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Introduction to Quantum Computing

Photon: Polarization direction <~ N

Photon Polarization:

source filter A detector



Two orthogonal Filter:

source filter A fiter C  detector



Three filter in 45°

source A B C detector



Explanation:

Photon polarization can be described as direction
That is a linear combination of up? or right— .

Description in a vector space of the form
Y =al|t>+b|—>> with |a]*+ |b]*=1

|a|? the probability for state |1>

The three filters in the previous example
are related to polarization direction

T(A), (B),and —(C).



Filter A restricts the photon p to ist component |1>.

If this photon beam reaches filter C, it is restricted to its
— orthogonal component, that is zero.

With additional filter B in between, |1> is restricted
to its 45° 7 component @.

Additional filter C restricts ¢ to — .

A A

B
> C: Output 0 C: Output: 1/8




State space representation for quantum system:

Quantum state can be measured as |0> or [1>.

General state can be describedas a [0>+Db |1>
with |a|? + |b|2=1 or

ol

Measuring forces the state to be |0> or [1>.

Inner product between state vectors |x> and |y>:
<x| ly> = <x|]y> in bra-ket notation (equiv. to x'y).



Outer product (matrix): |[x><y|, e.g. |0><1|= (;j(o 1):(8 (1)]

Outer product can also be used to describe transformations
of quantum states:

0 1
X =0><1|+|1><0]|=
1 0

Different descriptions for operator X:

g X(a]0>+b|1>)=(0><1|+|1><0|)fa|0>+b|1>)=

=all>+b|0>

0 1)(a) (b X: 0> = |1>
_ 1 0oJlb) la 1> — [0>




Quantum Bit = Qubit

Qubit is a unit vector in a two-dimensional complex
vector space with fixed basis, denoted by {|0>, |1>}

The orthonormal basis can be related e.g. to
- polarization 1 and —

- spin up and down (1/2 or -1/2) of an electron or a nucleus.

The basis states |0> and |1> represent the classical
bit values 0 and 1. Each measurement gives only |0> or |1>.

But qubits can be in a superposition of |0> and |1>, e.q.
a |[0> + b |1> with complex a,b of norm 1.

|a|? and |b|? giving the probabilities of state |0> or |1>.



Quantum bit can be in infinitely many superposition states,
but we can extract only a single bit's worth of information:

Measurement forces the state to |0> or |1> with only two
possible results.

Measurement changes the system!

Realization of Qubits?



Qubits can be realized by Nuclear Magnetic Resonance NMR
as spin of a number of nuclei of a molecule in a liquid that
contains a large number of these molecules.
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Molecule: 3C trichloroethylene (TCE).
Nuclei: hydrogen nucleus (proton) has strong magnetic moment.

Inside powerful external magnetic field, each proton‘s spin
prefers to align itself with the field.

By RF pulses spin direction can be induced to tip off-axis =
static field leads to precession around the main axis.

The magnetic field induces by the precessing protons can be
detected by magnetic induction.

Two possible states of spin can have different energy level
in view of the external magnetic field.



Multiple Qubits:

Consider n-particle quantum system.

Classical: the space of n-particel system, where each
particel has two possible states, can be described
by a 2n-dimensional vector space.
Cartesian product: dim(X xY)=dim(X)+dim(Y)

Quantum system: Description in 2"-dimensional vector space!
Tensor product:  diIm(X ®Y ) =dim(X)-dim(Y)

Four basis vector for two states:
I0>®|[0>, |0>®|[1> [1>®|0>, [1>&|1>



Excursion: Tensor product of matrices and vectors:

Matrices A= (aj,k)n B= (br,S)TS:1 = A®B= (aj,k : B)”

j k=1 J,k=1
10 11|20 22
Example: of10 11)_|12 13|24 26
3 4) (12 13) |30 33|40 44
36 39| 48 52

Vectors  x=(x;)_.y=(y, )y =x®y=(xy -~ %)

J

1 2 3)®10 11)=(10 11|20 22|30 33)



Abbreviation: |0 > ® |0 >:|¢OO\>’ 101>, [10>, [11>

first second qubit

4 basis states for two qubits:

|x>=a|00>+b|01>+c|10>+d |11>

Dimension of two qubit state space: 2*2=4



Example: Three qubits

Basis is given by |[000>, ..., |111> and each state can
be described in this basis as superposition by

a, [000> + a, [001> + ... +a4|111> witha, ... ag, ||a||=1.

1000 >=

:@j@@@@: 05/0(0>

o O O O O O O Bk

3 qubits lead to 23=8 dimensional space,
g qubits to 29 dimensional space.



Entangled States:

Some states cannot be described by the decomposition
iInto two separated component states:

|ly>=[00>+|11>
(a]0>+b|1>)®(c|0>+d |1>)=ac|00> +ad | 01> +bc|10 > +bd |11># y

Such states are called entangled states, they have no
classical counterpart.

Exponential growth of state space suggests possible
exponential speed-up of computations
on quantum computers!



Quantum Gates — Pauli Matrices

| : 10> — |O>

|1>
X |0 >
11>
Y: |0 >

11>

Z: |0 >
11>

_)

¢¢¢¢¢

%

|O>
—1|1>
10>
|0 >
—1>

1 0
o
0 1
2o

o
o )

|dentity
Negation, P,

Phase shift, Py

Combination of Xand Y, P,

Possible transformations (quantum gate) for one qubit.

Four unitary basis matrices for four-dim. space of
unitary 2 x 2 matrices.



Two-Qubit Gate: C,
Cnot : 00> — 00 > 1 0 0 O
0l> —» |01> 0 1 0 0
10> — (11> 0 0 0 1
11> — [10> 0O 010

C..: acts as the identity on the second qubit iff the
first qubit is in state |0>;
If the first qubit is |1>, the second qubit is changed like X.

Representation by tensor product and Pauli matrices:

Co=(I®N+ZR1+I1QX-ZQRX)/2=
=((1+2)®1+(1-Z)®X)/2



Two-Qubit Gate: Walsh-Hadamard Transformation

One-dim. case: H: [0> — %(|0>+|1>)
11> — %(|0>—|1>)
n-dim. case: W=H®H®---®H

Application generates a superposition of all 2"
possible states:

(HOH®---®@H)|00---0 >=

1
\/27((|O>+|1>)®(|O>+|1>)®-“®(|0>+|1>)):




Quantum Gate Arrays

Quantum gates are always unitary operators.
In order to model a classical function f(x) we consider
a quantum gate array U; defined by

U, [x,y> — [x,y® f(x)>

where @ denotes the bitwise exclusive-OR.

U; is unitary and can be realized by quantum gate array.

To computed f(x) we apply U; on [x,0>.
The result f(x) can be read of as the value y with

f(X)® f(X)=0=y® f(X)



Quantum Parallelism

U; is applied to an input vector in superposition.

Hence, U; is applied to all basis vectors in the
superposition simultaneously and will generate

a superposition of the resuilts.

In this way it is possible to compute f(x) for n values of x
in a single application of U..

Start with n-qubit state |00...0>.
Apply Walsh-Hadamard transformation W - superposition

(HORH®---®H)|00---0 >=
1

J2r

(0>+|1>)®---®(0>+]1>))= L 2Z| j>




1 2 1 2" -1
U | X,0> |= U.(x0>)=
[Ez j T V1 00%)

n

N

1 2"-1

\/27j0|x,f(x)>

computes f(x) by n qubits with 2" states simultaneously.
Problem: Measurement and interpretation of output.

Famous quantum algorithms:
-Quantum Fourier Transform
(of length 2™ with m(m+1)/2 gates)
-Shor's algorithm for factoring n-digit numbers
(in polynomial time)
- Grover's search algorithm (O(¥n))



Unitary Matrices and Lie Algebras

Quantum Algorithm <-> Unitary Matrix

Space of unitary matrices U is a Lie Group

U is a smooth manifold and a group where multiplication
and inversion are smooth mappings.

The tangential space T to U in identity | is a Lie Algebra:

Mapping from the vector space of hermitian matrices
in the unitary Lie group:

U=exp(iH), UeU, H hermitian

IS called the exponential mapping.



Important Lie Groups and Lie Algebras:

U(n): unitary matrices
u(n): hermitian matrices

exp(iH): u(n) — U(n)
exp(iH) =exp(iUAU ™) =U -exp(iA)-U"

SU(n): unitary matrices with det(U)=1
su(n): hermitian matrices with trace = 0

exp(iH): su(n) — SU(n)

trace(H)=0 —det(exp(iH)) = det(exp(iA)) = Hexp(iﬂj) = exp(Z Mj] =exp(0) =1



Quantum Dynamics

Wave function y(t) describes the state of a quantum system
depending of time t.

Vector |y(t)> element of Hilbert space with orthogonal
basis |y, (1)>, k=1,2,...

) >=> ¢ ly ()> ¢ =<wly >

Change of |y(t)> in time is described by the
Hamilton operator H and follows the Schrodinger equation

170 o= L HOIV O >

Stationary solution: |y (t) >=U (t) | (0) >=exp(-iHt)- | v (0) >



Hamiltonian H is Hermitian.

The real eigenvalues of H are the energy levels
of stationary states described by the related
eigenvectors:

Hly, >=E |y, >

Hamiltonian H = Hgx + Heontrol

internal coupling  external pulse



Numerical Problems

1. Mathematical properties of related matrices

2. Matrix exponential

3. Quantum compiler and parallel matrix multiplication
4. Approximating the smallest eigenvalue of huge H

5. Solving linear systems



1. Properties of Matrices in
Quantum Computing

Numerical methods should take into account special properties
of the considered matrices, as

-sparsity (e.g. PDE,...)
-structure (e.g. FFT, symplectic)

-general dense



Typical Matrices |
> xQY ©Q - ®Qy

q
QY e{I,P,,P,,P,}: Pauli matrices

] X 1

Q) describing the interaction between different
quantum states.

Usually, most of the Q® are .

The other are P,, P, or P,

j
,®®1,P.®1,®--®1,

J
,®-1,OP,®1,®--1,OP,®1,®:-1,



Typical Matrices |l

1D spin chain, drift Hamiltonian

O——@

H=c¢,-P. ®P ®I ®| @

to, 1 ®P ®P ®| ®I

to, | @I ®P. QP ®

fo, 101 ®1 ®P ®P




Typical Pattern

1D spin chain, control Hamiltonian

Sparsity: L
O(n log(n))
Structured:
constant 27
along al
diagonals




Typical matrices Il

é j
H, :Zaj .(|2®...®I2®PX®|2®...®|2j

J=1

P j
H, :Zb_ .(|2®...®|2®Py®|2®...®|2j

J
j=1

p j K
LIRS SN (SR TR RSN
<k=1

2
j



Properties of matrices

All Pauli matrices are unitary and hermitian

0 1
P = :
o



0 1
P = ;
1o

P, is circulant and symmetric persymmetric:

. c, ¢ - C., C._
Circulant: > e
Cn—l C0 Cl Cn—2
Cn—2 Cn—l CO :
Cl
Cl Cn—2 Cn—l C0
Symmetric Persymmetric: J.c.J=C"(=C)

: : : 0 1
J is Anti-Identity J[ . }




Circulant Matrices

Fourier-Matrix F, , unitary, symmetric,
are closely related to the Discrete Fourier Transform (FFT)
( All computations can be done in O(n log(n)) )

. n-1 n-1
271 . 0 \n—1 1 @ 0]
Fn - (exp£ kaj - (wjk )j,k=0 e . :
n i k=0 : . :
1 a)n—l L a)(n—l)(n—l)

Circulant matrix describes convolution: C = FnH -A-F

1 1
F2:1 1 Px:Fz‘Dz'Fz



Symmetric Persymmetric

P, is symmetric with respect to the main diagonal and
with respect to the anti-diagonal:

E R P B R e
v

A=JC)] and B=JB'J

R R AT

_[A+BI+BT+JC) A-BJ+JB'-JCI|_,(A+BJ O
A+BJ-JB"-JC] A-BJ-JB" +JCJ 0 A-BJ



H, is symmetric, persymmetric,
p-level circulant

p J
H, =Zaj -(|2®---®|2®PX®|2®---®|2j

j=1

can be diagonalized in the form F, ®---®F,

Furthermore J=J,®---®J,

By this formula J H, J =H, can be reducedto JP,J=P,.



Skewcirculant:

(can be reduced to the
circulant case by a diagonal
Transformation!)

Skewsymmetric Persymmetric:

Sn—2
Sl
SO
—S,2 —Spa
T
U PU

Sn—l
Sn—2
: [=Q.C-Q
Sl
S0
() *
* 0



H, Is skewsymmetric
persymmetric,
p-level skewcirculant

P ]
H,=> b, .(|2®-~®|2®Py®|2®.--®|2j

j=1

can be diagonalized by (ﬁz F,Q, )® Y (ﬁz F,Q, )

0O B
Furthermore U'-H ,-U :[ 1)
B, 0



H,, is diagonal and
symmetric persymmetric

1 O p k
P = : =Y ¢, ( ®---1, ®P®I ®- --I2®PZ®I2®---I2J
O —1 j<k=1

P, is skewpersymmetric (change of sign).

Therefore, H_, is again persymmetric.



Matrix H=H,,+H,+H, ?

. I¢
Consider apx+bpy:(0 CJ:( 0 e )

c 0 re’” 0

aP,+bP, is w-zirkulant:

1 0 Y1 0) — 0
|0 e " |=Dlp,+br D= '|=C
0 e’/ re™ 0 e’ Y r 0

Therefore, (D,®---®D,)-(H,+H,)(D,®--®D,)

IS real symmetric p-level circulant.
Furthermore:

(O, ®---®D,)H, (D,®--®D,)=H,

z



H=H,,+H,+H, ?

Therefore, (D,®---®D,)-(H,+H,+H,)(D,®--®D,)

IS real symmetric and is build from two matrices,

that are both persymmetric.

It holds
U™-(D,®--®D,)(H,+H,+H,)(D,®--®D,)-U =(€‘1 2]

All computations for H, + H, + H,, can be reduced
to two real matrices A, and A, of half size.
Improvement of upto a factor 16.



Computation of eigendecoposition
H=H,+H, +H,

By diagonal matrix D the matrix H can be transformed
iInto a real symmetric persymmetric matrix R, which can
be reduced by U into a real Block matrix diag(A,B):

H = D(DHD)D = DRD = DU(UTDHDU U ™D = DU(S EJUTD

Eigendecomposition of A and B - eigendecomposition of H.



2. Computation of exponential of a
matrix

Definition:  exp(A) =e* =3 A*/k!
k=0

,19 dubious ways to compute the exponential of a matrix”
Moler, van Loan

Example: Taylor expansion is numerically instable

k 5 100¢
100 0
exp[ j = Z(loo 0 J/ kl= k!

—_ — k — k
0 -100 0 (-100) 0 3 (—100)
k!

Cancellation for exp(-x)



Basic facts:
exp(A+ B) = exp(A)-exp(B)

Scaling and Squaring:
exp(A) = exp(A/2°P)* =B?
Compute exp(A/2P) and recover exp(A)!

Allows numerical stable computation by

B = exp(A/2P);
forj=1:p
B = B*B;

end



1. Padé approximation:
Pr (X)

d,(X)

exp(X) ~ — exp(A) ~ 0, (A) - p,(A)

with polynomials p,, and g, such that the series expansion
of p,(x)/q,(x) coincides with exp(x) for the first 2n coefficients.

2. Eigendecomposition of A:

exp(4,) )
exp(A) =exp(UAU ") =U exp(AU"™ =U u"

\_ exp(ﬂ“n ))




3. Chebychev Expansion:

For -1<x<1: e’ =J,(i)+2-D 1" ()T (x)
k=1

with T,(x) Chebychev polynomial of first kind
and J,(x) Bessel function.

Finite Chebychev expansion s (x) is defined as
Least Squares approximation of the form

dx dx

I,

e" -5 (x)2 _min |
n ‘ B peP, J-1

2
e~ p(x)| - —

1—x° —X



Chebychev expansion for matrix A:

exp(A) ~ J,(i) -1 + 2310, ()T, (A) =5, (A)

Three-term recursion for T,(x) gives polynomial coefficients
of s,(x) with O(n-1) matrix multiplications:

s,(A)=a,l +a,A+---+a A"
Faster methods for computing s, (A) by partitioning, e.g.:

s (A)=a,l +a, A’ +--+a, A"+ A-la,| +a,A*+---a, A"
n 0 2 2m ai 3 2m-1

Takes only n/2+1 matrix products.



Fastest evaluation of matrix polynomial:

k: n=k*-1

S, (X) =8yl +--+a, ;AT + A" -(ao,ll et ak_l,lAk‘1)+
+ A% -(ao,zl TR ak_l,zAk‘l)Jr SNt

(k-1)k k-1
+ A -(ao,k_ll 4ot ak_l,k_lA )

takes matrix multiplications: AZ,..., Akl Ak ... AkTDk
and the products of powers of A with partial polynomials:

(k-2) + (k-1) + (k-1) = 3k-2 = O(\n) matrix multiplications.



Example: n=8 and k=3

S,(X) =8yl +a,,A+a,,A2+ A (a,| +a,,A+a,, A% )+
+A°-(ay,l +a,,A+a,,A’)

takes matrix multiplications: A2, A3, AS,
and the products of A3 and A® with partial polynomials:

5 matrix multiplications (instead of 7 with Horner).



3. Quantum Compiler

Quantum algorithm is described by unitary matrix Ug .

Find optimal implementation of U, , e.g. on NMR,
using elementary Quantum gates!

Find short factorization of Ug in terms of elementary
tensor products of Pauli matrices.

Leads to numerical optimization problem.



Compilization
Elementary Quantum transformations represented by
unitary matrices exp(i*H,) with H, => a, Q¥ ®---® Q¥
Sequence of Quantum transformations by
exp(i*H4)*...*exp(i*H,) =! exp(i*H) = Ug
Find smallest number of factors, defined by a ;.

Numerical tasks connected with this optimization problem:

Compute U; = exp(i*H;)
Compute all products U,*U,, U,*U,*U,, ... U U,*...*U_



Parallel Multiple Matrix
Multiplication

Compute Hl,k:U1°U2 ..... Uk
for all k=1,2,...,N

with n x n —matrices U,, ..., Uy

Total costs sequentially: N*n3

There exist fast matrix-matrix algorithms that are
faster than n3 (Strassen, group-theoretic)
Conjecture: O(n?*)



Block Column Parallel

U, [l U, | Uy | U, || U

Us

Distribute Ug on k processors p,
Py P2

U, -Ug(01:n) | U, -Ug(t,n, +1:n,)

Gives H; g =U; Ug

... p together with full U .

Pk

U, -Ug(:,n_, +1:n)



Block Column Parallel

U,

U,

Us

U

Us

Send full Ug to all processors p;, ...

Py

U,-H,(:1:n)

Us-H,,(:,n+1:n,)

P2

Gives Hgg = Ug U; Ug

Py -

Py

- |Ug-H(,n , +1:n)




Block Column Parallel

Send full U to all processors p;, ...

Py

U.,-Hg(21:n)

Gives Hgg = Ug Ug U, Ug

U,

U,

Us

U,

U, -Hg(:,n +1:n,)

P2

Py -

Py

- |Ug-Hg(:,n_,+1:n)




Block Column Parallel

Send full U, to all processors p, ... p -

Py P2 T P«

U -Hy(Cl:n)| U, -H(,n+1:n,)| -+ (U -H(,n,_,+1:n)




Costs in Parallel:

N-1 times n?*n/k = (N-1)*n3/k

For N matrices of n x n size with k processors.

Especially for 8 matrices and 4 processors: (7/4)*n3



Parallel Prefix Tree

U, || U, Us || U, Us || Ug U; || Ug

U, | Uy [l us || udll | g || U U, || U,

Uspj| Us //12 Uz, Uss|| U7 Uss|| Uzs

U139 Us U,oq Use U134 User U, Users
P, P P,




Parallel Prefix Tree

U, | | U, || U, | U,
\/
Ui, Usq
Ui23 LJml
U 12345 U 123456
F)1 F)Z

Us

Us

N/

U56

U567

U 1234567

Uy

N/

U78

U567E

N

U123

45678




Parallel Prefix Tree

Costs: log(N)*n3 with N/2 processors

Especially: 3*n3
A little bit more expensive than the columnwise method,

but less communication/storage.



4. Smallest Eigenvalue

Given Hamiltonian H for p qubits, p more than 50.
Problem: Size of His 2°0 ~1.1*101°

Lowest energy level is given by the smallest eigenvalue

Numerical task:

Compute approximation to smallest eigenvalue of H,
but H is so large that it is not possible to build
vector of this size!



Use Rayleigh Quotient based on special vectors

. X" Hx
min o
x=0 X X

— ﬂ’min(H)
M

H=> o Q¥ ®--eQy
k=1

Consider only vectors such that Hx is computable, e.g.
x=> x® - @x{
k

Find x{& that minimize the Rayleigh Quotient



5. Linear Systems

Solve (H —a)—iU)X=b
for n—0
with H hermitian indefinite.
Use iterative solver GMRES, Bicgstab,...?

Spectrum:

...................................................................................................................

»real




(H-w)-in-I

Hermitian part: H-w, indefinite

Skewhermitian part: -n-l, positive definite

Because of the special hermitian/skewhermitian structure
GMRES (Arnoldi) leads to a tridiagonal upper
Hessenberg matrix:

Short recurrence, cheap iterative step.

GMRES <-> MINRES < - cg on normal equations
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