Numerical Methods for Quantum Computing

Thomas Huckle

Computer Science / Mathematics
Technische Universität München

Introduction to Quantum Computing

Photon: Polarization direction

Photon Polarization:

Two orthogonal Filter:

Three filter in 45°

Explanation:

Photon polarization can be described as direction That is a linear combination of up \uparrow or right \rightarrow.

Description in a vector space of the form

$$
\psi=a|\uparrow>+b| \rightarrow>\text { with }|a|^{2}+|b|^{2}=1
$$

$|\mathrm{a}|^{2}$ the probability for state $\mid \uparrow>$

The three filters in the previous example are related to polarization direction

$$
\uparrow(A), \quad \nearrow(B) \text {, and } \quad \rightarrow(C) .
$$

Filter A restricts the photon ψ to ist component | $\uparrow>$.
If this photon beam reaches filter C, it is restricted to its \rightarrow orthogonal component, that is zero.

With additional filter B in between, $\mid \uparrow>$ is restricted to its $45^{\circ} \nearrow$ component φ.
Additional filter C restricts φ to \rightarrow.

Output: 1/8

State space representation for quantum system:

Quantum state can be measured as |0> or |1>.
General state can be described as a |0> +b|1> with $|a|^{2}+|b|^{2}=1$ or

$$
a\binom{1}{0}+b\binom{0}{1}
$$

Measuring forces the state to be $|0\rangle$ or $|1\rangle$.
Inner product between state vectors $\mid x>$ and $\mid y>$: $<x| | y>=<x \mid y>$ in bra-ket notation (equiv. to $x^{\top} y$).

Outer product (matrix): $|x><y|$, e.g. $|0><1|=\binom{1}{0}\left(\begin{array}{ll}0 & 1\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$

Outer product can also be used to describe transformations of quantum states:

$$
X=|0><1|+|1><0|=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Different descriptions for operator X :

$$
\begin{aligned}
& X(a|0>+b| 1>)=(|0><1|+|1><0|)(a|0>+b| 1>)= \\
& =a|1>+b| 0> \\
& \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \cdot\binom{a}{b}=\binom{b}{a} \\
& X:|0>\rightarrow| 1> \\
& |1>\rightarrow| 0\rangle
\end{aligned}
$$

Quantum Bit $=$ Qubit

Qubit is a unit vector in a two-dimensional complex vector space with fixed basis, denoted by $\{|0\rangle, \mid 1>\}$

The orthonormal basis can be related e.g. to

- polarization \uparrow and \rightarrow
- spin up and down (1/2 or $-1 / 2$) of an electron or a nucleus.

The basis states $\mid 0>$ and $\mid 1>$ represent the classical bit values 0 and 1 . Each measurement gives only $|0\rangle$ or $|1\rangle$.

But qubits can be in a superposition of $\mid 0>$ and $\mid 1>$, e.g. $\mathrm{a}|0>+\mathrm{b}| 1>$ with complex a, b of norm 1 .
$|a|^{2}$ and $|b|^{2}$ giving the probabilities of state $\mid 0>$ or $\mid 1>$.

Quantum bit can be in infinitely many superposition states, but we can extract only a single bit's worth of information:

Measurement forces the state to |0> or |1> with only two possible results.

Measurement changes the system!

Realization of Qubits?

Qubits can be realized by Nuclear Magnetic Resonance NMR as spin of a number of nuclei of a molecule in a liquid that contains a large number of these molecules.

Molecule: ${ }^{13} \mathrm{C}$ trichloroethylene (TCE).
Nuclei: hydrogen nucleus (proton) has strong magnetic moment.
Inside powerful external magnetic field, each proton's spin prefers to align itself with the field.

By RF pulses spin direction can be induced to tip off-axis \rightarrow static field leads to precession around the main axis.

The magnetic field induces by the precessing protons can be detected by magnetic induction.

Two possible states of spin can have different energy level in view of the external magnetic field.

Multiple Qubits:

Consider n-particle quantum system.
Classical: the space of n-particel system, where each particel has two possible states, can be described by a 2 n -dimensional vector space.
Cartesian product: $\operatorname{dim}(X \times Y)=\operatorname{dim}(X)+\operatorname{dim}(Y)$
Quantum system: Description in $2^{\text {n-dimensional vector space! }}$
Tensor product: $\quad \operatorname{dim}(X \otimes Y)=\operatorname{dim}(X) \cdot \operatorname{dim}(Y)$
Four basis vector for two states:

$$
|0>\otimes| 0>, \quad|0>\otimes| 1>, \quad|1>\otimes| 0>, \quad|1>\otimes| 1>
$$

Excursion: Tensor product of matrices and vectors:

Matrices $\quad A=\left(a_{j, k}\right)_{j, k=1}^{n}, B=\left(b_{r, s}\right)_{r, s=1}^{m} \Rightarrow A \otimes B=\left(a_{j, k} \cdot B\right)_{j, k=1}^{n}$

Example:

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \otimes\left(\begin{array}{ll}
10 & 11 \\
12 & 13
\end{array}\right)=\left(\begin{array}{ll|ll}
10 & 11 & 20 & 22 \\
12 & 13 & 24 & 26 \\
\hline 30 & 33 & 40 & 44 \\
36 & 39 & 48 & 52
\end{array}\right)
$$

Vectors $\quad x=\left(x_{j}\right)_{j=1}^{n}, y=\left(y_{r}\right)_{r=1}^{m} \Rightarrow x \otimes y=\left(\begin{array}{lll}x_{1} y & \cdots & x_{n} y\end{array}\right)$

$$
\left.\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \otimes\left(\begin{array}{ll}
10 & 11
\end{array}\right)=\left(\begin{array}{lll}
10 & 11 \mid 20 & 22 \mid 30
\end{array}\right) 33\right)
$$

Abbreviation: $|0>\otimes| 0\rangle=|\underset{\substack{\text { first second qubit }}}{\substack{\text { for }}}| \quad|01>, \quad| 10>, \quad \mid 11>$

4 basis states for two qubits:

$$
|x>=a| 00>+b|01>+c| 10>+d \mid 11>
$$

Dimension of two qubit state space: $2 * 2=4$

Example: Three qubits

Basis is given by |000> , ... , |111> and each state can be described in this basis as superposition by

```
a
```

$\left|000>=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)=\binom{1}{0} \otimes\binom{1}{0} \otimes\binom{1}{0}=|0>|0>| 0>\right.$
3 qubits lead to $2^{3}=8$ dimensional space, q qubits to 2^{q} dimensional space.

Entangled States:

Some states cannot be described by the decomposition into two separated component states:

$$
|y>=|00>+| 11>
$$

$(a|0>+b| 1>) \otimes(c|0>+d| 1>)=a c|00>+a d| 01>+b c|10>+b d| 11>\neq y$
Such states are called entangled states, they have no classical counterpart.

Exponential growth of state space suggests possible exponential speed-up of computations on quantum computers!

Quantum Gates - Pauli Matrices

I	$\begin{aligned} & \|0\rangle \rightarrow\|0\rangle \\ & \|1>\rightarrow\| 1\rangle \end{aligned}$	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	Identity
X :	$\begin{aligned} & \|0\rangle \rightarrow\|1\rangle \\ & \|1\rangle \rightarrow\|0\rangle \end{aligned}$	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	Negation, P_{x}
Y :	$\begin{aligned} & \|0>\rightarrow-i\| 1> \\ & \|1>\rightarrow i\| 0> \end{aligned}$	$i\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$	Phase shift, P_{y}
Z:	$\begin{aligned} & \|0>\rightarrow\| 0\rangle \\ & \|1>\rightarrow-\| 1\rangle \end{aligned}$	$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$	Combination of X and Y, P_{z}

Possible transformations (quantum gate) for one qubit.
Four unitary basis matrices for four-dim. space of unitary 2×2 matrices.

Two-Qubit Gate: $\mathrm{C}_{\text {not }}$
$\mathrm{C}_{\text {not }}$ acts as the identity on the second qubit iff the first qubit is in state $\mid 0>$;
If the first qubit is |1>, the second qubit is changed like X.

Representation by tensor product and Pauli matrices:

$$
\begin{aligned}
C_{\text {not }} & =(I \otimes I+Z \otimes I+I \otimes X-Z \otimes X) / 2= \\
& =((I+Z) \otimes I+(I-Z) \otimes X) / 2
\end{aligned}
$$

Two-Qubit Gate: Walsh-Hadamard Transformation

One-dim. case:

$$
\begin{aligned}
H: \mid 0> & \rightarrow \frac{1}{\sqrt{2}}(|0>+| 1>) \\
\mid 1> & \rightarrow \frac{1}{\sqrt{2}}(|0>-| 1>)
\end{aligned}
$$

n-dim. case:

$$
W=H \otimes H \otimes \cdots \otimes H
$$

Application generates a superposition of all 2^{n} possible states:

$$
\begin{aligned}
& (H \otimes H \otimes \cdots \otimes H) \mid 00 \cdots 0>= \\
& \left.=\frac{1}{\sqrt{2^{n}}}(|0>+| 1>) \otimes(|0>+| 1>) \otimes \cdots \otimes(|0>+| 1>)\right)= \\
& \left.=\frac{1}{\sqrt{2^{n}}} \sum_{j=0}^{2^{n}-1} \right\rvert\, j>
\end{aligned}
$$

Quantum Gate Arrays

Quantum gates are always unitary operators.
In order to model a classical function $f(x)$ we consider a quantum gate array U_{f} defined by

$$
U_{f}:|x, y\rangle \rightarrow|x, y \oplus f(x)\rangle
$$

where \oplus denotes the bitwise exclusive-OR.
U_{f} is unitary and can be realized by quantum gate array.
To computed $f(x)$ we apply U_{f} on $|x, 0\rangle$.
The result $f(x)$ can be read of as the value y with

$$
f(x) \oplus f(x)=0=y \oplus f(x)
$$

Quantum Parallelism

U_{f} is applied to an input vector in superposition. Hence, U_{f} is applied to all basis vectors in the superposition simultaneously and will generate a superposition of the results.
In this way it is possible to compute $f(x)$ for n values of x in a single application of U_{f}.

Start with n-qubit state |00...0>.
Apply Walsh-Hadamard transformation W \rightarrow superposition

$$
\begin{aligned}
& (H \otimes H \otimes \cdots \otimes H) \mid 00 \cdots 0>= \\
& \left.=\frac{1}{\sqrt{2^{n}}}((|0>+| 1>) \otimes \cdots \otimes(|0>+| 1>))=\frac{1}{\sqrt{2^{n}}} \sum_{j=0}^{2^{n-1}} \right\rvert\, j>
\end{aligned}
$$

$$
\begin{aligned}
U_{f}\left(\frac{1}{\sqrt{2^{n}}} \sum_{j=0}^{2^{n}-1}|x, 0\rangle\right) & =\frac{1}{\sqrt{2^{n}}} \sum_{j=0}^{2^{n}-1} U_{f}(|x, 0\rangle)= \\
& \left.=\frac{1}{\sqrt{2^{n}}} \sum_{j=0}^{2^{n}-1} \right\rvert\, x, f(x)>
\end{aligned}
$$

computes $f(x)$ by n qubits with 2^{n} states simultaneously. Problem: Measurement and interpretation of output.

Famous quantum algorithms:
-Quantum Fourier Transform
(of length 2^{m} with $m(m+1) / 2$ gates)
-Shor's algorithm for factoring n -digit numbers
(in polynomial time)

- Grover‘s search algorithm $(O(\sqrt{ } n))$

Unitary Matrices and Lie Algebras

Quantum Algorithm $\leftrightarrow \rightarrow$ Unitary Matrix
Space of unitary matrices \boldsymbol{U} is a Lie Group
\boldsymbol{U} is a smooth manifold and a group where multiplication and inversion are smooth mappings.

The tangential space \boldsymbol{T} to \boldsymbol{U} in identity I is a Lie Algebra:
Mapping from the vector space of hermitian matrices in the unitary Lie group:

$$
U=\exp (i H), \quad U \in U, \quad H \quad \text { hermitian }
$$

is called the exponential mapping.

Important Lie Groups and Lie Algebras:

$\boldsymbol{U}(\mathrm{n})$: unitary matrices
$u(\mathrm{n})$: hermitian matrices

$$
\begin{aligned}
& \exp (\mathrm{iH}): \boldsymbol{u}(\mathrm{n}) \rightarrow \boldsymbol{U}(\mathrm{n}) \\
& \exp (i H)=\exp \left(i U \Lambda U^{H}\right)=U \cdot \exp (i \Lambda) \cdot U^{H}
\end{aligned}
$$

$S U(n)$: unitary matrices with $\operatorname{det}(U)=1$ $\boldsymbol{s u}(\mathrm{n})$: hermitian matrices with trace $=0$
$\exp (\mathrm{iH}): \mathbf{s u}(\mathrm{n}) \rightarrow \mathbf{S U}(\mathrm{n})$
$\operatorname{trace}(H)=0 \rightarrow \operatorname{det}(\exp (i H))=\operatorname{det}(\exp (i \Lambda))=\prod_{j} \exp \left(i \lambda_{j}\right)=\exp \left(\sum_{j} i \lambda_{j}\right)=\exp (0)=1$

Quantum Dynamics

Wave function $\psi(t)$ describes the state of a quantum system depending of time t .
Vector $|\psi(t)\rangle$ element of Hilbert space with orthogonal basis $\left|\Psi_{k}(\mathrm{t})\right\rangle, \mathrm{k}=1,2, \ldots$

$$
\left|\psi(t)>=\sum_{k} c_{k}\right| \psi_{k}(t)>, \quad c_{k}=\left\langle\psi \mid \psi_{k}\right\rangle
$$

Change of $|\psi(\mathrm{t})\rangle$ in time is described by the Hamilton operator H and follows the Schrödinger equation

$$
\left.\frac{\partial}{\partial t}\left|\psi(t)>=\frac{i}{h} H(t)\right| \psi(t)\right\rangle
$$

Stationary solution: $\quad|\psi(t)>=U(t)| \psi(0)>=\exp (-i H t) \cdot \mid \psi(0)>$

Hamiltonian H is Hermitian.

The real eigenvalues of H are the energy levels of stationary states described by the related eigenvectors:

$$
H\left|\psi_{k}>=E_{k}\right| \psi_{k}>
$$

Hamiltonian $\mathrm{H}=\mathrm{H}_{\text {drift }}+\mathrm{H}_{\text {control }}$
internal coupling external pulse

Numerical Problems

1. Mathematical properties of related matrices
2. Matrix exponential
3. Quantum compiler and parallel matrix multiplication
4. Approximating the smallest eigenvalue of huge H
5. Solving linear systems

1. Properties of Matrices in Quantum Computing

Numerical methods should take into account special properties of the considered matrices, as
-sparsity (e.g. PDE,...)
-structure (e.g. FFT, symplectic)
-general dense

Typical Matrices I

$$
\begin{aligned}
& \sum_{k}^{k} \alpha_{k} Q_{1}^{(k)} \otimes Q_{2}^{(k)} \otimes \cdots \otimes Q_{p}^{(k)} \\
& Q_{j}^{(k)} \in\left\{I, P_{x}, P_{y}, P_{z}\right\}: \text { Pauli matrices }
\end{aligned}
$$

$\left.Q_{j}{ }_{j}{ }^{k}\right)$ describing the interaction between different quantum states.
Usually, most of the $Q_{j}{ }^{(k)}$ are I.
The other are P_{x}, P_{y}, or P_{z}

$$
\begin{aligned}
& I_{2} \otimes \cdots \otimes I_{2} \otimes P_{x}^{j} \otimes I_{2} \otimes \cdots \otimes I_{2} \\
& I_{2} \otimes \cdots I_{2} \otimes P_{z}^{j} \otimes I_{2} \otimes \cdots I_{2} \otimes{ }_{P}^{k} \otimes I_{2} \otimes \cdots I_{2}
\end{aligned}
$$

Typical Matrices II

 1D spin chain, drift Hamiltonian
$H:=\alpha_{1} \cdot P_{x} \otimes P_{x} \otimes I \otimes I \otimes I$
$+\alpha_{2} \cdot I \otimes P_{x} \otimes P_{x} \otimes I \otimes I$
$+\alpha_{3} \cdot I \otimes I \otimes P_{x} \otimes P_{x} \otimes I$ $+\alpha_{4} \cdot I \otimes I \otimes I \otimes P_{x} \otimes P_{x}$

Typical Pattern

1D spin chain, control Hamiltonian

Sparsity:
$\mathrm{O}(\mathrm{n} \log (\mathrm{n}))$

Structured: constant along diagonals

Typical matrices III

$$
\begin{array}{r}
H_{x}=\sum_{j=1}^{p} a_{j} \cdot\left(I_{2} \otimes \cdots \otimes I_{2} \otimes \stackrel{j}{P_{x}} \otimes I_{2} \otimes \cdots \otimes I_{2}\right) \\
H_{y}=\sum_{j=1}^{p} b_{j} \cdot\left(I_{2} \otimes \cdots \otimes I_{2} \otimes \stackrel{j}{P_{y}} \otimes I_{2} \otimes \cdots \otimes I_{2}\right) \\
H_{z z}=\sum_{j<k=1}^{p} c_{j, k} \cdot\left(I_{2} \otimes \cdots I_{2} \otimes \stackrel{j}{P_{z}} \otimes I_{2} \otimes \cdots I_{2} \otimes \stackrel{k}{P_{z}} \otimes I_{2} \otimes \cdots I_{2}\right)
\end{array}
$$

Properties of matrices

All Pauli matrices are unitary and hermitian

$$
\begin{aligned}
& P_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right): \\
& P_{y}=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right)=i\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right): \\
& P_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right):
\end{aligned}
$$

$$
P_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right):
$$

P_{x} is circulant and symmetric persymmetric:

Circulant:

$$
\left(\begin{array}{ccccc}
c_{0} & c_{1} & \cdots & c_{n-2} & c_{n-1} \\
c_{n-1} & c_{0} & c_{1} & & c_{n-2} \\
c_{n-2} & c_{n-1} & c_{0} & \ddots & \vdots \\
\vdots & & \ddots & \ddots & c_{1} \\
c_{1} & \cdots & c_{n-2} & c_{n-1} & c_{0}
\end{array}\right)
$$

Symmetric Persymmetric:

$$
\begin{aligned}
& J \cdot C \cdot J=C^{T}(=C) \\
& J=\left(\begin{array}{lll}
0 & & 1 \\
& \therefore & \\
1 & & 0
\end{array}\right)
\end{aligned}
$$

J is Anti-Identity

Circulant Matrices

Fourier-Matrix F_{n}, unitary, symmetric, are closely related to the Discrete Fourier Transform (FFT) (All computations can be done in $\mathrm{O}(\mathrm{n} \log (\mathrm{n})$))
$F_{n}=\left(\exp \left(\frac{2 \pi i}{n} j k\right)\right)_{j, k=0}^{n-1}=\left(\omega^{j k}\right)_{j, k=0}^{n-1}=\left(\begin{array}{cccc}1 & 1 & \cdots & 1 \\ 1 & \omega & & \omega^{n-1} \\ \vdots & & \ddots & \vdots \\ 1 & \omega^{n-1} & \cdots & \omega^{(n-1)(n-1)}\end{array}\right)$
Circulant matrix describes convolution: $C=F_{n}^{H} \cdot \Lambda \cdot F_{n}$

$$
F_{2}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), \quad P_{x}=F_{2} \cdot D_{2} \cdot F_{2}
$$

Symmetric Persymmetric

P_{x} is symmetric with respect to the main diagonal and with respect to the anti-diagonal:

$$
\left.\begin{array}{c}
\left(\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right)=\left(\begin{array}{ll}
& J \\
J &
\end{array}\right)\left(\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right)\left(\begin{array}{ll}
J & J
\end{array}\right)=\left(\begin{array}{cc}
J C J & J B^{T} J \\
J B J & J A J
\end{array}\right) \\
A=J C J \\
\text { and } \\
\|
\end{array}\right]=J B^{T} J .
$$

H_{x} is symmetric, persymmetric, p-level circulant

$H_{x}=\sum_{j=1}^{p} a_{j} \cdot\left(I_{2} \otimes \cdots \otimes I_{2} \otimes \stackrel{j}{P_{x}} \otimes I_{2} \otimes \cdots \otimes I_{2}\right)$
can be diagonalized in the form $\quad F_{2} \otimes \cdots \otimes F_{2}$

Furthermore $\quad J=J_{2} \otimes \cdots \otimes J_{2}$

By this formula $J H_{x} J=H_{x}$ can be reduced to $J P_{x} J=P_{x}$.

$$
P_{y}=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right):
$$

P_{y} is skewcirculant and antisymmetric persymmetric:

Skewcirculant:
(can be reduced to the
circulant case by a diagonal
Transformation!)

-s_{n-1} \& s_{0} \& s_{1} \& \& s_{n-2}

-s_{n-2} \& -s_{n-1} \& s_{0} \& \ddots \& \vdots

\vdots \& \& \ddots \& \ddots \& s_{1}

-s_{1} \& \cdots \& -s_{n-2} \& -s_{n-1} \& s_{0}\end{array}\right)=\bar{\Omega} \cdot C \cdot \Omega\)

Skewsymmetric Persymmetric:

$$
U^{T} P_{y} U=\left(\begin{array}{ll}
0 & * \\
* & 0
\end{array}\right)
$$

H_{y} is skewsymmetric persymmetric, p-level skewcirculant

$H_{y}=\sum_{j=1}^{p} b_{j} \cdot\left(I_{2} \otimes \cdots \otimes I_{2} \otimes \stackrel{j}{P_{y}} \otimes I_{2} \otimes \cdots \otimes I_{2}\right)$
can be diagonalized by

$$
\left(\bar{\Omega}_{2} F_{2} \Omega_{2}\right) \otimes \cdots \otimes\left(\bar{\Omega}_{2} F_{2} \Omega_{2}\right)
$$

Furthermore

$$
U^{T} \cdot H_{y} \cdot U=\left(\begin{array}{cc}
0 & B_{1} \\
B_{2} & 0
\end{array}\right)
$$

H_{zz} is diagonal and symmetric persymmetric

$$
P_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right): \quad H_{z z}=\sum_{j<k=1}^{p} c_{j, k} \cdot\left(I_{2} \otimes \cdots I_{2} \otimes \stackrel{j}{P_{z}} \otimes I_{2} \otimes \cdots I_{2} \otimes \stackrel{P}{z}_{z}^{k} \otimes I_{2} \otimes \cdots I_{2}\right)
$$

P_{z} is skewpersymmetric (change of sign).
Therefore, H_{zz} is again persymmetric.

Matrix $\mathrm{H}=\mathrm{H}_{\mathrm{zz}}+\mathrm{H}_{\mathrm{x}}+\mathrm{H}_{\mathrm{y}}$?

Consider $\quad a P_{x}+b P_{y}=\left(\begin{array}{ll}0 & c \\ \bar{c} & 0\end{array}\right)=\left(\begin{array}{cc}0 & r e^{i \varphi} \\ r e^{-i \varphi} & 0\end{array}\right)$
$\mathrm{aP}_{\mathrm{x}}+\mathrm{bP}_{\mathrm{y}}$ is ω-zirkulant:
$\left(\begin{array}{cc}1 & 0 \\ 0 & e^{i \varphi}\end{array}\right)\left(\begin{array}{cc}0 & r e^{i \varphi} \\ r e^{-i \varphi} & 0\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ e^{-i \varphi}\end{array}\right)=\bar{D}\left(a P_{x}+b P_{y}\right) D=\left(\begin{array}{ll}0 & r \\ r & 0\end{array}\right)=C$
Therefore, $\left(\bar{D}_{1} \otimes \cdots \otimes \bar{D}_{p}\right) \cdot\left(H_{x}+H_{y}\right) \cdot\left(D_{1} \otimes \cdots \otimes D_{p}\right)$
is real symmetric p-level circulant.
Furthermore:

$$
\left(\bar{D}_{1} \otimes \cdots \otimes \bar{D}_{p}\right) \cdot H_{z z} \cdot\left(D_{1} \otimes \cdots \otimes D_{p}\right)=H_{z z}
$$

$\mathrm{H}=\mathrm{H}_{\mathrm{zz}}+\mathrm{H}_{\mathrm{x}}+\mathrm{H}_{\mathrm{y}}$?

Therefore, $\quad\left(\bar{D}_{1} \otimes \cdots \otimes \bar{D}_{p}\right) \cdot\left(H_{x}+H_{y}+H_{z z}\right) \cdot\left(D_{1} \otimes \cdots \otimes D_{p}\right)$ is real symmetric and is build from two matrices, that are both persymmetric.

It holds
$U^{T} \cdot\left(\bar{D}_{1} \otimes \cdots \otimes \bar{D}_{p}\right) \cdot\left(H_{x}+H_{y}+H_{z z}\right) \cdot\left(D_{1} \otimes \cdots \otimes D_{p}\right) \cdot U=\left(\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right)$
All computations for $\mathrm{H}_{\mathrm{x}}+\mathrm{H}_{\mathrm{y}}+\mathrm{H}_{\mathrm{zz}}$ can be reduced to two real matrices A_{1} and A_{2} of half size. Improvement of upto a factor 16.

Computation of eigendecoposition

$$
H=H_{x}+H_{y}+H_{z z}
$$

By diagonal matrix D the matrix H can be transformed into a real symmetric persymmetric matrix R, which can be reduced by U into a real Block matrix diag(A, B):

$$
H=D(\bar{D} H D) \bar{D}=D R \bar{D}=D U\left(U^{T} \bar{D} H D U\right) U^{T} \bar{D}=D U\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right) U^{T} \bar{D}
$$

Eigendecomposition of A and $B \rightarrow$ eigendecomposition of H .

2. Computation of exponential of a matrix

Definition: $\exp (A)=e^{A}=\sum_{k=0}^{\infty} A^{k} / k!$
"19 dubious ways to compute the exponential of a matrix" Moler, van Loan

Example: Taylor expansion is numerically instable

$$
\exp \left(\begin{array}{cc}
100 & 0 \\
0 & -100
\end{array}\right)=\sum\left(\begin{array}{cc}
100^{k} & 0 \\
0 & (-100)^{k}
\end{array}\right) / k!=\left(\begin{array}{cc}
\sum \frac{100^{k}}{k!} & 0 \\
0 & \sum \frac{(-100)^{k}}{k!}
\end{array}\right)
$$

Cancellation for $\exp (-x)$

Basic facts:

$$
\exp (A+B) \neq \exp (A) \cdot \exp (B)
$$

Scaling and Squaring:

$$
\exp (A)=\exp \left(A / 2^{p}\right)^{2^{p}}=B^{2^{p}}
$$

Compute $\exp \left(\mathrm{A} / 2^{\mathrm{p}}\right)$ and recover $\exp (\mathrm{A})$!
Allows numerical stable computation by

$$
\begin{aligned}
& B=\exp \left(A / 2^{p}\right) \\
& \text { for } j=1: p \\
& \quad B=B^{\star} B ; \\
& \text { end }
\end{aligned}
$$

1. Padé approximation:

$$
\exp (x) \approx \frac{p_{n}(x)}{q_{n}(x)} \Longrightarrow \exp (A) \approx q_{n}^{-1}(A) \cdot p_{n}(A)
$$

with polynomials p_{n} and q_{n} such that the series expansion of $p_{n}(x) / q_{n}(x)$ coincides with $\exp (x)$ for the first $2 n$ coefficients.
2. Eigendecomposition of A :

$$
\exp (A)=\exp \left(U \Lambda U^{H}\right)=U \exp (\Lambda) U^{H}=U\left(\begin{array}{lll}
\exp \left(\lambda_{1}\right) & & \\
& \ddots & \\
& & \exp \left(\lambda_{n}\right)
\end{array}\right) U^{H}
$$

3. Chebychev Expansion:

For $-1<\mathrm{x}<1$: $\quad e^{x}=J_{0}(i)+2 \cdot \sum_{k=1}^{\infty} i^{k} J_{k}(-i) T_{k}(x)$
with $T_{k}(x)$ Chebychev polynomial of first kind and $J_{k}(x)$ Bessel function.

Finite Chebychev expansion $\mathrm{s}_{\mathrm{n}}(\mathrm{x})$ is defined as Least Squares approximation of the form

$$
\int_{-1}^{1}\left|e^{x}-s_{n}(x)\right|^{2} \cdot \frac{d x}{\sqrt{1-x^{2}}}=\min _{p \in P_{n}} \int_{-1}^{1}\left|e^{x}-p(x)\right|^{2} \cdot \frac{d x}{\sqrt{1-x^{2}}}
$$

Chebychev expansion for matrix A:

$$
\exp (A) \approx J_{0}(i) \cdot I+2 \sum_{k=1}^{n} i^{k} J_{k}(-i) T_{k}(A)=s_{n}(A)
$$

Three-term recursion for $T_{k}(x)$ gives polynomial coefficients of $\mathrm{s}_{\mathrm{n}}(\mathrm{x})$ with $\mathrm{O}(\mathrm{n}-1)$ matrix multiplications:

$$
s_{n}(A)=a_{0} I+a_{1} A+\cdots+a_{n} A^{n}
$$

Faster methods for computing $\mathrm{s}_{\mathrm{n}}(\mathrm{A})$ by partitioning, e.g.:

$$
s_{n}(A)=a_{0} I+a_{2} A^{2}+\cdots+a_{2 m} A^{2 m}+A \cdot\left(a_{1} I+a_{3} A^{2}+\cdots a_{2 m-1} A^{2 m}\right)
$$

Takes only n/2+1 matrix products.

Fastest evaluation of matrix polynomial:

$$
\begin{aligned}
k: \quad n= & k^{2}-1 \\
s_{n}(x)= & a_{0,0} I+\cdots+a_{k-1,0} A^{k-1}+A^{k} \cdot\left(a_{0,1} I+\cdots+a_{k-1,1} A^{k-1}\right)+ \\
& +A^{2 k} \cdot\left(a_{0,2} I+\cdots+a_{k-1,2} A^{k-1}\right)+\cdots+ \\
& +A^{(k-1) k} \cdot\left(a_{0, k-1} I+\cdots+a_{k-1, k-1} A^{k-1}\right)
\end{aligned}
$$

takes matrix multiplications: $A^{2}, \ldots, A^{k-1}, A^{k}, \ldots, A^{(k-1) k}$, and the products of powers of A with partial polynomials:
$(\mathrm{k}-2)+(\mathrm{k}-1)+(\mathrm{k}-1)=3 \mathrm{k}-2=\mathrm{O}(\sqrt{\mathrm{n}})$ matrix multiplications.

Example: $\mathrm{n}=8$ and $\mathrm{k}=3$

$$
\begin{aligned}
s_{n}(x)= & a_{0,0} I+a_{1,0} A+a_{2,0} A^{2}+A^{3} \cdot\left(a_{0,1} I+a_{1,1} A+a_{2,1} A^{2}\right)+ \\
& +A^{6} \cdot\left(a_{0,2} I+a_{1,2} A+a_{2,2} A^{2}\right)
\end{aligned}
$$

takes matrix multiplications: A^{2}, A^{3}, A^{6}, and the products of A^{3} and A^{6} with partial polynomials:

5 matrix multiplications (instead of 7 with Horner).

3. Quantum Compiler

Quantum algorithm is described by unitary matrix U_{G}.
Find optimal implementation of U_{G}, e.g. on NMR, using elementary Quantum gates!

Find short factorization of U_{G} in terms of elementary tensor products of Pauli matrices.

Leads to numerical optimization problem.

Compilization

Elementary Quantum transformations represented by unitary matrices $\exp \left(\mathrm{i}^{*} \mathrm{H}_{\mathrm{j}}\right)$ with $H_{j}=\sum \alpha_{k, j} Q_{1}^{(k)} \otimes \cdots \otimes Q_{p}^{(k)}$

Sequence of Quantum transformations by

$$
\exp \left(i^{*} \mathrm{H}_{1}\right)^{*} \ldots{ }^{*} \exp \left(\mathrm{i}^{*} \mathrm{H}_{\mathrm{m}}\right)=!\exp \left(\mathrm{i}^{*} \mathrm{H}\right)=\mathrm{U}_{\mathrm{G}}
$$

Find smallest number of factors, defined by $\alpha_{k, j}$.
Numerical tasks connected with this optimization problem:
Compute $\mathrm{U}_{\mathrm{j}}=\exp \left(\mathrm{i}^{*} \mathrm{H}_{\mathrm{j}}\right)$
Compute all products $\mathrm{U}_{1}{ }^{*} \mathrm{U}_{2}, \mathrm{U}_{1}{ }^{*} \mathrm{U}_{2}{ }^{*} \mathrm{U}_{3}, \ldots \quad \mathrm{U}_{1}{ }^{*} \mathrm{U}_{2}{ }^{*} \ldots{ }^{*} \mathrm{U}_{\mathrm{m}}$

Parallel Multiple Matrix Multiplication

Compute $\quad H_{1, k}=U_{1} \cdot U_{2} \cdots \cdots U_{k}$
for all $k=1,2, \ldots, N$
with $\mathrm{n} \times \mathrm{n}$ - matrices $\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{N}}$

Total costs sequentially: $\mathrm{N}^{*} \mathrm{n}^{3}$

There exist fast matrix-matrix algorithms that are faster than n^{3} (Strassen, group-theoretic) Conjecture: $\mathrm{O}\left(\mathrm{n}^{2+\varepsilon}\right)$

Block Column Parallel

Distribute U_{8} on k processors $p_{1} \ldots p_{k}$ together with full U_{7}.

$$
\begin{array}{c|c|c|c}
p_{1} & p_{2} & \cdots & p_{k} \\
U_{7} \cdot U_{8}\left(:, 1: n_{1}\right) & U_{7} \cdot U_{8}\left(:, n_{1}+1: n_{2}\right) & \cdots & U_{7} \cdot U_{8}\left(:, n_{k-1}+1: n\right)
\end{array}
$$

Gives $\mathrm{H}_{7,8}=\mathrm{U}_{7} \mathrm{U}_{8}$

Block Column Parallel

Send full U_{6} to all processors $p_{1} \ldots p_{k}$.

$$
\begin{array}{c|c|c|c}
p_{1} & p_{2} & \cdots & p_{k} \\
U_{6} \cdot H_{78}\left(:, 1: n_{1}\right) & U_{6} \cdot H_{78}\left(:, n_{1}+1: n_{2}\right) & \cdots & U_{6} \cdot H_{78}\left(:, n_{k-1}+1: n\right)
\end{array}
$$

Gives $H_{6,8}=U_{6} U_{7} U_{8}$

Block Column Parallel

Send full U_{5} to all processors $p_{1} \ldots p_{k}$.

Gives $H_{5,8}=U_{5} U_{6} U_{7} U_{8}$

Block Column Parallel

Send full U_{1} to all processors $p_{1} \ldots p_{k}$.

Gives $H_{1,8}=U_{1} \ldots U_{6} U_{7} U_{8}$

Costs in Parallel:

N -1 times $\mathrm{n}^{2}{ }^{*} \mathrm{n} / \mathrm{k}=(\mathrm{N}-1)^{*} \mathrm{n}^{3} / \mathrm{k}$
For N matrices of nxn size with k processors.

Especially for 8 matrices and 4 processors: (7/4)* n^{3}

Parallel Prefix Tree

Parallel Prefix Tree

Parallel Prefix Tree

Costs: $\log (N)^{*} n^{3}$ with $N / 2$ processors

Especially: $3^{*} n^{3}$
A little bit more expensive than the columnwise method,
but less communication/storage.

4. Smallest Eigenvalue

Given Hamiltonian H for p qubits, p more than 50.
Problem: Size of H is $2^{50} \sim 1.1^{*} 10^{15}$
Lowest energy level is given by the smallest eigenvalue

Numerical task:
Compute approximation to smallest eigenvalue of H , but H is so large that it is not possible to build vector of this size!

Use Rayleigh Quotient based on special vectors

$$
\begin{aligned}
& \min _{x \neq 0} \frac{x^{H} H x}{x^{H} x}=\lambda_{\min }(H) \\
& H=\sum_{k=1}^{M} \alpha_{k} \cdot Q_{1}^{(k)} \otimes \cdots \otimes Q_{p}^{(k)}
\end{aligned}
$$

Consider only vectors such that Hx is computable, e.g.

$$
x=\sum_{k} x_{1}^{(k)} \otimes \cdots \otimes x_{p}^{(k)}
$$

Find $x_{j}{ }^{(k)}$ that minimize the Rayleigh Quotient

5. Linear Systems

Solve

$$
(H-\omega-i \eta) x=b
$$

$$
\text { for } \eta \rightarrow 0
$$

with H hermitian indefinite.
Use iterative solver GMRES, Bicgstab,...?
Spectrum:

$$
(H-\omega)-i \eta \cdot I
$$

Hermitian part: $\mathrm{H}-\omega$, indefinite
Skewhermitian part: $\quad-\eta \cdot I, \quad$ positive definite

Because of the special hermitian/skewhermitian structure GMRES (Arnoldi) leads to a tridiagonal upper Hessenberg matrix:

Short recurrence, cheap iterative step.
GMRES $\leftrightarrow \rightarrow$ MINRES $\longleftrightarrow \rightarrow$ cg on normal equations

