0, \quad \text{then} \quad \sum_{i} \operatorname{Tr} f_i(A)g_i(B) \ge 0.$$

Corollary (Streater, 1985):

$$S(D_1 || D_2) \ge \frac{1}{2} \operatorname{Tr}(D_1 - D_2)^2 + \operatorname{Tr}D_1 - \operatorname{Tr}D_2$$

Development

Theorem (Lieb concavity, 1973): If 0 < t < 1f, then

 $0 \le A \mapsto \mathrm{T} r A^t K A^{1-t} K^*$

is concave.

Relative modular operator (cca. 1980):

 $\Delta(D_2, D_1)X = D_2 X D_1^{-1}$

Quasi-entropy (DP, 1986): $f : \mathbb{R}^+ \to \mathbb{R}$

 $S_f^K(D_1, D_2) := \langle KD_1^{1/2}, f(\Delta(D_2, D_1))KD_1^{1/2} \rangle,$

where \langle , \rangle is the Hilbert-Schmidt inner product.

Quasi-entropy is jointly concave \rightarrow Lieb concavity. Relative entropy is quasi-entropy. Trieste, July, 2009 – p.5/24

Monotonicity of quasi-entropy

Let $\alpha : \mathcal{M}_0 \to \mathcal{M}$ be a mapping between two matrix algebras. The dual $\alpha^* : \mathcal{M} \to \mathcal{M}_0$ with respect to the Hilbert-Schmidt inner product is positive if and only if α is positive. $\alpha : \mathcal{M}_0 \to \mathcal{M}$ is called a **Schwarz mapping** if

 $\alpha(B^*B) \ge \alpha(B^*)\alpha(B) \qquad (B \in \mathcal{M}_0).$

Theorem 1 Assume that $f : \mathbb{R}^+ \to \mathbb{R}$ is an operator monotone function with $f(0) \ge 0$ and $\alpha : \mathcal{M}_0 \to \mathcal{M}$ is a unital Schwarz mapping. Then

$$S_f^K(\alpha^*(\rho_1), \alpha^*(\rho_2)) \ge S_f^{\alpha(K)}(\rho_1, \rho_2)$$

holds for $K \in \mathcal{M}_0$ and for invertible density matrices ρ_1 and ρ_2 from the matrix algebra \mathcal{M} .

Trieste, July, 2009 - p.6/24

Reduced density

 D_{12} is a density matrix in $M_n \otimes M_m$. If $A \leftrightarrow A \otimes I_m$, then $M_n \subset M_n \otimes M_m$. The reduced density D_1 is defined by

 $TrD_{12}(A \otimes B) = (TrD_1A)TrB \qquad (A \in M_n, B \in M_m)$

(Physicists notation $D_1 = Tr_2D$, partial trace.)

Example: Let

$$D_{12} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \in M_2 \otimes M_n.$$

Then

$$D_{1} = \begin{bmatrix} TrA_{11} & TrA_{12} \\ TrA_{21} & TrA_{22} \end{bmatrix}, \quad D_{2} = A_{11} + A_{22}$$

Trieste, July, 2009 - p.7/24

Strong subadditivity of entropy

(Lieb-Ruskai 1973)

 $S(D_{123}) + S(D_2) \le S(D_{12}) + S(D_{23}),$

where D_{123} is a density in $M_k \otimes M_m \otimes M_n$ and D_{12}, D_2, D_{23} are reduced densities. Equivalalent form:

 $S(D_{12} || D \otimes D_2) \le S(D_{123} || D \otimes D_{23})$

This is a particular case of monotonicity,

 $\alpha: M_k \otimes M_m \to M_k \otimes M_m \otimes M_n$

is the embedding.

What is the necessary and sufficient condition for the equivality? (This is related to sufficient statistics.)

Equality in monotonicity

If $C_{12}, D_{12} \in M_m \otimes M_n$ and C_1, D_1 are the reduced densities, then

 $S(C_1 || D_1) \le S(C_{12} || D_{12})$

holds. This is a particular case of the monotonicity thm, but enough for the proof of the SSA.Conditions for equality (DP 1986, also in the setting of von Neumann algebras) are the following:

1. $C_1^{\text{it}} D_1^{-\text{it}} = C_{12}^{\text{it}} D_{12}^{-\text{it}}$ for every real t

2. $C_{12}^{\text{it}} D_{12}^{-\text{it}} \in M_m$ for every real t

3. $\log C_1 - \log D_1 = \log C_{12} - \log D_{12}$,

Markov property

The following conditions are equivalent.

$$I. S(D_{123}) - S(D_{23}) = S(D_{12}) - S(D_2)$$

2.
$$D_{123}^{\text{it}} D_{23}^{-\text{it}} = D_{12}^{\text{it}} D_2^{-\text{it}}$$
 for every real t ,

3.
$$D_{123}^{1/2} D_{23}^{-1/2} = D_{12}^{1/2} D_2^{-1/2}$$

4.
$$\log D_{123} - \log D_{23} = \log D_{12} - \log D_2$$

5. $D_{123} = XZ$, $D_{23} = YZ$, where Z commutes with X and Y, moreover X and Y are in the algebra generated by the operators $D_{123}^{\text{it}} D_{23}^{-\text{it}}$.

Remark: $D_{123}D_{23}^{-1} = D_{12}D_2^{-1}$ is weaker.

Problem: What about $D_{123}^n D_{23}^{-n} = D_{12}^n D_2^{-n}$ for all $n \in \mathbb{Z}$?

Golden-Thompson inequality

Theorem (Golden, Thompson, 1965) For self-adjoint $A, B \in M_n$

$$\mathrm{T}re^{A+B} \leq \mathrm{T}re^{A}e^{B}.$$

(DP, 1994) Equality iff AB = BA.

Theorem (Lieb, 1973) For self-adjoint $A, B, C \in M_n$

$$\operatorname{Tr} e^{A+B+C} \le \int_0^\infty \operatorname{Tr}(t+e^{-A})^{-1} e^B (t+e^{-A})^{-1} e^C dt.$$

My problem: Give a new proof and find the equality condition.

Application to SSA

The operator

$$\exp(\log D_{12} - \log D_2 + \log D_{23})$$

is positive and can be written as $\lambda \omega$ for a density matrix ω . We have

$$S(D_{12}) + S(D_{23}) - S(D_{123}) - S(D_2)$$

= TrD₁₂₃ (log D₁₂₃ - (log D₁₂ - log D₂ + log D₂₃))
= S(D_{123} || \lambda \omega) = S(D_{123} || \omega) - log \lambda

Therefore, $\lambda \leq 1$ implies the positivity of the left-hand-side (and the strong subadditivity).

Application to SSA (2)

Due to the Golden-Thompson-Lieb inequality, we have

$$Tr \exp(\log D_{12} - \log D_2 + \log D_{23}))$$

$$\leq \int_0^\infty \mathrm{T} r D_{12} (tI + D_2)^{-1} D_{23} (tI + D_2)^{-1} dt$$

Applying the partial traces we have

 $TrD_{12}(tI+D_2)^{-1}D_{23}(tI+D_2)^{-1} = TrD_2(tI+D_2)^{-1}D_2(tI+D_2)^{-1}$

and that can be integrated out. Hence

$$\int_0^\infty \mathrm{T} r D_{12} (tI + D_2)^{-1} D_{23} (tI + D_2)^{-1} dt = \mathrm{T} r D_2 = 1.$$

and $\lambda \leq 1$. This gives the strong subadditivity.

Trieste, July, 2009 - p.13/24

Equality in SSA

If the equality holds in the SSA, then $\exp(\log D_{12} - \log D_2 + \log D_{23})$ is a density matrix and

 $S(D_{123} \| \exp(\log D_{12} - \log D_2 + \log D_{23})) = 0$

implies

$$\log D_{123} = \log D_{12} - \log D_2 + \log D_{23}.$$

This is the necessary and sufficient condition for the equality.

Proof is due to József Pitrik, see

 D. Petz, Quantum Information Theory and Quantum Statistics, Springer, Berlin, Heidelberg, 2008.

Gaussian random triplet

 $\mathbf{X}_1, \mathbf{X}_2$ and \mathbf{X}_3 are random vectors with Gaussian joint distribution

$$f(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) = \sqrt{\frac{\operatorname{Det}M}{(2\pi)^n}} \exp\left(-\frac{1}{2}\langle \mathbf{x}, M\mathbf{x} \rangle\right),$$

where the **quadratic matrix** M is $3n \times 3n$ or a 3×3 block matrix:

$$M = \begin{bmatrix} A_1 & A_2 & B_1 \\ A_2^* & A_3 & B_2 \\ B_1^* & B_2^* & D \end{bmatrix}$$

Let the distribution of the appropriate marginals be $f(\mathbf{x}_1, \mathbf{x}_2)$, $f(\mathbf{x}_2, \mathbf{x}_3)$ and $f(\mathbf{x}_2)$.

Trieste, July, 2009 - p.15/24

Gaussian Markov triplet

(Ando-DP, 2008) Equivalent conditions:

- (1) $f(\mathbf{x}_3|\mathbf{x}_1,\mathbf{x}_2) = f(\mathbf{x}_3|\mathbf{x}_2)$
- (2) $B_1 = 0.$

(3) The conditional distribution $f(\mathbf{x}_3|\mathbf{x}_1,\mathbf{x}_2)$ does not depend on \mathbf{x}_1 .

(4) The covariance matrix of (X_1, X_2, X_3) is of the form

$$M^{-1} = \begin{bmatrix} S_{11} & S_{12} & S_{12}S_{22}^{-1}S_{23} \\ S_{12}^* & S_{22} & S_{23} \\ S_{23}^*S_{22}^{-1}S_{12}^* & S_{23}^* & S_{33} \end{bmatrix}$$

(5) $h(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3) - h(\mathbf{X}_2, \mathbf{X}_3) = h(\mathbf{X}_1, \mathbf{X}_2) - h(\mathbf{X}_2),$ where *h* denotes the Boltzmann-Gibbs entropy.

CCR-algebra

Let \mathcal{H} be a finite dimensional Hilbert space. Assume that for every $f \in \mathcal{H}$ a unitary operator W(f) is given such that the relations

$$W(f_1)W(f_2) = W(f_1 + f_2) \exp(i\sigma(f_1, f_2))$$

and

$$W(-f) = W(f)^*$$

hold for $f_1, f_2, f \in \mathcal{H}$ with $\sigma(f_1, f_2) := \text{Im}\langle f_1, f_2 \rangle$. The C*-algebra generated by these unitaries is unique and denoted by $\text{CCR}(\mathcal{H})$.

$$CCR(\mathcal{H}_1 \oplus \mathcal{H}_2) = CCR(\mathcal{H}_1) \otimes CCR(\mathcal{H}_2)$$

Quasi-free state

For $0 \leq A \in B(\mathcal{H})$ set

$$\omega_A(W(f)) := \exp(-\|f\|^2/2 - \langle f, Af \rangle).$$

Assume that $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ and write the positive mapping $A \in B(\mathcal{H})$ in the form of block matrix:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}.$$

If $f \in \mathcal{H}_1$, then

$$\omega_A(W(f \oplus 0)) = \exp(-\|f\|^2/2 - \langle f, A_{11}f \rangle).$$

Therefore the restriction of the quasi-free state ω_A to $CCR(\mathcal{H}_1)$ is the quasi-free state $\omega_{A_{11}}$.

Trieste, July, 2009 - p.18/24

Quasi-free state (2)

Let the spectral decomposition of $0 \le A \in B(\mathcal{H})$ be

$$A = \sum_{i=1}^{m} \lambda_i |e_i\rangle \langle e_i|.$$

Then the von Neumann entropy of the quasi-free state ω_A is

$$S(\omega_A) = \mathrm{T}r\eta(A) - \mathrm{T}r\eta(A+I),$$

where $\eta(t) = -t \log t$.

Remark: The function $\kappa(x) := -x \log x + (x+1) \log(x+1)$ is matrix monotone.

Trieste, July, 2009 - p.19/24

Markov triplet

Let $CCR(\mathcal{H}) = CCR(\mathcal{H}_1) \otimes CCR(\mathcal{H}_2) \otimes CCR(\mathcal{H}_3)$, where $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \mathcal{H}_3$ and let ω_{123} be a quasi-free state. Then

$$\omega_{123} \leftrightarrow \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}, \quad \omega_2 \leftrightarrow \begin{bmatrix} A_{22} \end{bmatrix},$$
$$\omega_{12} \leftrightarrow \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad \omega_{23} \leftrightarrow \begin{bmatrix} A_{22} & A_{23} \\ A_{32} & A_{33} \end{bmatrix}$$

Definition:

$$S(\omega_{123}) - S(\omega_{23}) = S(\omega_{12}) - S(\omega_1)$$

Trieste, July, 2009 - p.20/24

Block matrices

Theorem. (Jenčova-DP-Pitrik, 2008) For a quasi-free state ω_A the Markov property is equivalent to the condition

$$A^{\rm it}(I+A)^{-\rm it}D^{-\rm it}(I+D)^{\rm it} = B^{\rm it}(I+B)^{-\rm it}C^{-\rm it}(I+C)^{\rm it}$$

for every real t, where

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}, \quad D = \begin{bmatrix} I & 0 & 0 \\ 0 & A_{22} & A_{23} \\ 0 & A_{32} & A_{33} \end{bmatrix}$$

and

H

$$B = \begin{bmatrix} A_{11} & A_{12} & 0 \\ A_{21} & A_{22} & 0 \\ 0 & 0 & I \end{bmatrix}, \quad C = \begin{bmatrix} I & 0 & 0 \\ 0 & A_{22} & 0 \\ 0 & 0 & I \end{bmatrix}$$

 $Trieste, \ July, \ 2009-p.21/24$

Example and result

Proof idea: Von Neumann entropy formula and second quantization.

Example: The following matrix satisfies the Markov condition.

$$A = \begin{bmatrix} A_{11} & [a & 0] & 0 \\ \\ \begin{bmatrix} a^* \\ 0 \end{bmatrix} & \begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix} & \begin{bmatrix} 0 \\ b \end{bmatrix} \\ \begin{bmatrix} 0 \\ b \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} A_{11} & a \\ a^* & c \end{bmatrix} & 0 \\ \\ \begin{bmatrix} a^* \\ 0 \end{bmatrix} & \begin{bmatrix} a \\ b \end{bmatrix} \\ \\ \begin{bmatrix} d \\ b^* \end{bmatrix} \\ \\ \begin{bmatrix} d \\ b^* \end{bmatrix} \\ \end{bmatrix},$$

where the parameters a, b, c, d (and 0) are matrices.

Theorem. (Jenčova-DP-Pitrik, 2008) This is the only possibility.

Trieste, July, 2009 – p.22/24

References

- D. Petz, Quasi-entropies for finite quantum systems, Rep. Math. Phys., 23(1986), 57-65.
- D. Petz, Sufficient subalgebras and the relative entropy of states of a von Neumann algebra, Commun. Math. Phys. 105(1986), 123–131.
- M. Ohya and D. Petz, *Quantum Entropy and Its Use*: Springer-Verlag, Heidelberg, 1993. Second edition 2004.
- D. Petz, Monotone metrics on matrix spaces, Linear Algebra Appl. 244(1996), 81–96.

Recent references

- A. Jenčova and D. Petz, Sufficiency in quantum statistical inference, Commun. Math. Phys. 263(2006), 259–276.
- D. Petz, Quantum Information Theory and Quantum Statistics, Springer, Berlin, Heidelberg, 2008.
- A. Jenčova, D. Petz and J. Pitrik, Markov triplets on CCR-algebras, to be published in Acta Szeged.
- T. Ando and D. Petz, Gaussian Markov triplets approached by block matrices, Acta Sci. (Szeged) 75(2009), 265–281.

