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Introduction to Quantum Computing

Photon Polarization:

source filter A                         detector

Photon: Polarization direction



Two orthogonal Filter:

source filter A             filter C     detector



Three filter in 45°

source A           B        C     detector



Explanation:

Photon polarization can be described as direction
That is a linear combination of up↑ or right→ .

Description in a vector space of the form

ψ = a |↑> + b |→>    with |a|2 + |b|2 = 1

|a|2 the probability for state |↑>

The three filters in the previous example
are related to polarization direction

↑ (A) ,       (B) , and     → (C ). 



Filter A restricts the photon ψ to  ist component |↑> .

If this photon beam reaches filter C, it is restricted to its
→ orthogonal component, that is zero.

With additional filter B in between, |↑> is restricted
to its 45°     component φ.

Additional filter C restricts φ to  → .

A

C:   Output 0

A

B

C:   Output: 1/8



State space representation for quantum system:

Quantum state can be measured as |0>  or |1>.

General state can be described as   a  |0> + b |1>
with |a|2 + |b|2 =1    or
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Measuring forces the state to be |0>   or |1> .

Inner product between state vectors |x> and |y>:
<x| |y> = <x|y>   in  bra-ket notation (equiv. to xTy).



Outer product (matrix):  |x><y|, e.g. ( ) ⎟⎟
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Outer product can also be used to describe transformations
of quantum states:
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Different descriptions for operator X:



Quantum Bit = Qubit
Qubit is a unit vector in a two-dimensional complex
vector space with fixed basis, denoted by { |0>, |1> }

The orthonormal basis can be related e.g. to 
- polarization ↑ and →
- spin up and down (1/2 or -1/2) of an electron or a nucleus.

The basis states |0>  and  |1> represent the classical
bit values 0 and 1. Each measurement gives only |0> or |1>.

But qubits can be in a superposition of |0> and |1>, e.g.
a |0> + b |1>  with complex a,b of norm 1.

|a|2 and |b|2 giving the probabilities of state |0> or |1>.



Quantum bit can be in infinitely many superposition states,
but we can extract only a single bit‘s worth of information:

Measurement forces the state to |0> or |1> with only two
possible results. 

Measurement changes the system! 

Realization of Qubits?



Qubits can be realized by Nuclear Magnetic Resonance NMR
as spin of a number of nuclei of a molecule in a liquid that
contains a large number of these molecules.



Molecule: 13C trichloroethylene (TCE).

Nuclei: hydrogen nucleus (proton) has strong magnetic moment.

Inside powerful external magnetic field, each proton‘s spin
prefers to align itself with the field.

By RF pulses spin direction can be induced to tip off-axis
static field leads to precession around the main axis.

The magnetic field induces by the precessing protons can be
detected by magnetic induction.

Two possible states of spin can have different energy level
in view of the external magnetic field.



Multiple Qubits:

Consider n-particle quantum system.

Classical: the space of n-particel system, where each
particel has two possible states, can be described
by a 2n-dimensional vector space.
Cartesian product: 

Quantum system: Description in  2n-dimensional vector space!
Tensor product:                                             )dim()dim()dim( YXYX ⋅=⊗

)dim()dim()dim( YXYX +=×

Four basis vector for two states:

>⊗>>⊗>>⊗>>⊗> 1|1|,0|1|,1|0|,0|0|



Excursion: Tensor product of matrices and vectors:
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Abbreviation:
first second qubit

>>>>>=⊗> 11|,10|,01|,00|0|0|

>+>+>+>>= 11|10|01|00|| dcbax

4 basis states for two qubits:

Dimension of two qubit state space: 2*2=4



Basis is given by |000> , … , |111>  and each state can
be described in this basis as superposition by

a1 |000> + a2 |001> +  … + a8 |111>     with a1 … a8, ,  ||a||=1.
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3 qubits lead to  23=8 dimensional space, 
q qubits to 2q dimensional space.

Example: Three qubits



Some states cannot be described by the decomposition
into two separated component states:

>+>>= 11|00|| y
( ) ( ) ybdbcadacdcba >≠+>+>+>=>+>⊗>+> 11|10|01|00|1|0|1|0|

Such states are called entangled states, they have no
classical counterpart.

Exponential growth of state space suggests possible
exponential speed-up of computations
on quantum computers!

Entangled States:



Quantum Gates – Pauli Matrices
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Four unitary basis matrices for four-dim. space of 
unitary 2 x 2 matrices.

Possible transformations (quantum gate) for one qubit.

Identity

Negation, Px

Phase shift, Py

Combination of X and Y, Pz



Two-Qubit Gate:   Cnot

>→>
>→>
>→>
>→>

10|11|
11|10|
01|01|
00|00|:notC

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0100
1000
0010
0001

Cnot acts as the identity on the second qubit iff the
first qubit is in state |0>;
If the first qubit is |1>, the second qubit is changed like X.
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Representation by tensor product and Pauli matrices:



Two-Qubit Gate:   Walsh-Hadamard Transformation
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Application generates a superposition of all 2n

possible states:



Quantum Gate Arrays
Quantum gates are always unitary operators.
In order to model a classical function f(x) we consider
a quantum gate array Uf defined by

>⊕→> )(,|,|: xfyxyxU f

where denotes the bitwise exclusive-OR.

Uf is unitary and can be realized by quantum gate array. 

⊕

To computed f(x) we apply Uf on |x,0>.
The result f(x) can be read of as the value y with

)(0)()( xfyxfxf ⊕==⊕



Quantum Parallelism
Uf is applied to an input vector in superposition.
Hence, Uf is applied to all basis vectors in the
superposition simultaneously and will generate
a superposition of the results.
In this way it is possible to compute f(x) for n values of x 
in a single application of Uf.

Start with n-qubit state |00…0>.
Apply Walsh-Hadamard transformation W superposition
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computes f(x) by n qubits with 2n states simultaneously.
Problem: Measurement and interpretation of output.

Famous quantum algorithms:
-Quantum Fourier Transform

(of length 2m with m(m+1)/2 gates)
-Shor‘s algorithm for factoring n-digit numbers

(in polynomial time)
- Grover‘s search algorithm (O(√n))



Unitary Matrices and Lie Algebras

Quantum Algorithm Unitary Matrix

Space of unitary matrices U is a Lie Group
U is a smooth manifold and a group where multiplication
and inversion are smooth mappings.

The tangential space T to U in identity I is a Lie Algebra:

hermitianHUiHU U ,),exp( ∈=

Mapping from the vector space of hermitian matrices
in the unitary Lie group:

is called the exponential mapping.



Important Lie Groups and Lie Algebras:

SU(n): unitary matrices with det(U)=1
su(n): hermitian matrices with trace = 0

exp(iH):  su(n) → SU(n)

trace(H)=0 → 1)0exp(exp)exp())det(exp())det(exp( ==⎟⎟
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U(n): unitary matrices
u(n): hermitian matrices

exp(iH): u(n) → U(n)
HH UiUUiUiH ⋅Λ⋅=Λ= )exp()exp()exp(



Quantum Dynamics
Wave function ψ(t) describes the state of a quantum system
depending of time t.
Vector |ψ(t)> element of Hilbert space with orthogonal
basis |ψk(t)>, k=1,2,…

∑ >=<>>=
k kkkk ctct ψψψψ |,)(|)(|

Change of |ψ(t)> in time is described by the
Hamilton operator H and follows the Schrödinger equation
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Stationary solution: >⋅−>=>= )0(|)exp()0(|)()(| ψψψ iHttUt



Hamiltonian H is Hermitian.

The real eigenvalues of H are the energy levels
of stationary states described by the related
eigenvectors:

>>= kkk EH ψψ ||

Hamiltonian H  =  Hdrift +  Hcontrol
internal coupling external pulse



Numerical Problems

1. Mathematical properties of related matrices

2. Matrix exponential

3. Quantum compiler and parallel matrix multiplication

4. Approximating the smallest eigenvalue of huge H

5. Solving linear systems



1. Properties of Matrices in 
Quantum Computing

Numerical methods should take into account special properties
of the considered matrices, as

-sparsity (e.g. PDE,…)

-structure (e.g. FFT, symplectic)

-general dense



Typical Matrices I
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Typical Matrices II
1D spin chain, drift Hamiltonian
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Typical Pattern

Sparsity:
O(n log(n))

Structured:
constant
along
diagonals

1D spin chain, control Hamiltonian



Typical matrices III
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Properties of matrices
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Px is circulant and symmetric persymmetric:
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Circulant Matrices
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Fourier-Matrix  Fn , unitary, symmetric, 
are closely related to the Discrete Fourier Transform (FFT)  
( All computations can be done in O(n log(n)) )
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Symmetric Persymmetric
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Hx is symmetric, persymmetric,    
p-level circulant
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Py is skewcirculant and antisymmetric persymmetric:
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Hy is skewsymmetric
persymmetric, 

p-level skewcirculant
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Hzz is diagonal and 
symmetric persymmetric
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Pz is skewpersymmetric (change of sign).

Therefore, Hzz is again persymmetric.



Matrix H=Hzz+Hx+Hy ?
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aPx+bPy is ω-zirkulant:

Consider

( ) ( ) ( )pyxp DDHHDD ⊗⊗⋅+⋅⊗⊗ LL 11Therefore,

is real symmetric p-level circulant. 
Furthermore:
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H=Hzz+Hx+Hy ?

( ) ( ) ( )pzzyxp DDHHHDD ⊗⊗⋅++⋅⊗⊗ LL 11Therefore,

is real symmetric and is build from two matrices,

that are both persymmetric.  

All computations for  Hx + Hy + Hzz can be reduced
to two real matrices A1 and A2 of half size.
Improvement of upto a factor  16.      
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Computation of eigendecoposition

zzyx HHHH ++=

By diagonal matrix D the matrix H can be  transformed
into a real symmetric persymmetric matrix R, which can 
be reduced by U into a real Block matrix diag(A,B): 

( ) ( ) DU
B

A
DUDUHDUDUDUDDRDHDDDH TTT

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
====

0
0

Eigendecomposition of A and B eigendecomposition of H.



2. Computation of exponential of a 
matrix
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Cancellation for exp(-x)



Basic facts:

)exp()exp()exp( BABA ⋅≠+

Scaling and Squaring:
pp

BAA p 22)2/exp()exp( ==

Allows numerical stable computation by
B = exp(A/2p);
for j = 1 : p

B = B*B;
end

Compute exp(A/2p) and recover exp(A)!



1. Padé approximation:
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with polynomials pn and qn such that the series expansion
of  pn(x)/qn(x)  coincides with exp(x) for the first 2n coefficients.

2. Eigendecomposition of A:
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3. Chebychev Expansion:

For  -1<x<1: ∑
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with Tk(x) Chebychev polynomial of first kind
and  Jk(x) Bessel function.

Finite Chebychev expansion sn(x) is defined as
Least Squares approximation of the form
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Chebychev expansion for matrix A:
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Three-term recursion for Tk(x) gives polynomial coefficients
of sn(x)  with O(n-1) matrix multiplications:

n
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Faster methods for computing sn(A) by partitioning, e.g.:
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Takes only n/2+1 matrix products.



Fastest evaluation of matrix polynomial:
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takes matrix multiplications:  A2 ,…, Ak-1, Ak,…,A(k-1)k,
and the products of powers of A with partial polynomials:

(k-2) + (k-1) + (k-1) = 3k-2 = O(√n)   matrix multiplications.



Example:   n=8   and k=3
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takes matrix multiplications:  A2 , A3, A6,
and the products of A3 and A6 with partial polynomials:

5 matrix multiplications (instead of 7 with Horner).



3. Quantum Compiler

Quantum algorithm is described by unitary matrix UG .

Find optimal implementation of UG , e.g. on NMR, 
using elementary Quantum gates!

Find short factorization of UG in terms of elementary
tensor products of Pauli matrices.

Leads to numerical optimization problem.



Compilization

Elementary Quantum transformations represented by
unitary matrices exp(i*Hj) with

Sequence of Quantum transformations by
exp(i*H1)*…*exp(i*Hm) =! exp(i*H) = UG

Find smallest number of factors, defined by αk,j.

Numerical tasks connected with this optimization problem:

Compute Uj = exp(i*Hj)
Compute all products U1*U2, U1*U2*U3, …    U1*U2*…*Um

)()(
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k
jkj QQH ⊗⊗=∑ Lα



Parallel Multiple Matrix 
Multiplication

Compute

for all k=1,2,…,N  

with n x n – matrices U1, … , UN

Total costs sequentially:   N*n3

kk UUUH ⋅⋅⋅= L21,1

There exist fast matrix-matrix algorithms that are
faster than  n3 (Strassen, group-theoretic)
Conjecture:  O(n2+ε)



Block Column Parallel

U1 U2 U3 U4 U5 U6 U7 U8

Distribute U8 on k processors p1 … pk together with full  U7 .

p1….…..pk

):1(:,):1(:,):1(:, 1872187187

21

nnUUnnUUnUU
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L

Gives  H7,8 = U7 U8



Block Column Parallel

U1 U2 U3 U4 U5 U6 H78

Send full U6 to all processors p1 … pk .

p1….…..pk

):1(:,):1(:,):1(:, 1786217861786
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Gives  H6,8 = U6 U7 U8



Block Column Parallel

U1 U2 U3 U4 U5 H68

Send full U5 to all processors p1 … pk .

p1….…..pk

):1(:,):1(:,):1(:, 1685216851685

21

nnHUnnHUnHU

ppp

k

k

+⋅+⋅⋅ −L

L

Gives  H5,8 = U5 U6 U7 U8



Block Column Parallel

U1 H28

Send full U1 to all processors p1 … pk .

p1….…..pk

):1(:,):1(:,):1(:, 1281212811281
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Gives  H1,8 = U1 … U6 U7 U8



Costs in Parallel:

U1 U2 U3 U4 U5 U6 U7 U8

N-1  times  n2 * n/k =    (N-1)*n3 / k

For  N   matrices  of  n x n size with  k processors.

Especially  for 8 matrices and 4 processors:    (7/4)*n3

p1….…..pk



Parallel Prefix Tree

U1 U2 U3 U4 U5 U6 U7 U8

P1 P2 P3 P4

U1 U2 U3 U4 U5 U6 U7 U8

U12 U3 U12 U34 U56 U7 U56 U78

U1234 U5 U1234
U56 U1234 U567 U1234

U5678



Parallel Prefix Tree

P1 P2 P3 P4

U1 U2 U3 U4 U5 U6 U7 U8

U12 U34 U56 U78

U123 U1234 U567 U5678

U12345 U123456 U1234567 U12345678



Parallel Prefix Tree

Costs:   log(N)*n3 with  N/2 processors

Especially:  3*n3

A little bit more expensive than the columnwise method,

but less communication/storage.



4. Smallest Eigenvalue
Given Hamiltonian H for p qubits, p more than 50.

Problem: Size of H is 250 ~ 1.1*1015

Lowest energy level is given by the smallest eigenvalue

Numerical task:
Compute approximation to smallest eigenvalue of H,
but H is so large that it is not possible to build
vector of this size!



Use Rayleigh Quotient based on special vectors
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Consider only vectors such that Hx is computable, e.g.
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Find  xj
(k) that minimize the Rayleigh Quotient



5. Linear Systems

( ) bxiH =−− ηωSolve

for η→0

with H hermitian indefinite.

Use iterative solver GMRES, Bicgstab,…?

Spectrum:
imag

- i η

real



( ) IiH ⋅−− ηω

Hermitian part:           H-ω,  indefinite

Skewhermitian part:    -η·I,     positive definite

Because of the special hermitian/skewhermitian structure
GMRES (Arnoldi) leads to a tridiagonal upper
Hessenberg matrix:

Short recurrence, cheap iterative step.

GMRES MINRES cg on normal equations
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