
2044-10

Summer School and Advanced Workshop on Trends and
Developments in Linear Algebra

Maher Moakher

22 June - 10 July, 2009

National Engineering School at Tunis
Tunisia

The differential geometry of the space of symmetric positive-definite matrices and
its applications in engineering

Strada Costiera 11, 34151 Trieste, Italy - Tel. +39 040 2240 111; Fax +39 040 224 163 - sci_info@ictp.it, www.



SPD matrices Means and interpolation PDE regularization

The differential geometry of the space

of symmetric positive-definite matrices
and its applications in engineering

Maher Moakher

National Engineering School at Tunis

Advanced Workshop on Trends and Developments in Linear Algebra

ICTP, Trieste, July 2009



SPD matrices Means and interpolation PDE regularization

Outline

1 Space of symmetric positive-definite matrices
Geometry
Geodesics
Differential operators

2 Means and interpolation
Means
Interpolation
Anisotropy

3 PDE regularization
Geometric heat flow
Geometric Perona-Malik flow
Mean curvature flow



SPD matrices Means and interpolation PDE regularization

Space of symmetric positive-definite matrices

Let
S (n) := {A ∈M(n), AT = A},

and
P(n) := {A ∈ S (n), A > 0}.

Then P(n) is the interior of a pointed convex cone.

cone: A ∈P(n)⇒ tA ∈P(n), t > 0.

convex: A,B ∈P(n)⇒ tA + (1− t)B ∈P(n), 0 ≤ t ≤ 1.

The boundary of P(n) is the set of singular positive semidefinite
matrices.
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Symmetric positive-definite 2-by-2 matrices

P(2) :=
{[

a c
c b

]
, a > 0, ab− c2 > 0

}
.

With the change of variables

u = 1
2(a + b), v = 1

2(a− b),

the conditions of positive definiteness become

c2 + v2 < u2, u > 0,

which are clearly the equations of the forward
light cone.
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Differential geometry of P(n)

The set P(n) is a differentiable manifold of dimension 1
2 n(n + 1).

The tangent space to P(n) at any of its points P is

TPP(n) = {P} ×S (n).

On TPP(n), we introduce the inner product

〈A,B〉P := tr(P−1AP−1B)

which depends smoothly on the base point P.

This inner product yields a natural Riemannian metric on P(n) given by

ds2 = tr
(
P−1dPP−1dP

)
= ‖P−1/2dPP−1/2‖2

F,

where dP is the symmetric matrix with elements (dPij).
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Some references

This metric was first introduced by Siegel, and studied by Atkinson &
Mitchell, Burbea, Maaß, Skovgaard, etc.

C. L. SIEGEL, Symplectic Geometry, Academic Press, New York, 1964.

C. ATKINSON, A. F. MITCHELL, Rao’s distance measure, Sankhya, Ser. A 43, (1981), pp.
345–365.

J. BURBEA, Informative geometry of probability spaces, Expo. Math., 4 (1986), pp. 347–378.

H. MAASS, Siegel’s Modular Forms and Dirichlet Series, Lecture Notes in Math. 216,
Springer-Verlag, Heidelberg, 1971.

L.T. SKOVGAARD, A Riemannian geometry of the multivariate normal model, Scandinavian
J. Statist., 11 (1984), pp. 211–233.

More recently, Amari, Bhatia, Bhatia & Holbrook, Calvo & Oller,
Lawson & Lim, M.M., Petz, Zéraı̈ & M.M., etc.
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What’s special about this metric?

This metric arises naturally from the log barrier function

Ψ(P) = − ln det P

used in cone programming. (Y. Nesterov, ...)

In statistical mechanics the negative of this function is called the
Boltzmann entropy. (D. Petz, ...)

In information theory the negative of this function is called the
information potential.
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The unidimensional picture

When n = 1, this metric becomes ds = dp
p which can be integrated to

yields
ln p = s + c,

or equivalently
p = C exp s.

So the Riemannian distance between two positive numbers p and q is

| log p− log q|.

Recall that in the hyperbolic geometry of the Poincaré upper half-plane,
the length of the geodesic segment joining the points P(a, y1) and
Q(a, y2), y1, y2 > 0, is | log y1 − log y2|.
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Invariance properties

Proposition
The Riemannian metric is invariant under

i) Congruent transformations: P→ CPCT , i.e.,

ds2(CPCT) = ds2(P),

ii) Inversion: P→ P−1, i.e.,

ds2(P−1) = ds2(P).

P→ CPCT =⇒ dP→ CdPCT ,

P→ P−1 =⇒ dP→ −P−1dPP−1.
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Parametrization of P(n)

P(n) is a Riemannian manifold of dimension 1
2 n(n + 1).

An elements P of P(n) can be parametrized in many different ways. For
example, it can be parametrized by:

the 1
2 n(n + 1) entries of an invertible upper triangular matrix L

(Cholesky decomposition: P = LLT ).

the 1
2 n(n + 1) entries of a symmetric matrix S (Exponential map:

P = exp S).

the 1
2 n(n− 1) entries of an orthogonal matrix R and the n elements

of a diagonal matrix D (Spectral decomposition: S P = RDRT ).

the 1
2 n(n + 1) entries of P

P =
n∑

i=1

PiiEii +
∑

1≤i<j≤n

Pij(Eij + Eji).
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Matrix vectorization

Let A be an n× n matrix and let A.j be its j-th column. We denote by
vec A the n2-column vector

A =
[
A.1 . . . A.n

]
, vec A =

A.1
...

A.n

 .
We recall that

(vec A)T vec B = tr(ATB),

and
(vec A)T(B⊗ C) vec D = tr(DBTATC).
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Vectorization of a symmetric matrix

If A is symmetric

A =


a11 a12 . . . a1,n

a21 a22
. . .

...
...

. . . . . . an−1,n
an1 . . . an,n−1 ann


then 1

2 n(n− 1) elements of vec(A) are redundant.
We denote by υ(A) the 1

2 n(n + 1)-vector that is obtained from vec(A) by
eliminating the redundant elements

vec A = Dnυ(A).

Dn is called the duplication matrix. It has full column rank 1
2 n(n + 1), so

that
υ(A) = D+

n vec A.
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Duplication matrix in S (3)

When n = 3, we have

vec A =
[
a11 a21 a31 a12 a22 a32 a13 a23 a33

]T
,

υ(A) =
[
a11 a22 a33 a21 a32 a31

]T
,

and

D3 =



1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0


, D+

3
T =



1 0 0 0 0 0
0 0 0 1

2 0 0
0 0 0 0 0 1

2
0 0 0 1

2 0 0
0 1 0 0 0 0
0 0 0 0 1

2 0
0 0 0 0 0 1

2
0 0 0 0 1

2 0
0 0 1 0 0 0
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Some useful properties

For an invertible matrix A in S (n), we have

[DT
n (A⊗ A)Dn]−1 = D+

n (A−1 ⊗ A−1)D+
n

T
,

and
det[DT

n (A⊗ A)Dn] = 2
1
2 n(n−1)(det A)n+1.

J. R. MAGNUS, Linear Structures, Oxford University Press, London, 1988.

J. R. MAGNUS AND H. NEUDECKER, The elimination matrix: some
lemmas and applications, SIAM J. Alg. Disc. Meth., 1 (1980),
pp. 422–449.
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Metric tensor

Using the reduced vectorization of dP we have

ds2(P) = υ(dP)TG(P)υ(dP),

where G(P) is a symmetric positive-definite matrix called the metric
tensor.

Proposition (Zéraı̈ & M.M.)
The matrix G of components of the metric tensor is

[gαβ(P)] = G(P) = D+
n
(
P−1 ⊗ P−1)D+

n
T
,

the matrix G−1 of components of the inverse metric tensor is

[gαβ(P)] = G−1(P) = D+
n (P⊗ P) D+

n
T
,

and det(G(P)) = 2n(n−1)/2 (det(P))(n+1).
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Christoffel symbols

The Christoffel symbols (of the second kind) are:

Γδαβ = 1
2 gγδ(∂αgγβ + ∂βgγα − ∂γgαβ).

Proposition (Zéraı̈ & M.M.)
In the coordinate system (pα), the components of the Christoffel symbols
are given by

Γγαβ(P) = −[DT
n
(
P−1 ⊗ Eγ

)
Dn]αβ, 1 ≤ α, β, γ ≤ 1

2 n(n + 1),

where {Eγ}1≤γ≤n(n+1)/2 is the dual basis to {Eγ}1≤γ≤n(n+1)/2.
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Christoffel symbols for P(3)

Γ
1

=
−1

ρ

266666666664

s1 0 0 s4 0 s6

0 0 0 0 0 0

0 0 0 0 0 0

s4 0 0 s2 0 s5

0 0 0 0 0 0

s6 0 0 s5 0 s3

377777777775
, Γ

2
=
−1

ρ

266666666664

0 0 0 0 0 0

0 s2 0 s4 s5 0

0 0 0 0 0 0

0 s4 0 s1 s6 0

0 s5 0 s6 s3 0

0 0 0 0 0 0

377777777775
,

Γ
3

=
−1

ρ

266666666664

0 0 0 0 0 0

0 0 0 0 0 0

0 0 s3 0 s5 s6

0 0 0 0 0 0

0 0 s5 0 s2 s4

0 0 s6 0 s4 s1

377777777775
, Γ

4
=
−1

2ρ

266666666664

0 s4 0 s1 s6 0

s4 0 0 s2 0 s5

0 0 0 0 0 0

s1 s2 0 2s4 s5 s6

s6 0 0 s5 0 s3

0 s5 0 s6 s3 0

377777777775
,

Γ
5

=
−1

2ρ

266666666664

0 0 0 0 0 0

0 0 s5 0 s2 s4

0 s5 0 s6 s3 0

0 0 s6 0 s4 s1

0 s2 s3 s4 2s5 s6

0 s4 0 s1 s6 0

377777777775
, Γ

6
=
−1

2ρ

266666666664

0 0 s6 0 s4 s1

0 0 0 0 0 0

s6 0 0 s5 0 s3

0 0 s5 0 s2 s4

s4 0 0 s2 0 s5

s1 0 s3 s4 s5 2s6

377777777775
.
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Geodesics on P(n)

Let P : [a, b]→P(n) such that P(a) = P1 and P(b) = P2, be a
“sufficiently smooth” curve on P(n).

The length of the curve P(t) is defined by

L (P) :=
∫ b

a
[gP(Ṗ(t), Ṗ(t))]1/2 dt.

Extremal points of L are called geodesics. They satisfy the
second-order differential equation

P̈− ṖP−1Ṗ = 0.

The geodesic emanating from P0 ∈P(n) in the direction of S ∈ S (n)
is

P(t) = P1/2
0 exp(tP−1/2

0 SP−1/2
0 )P1/2

0 , t ∈ R.
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Geodesics on P(n)

Euclidean geodesics:

PE(t) = (1− t)A + tB, t ∈ [0, 1].

Riemannian geodesics:

PR(t) = A(A−1B)t, t ∈ R.

It follows from Hopf-Rinow theorem that the metric space (P(n), dR) is
a complete metric space, whereas (P(n), dE) is not complete.
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Totally geodesic submanifolds of P(n)

Positive-definite diagonal matrices

D(n) = {D ∈P(n), D is diagonal}.

Geodesic lines

{P ∈P(n), P = A exp(tA−1SA−1)A, A ∈ GL(n), S ∈ S (n), t ∈ R}.

Positive-definite matrices of constant determinant

S Pc(n) = {p ∈P(n), det D = c}.
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The hyperbolic geometry of P(n)

The space P(n) can be seen as a foliated manifold whose
codimension-one leaves are isomorphic to the hyperbolic space Hp,
where p = 1

2 n(n + 1)− 1:

P(n) = S P1(n)× R+
∗
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Riemannian distance

The Riemannian distance between P1 and P2 in P(n) is the length of the
geodesic curve joining them

dP(n)(P1,P2) = ‖Log(P−1/2
1 P2P−1/2

1 )‖F

=

[
n∑

i=1

ln2 λi

] 1
2

,

where λi, i = 1, . . . , n, are the (positive) eigenvalues of P−1
1 P2.

Note that this distance goes to infinity as one or both of the matrices
approaches the boundary of P(n) consisting of singular positive
semi-definite matrices.
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Spheres on P(3) centered at the identity



SPD matrices Means and interpolation PDE regularization

Differential operators on P(n)

Gradient
∇gf := gαβ

∂f
∂pβ

= D+
n (P⊗ P)D+T

n
∂f
∂p
,

Divergence

divg V :=
√

g
∂T

∂pα

(
1
√

g
Vα
)

=
√

g
∂T

∂p

(
1
√

g
V
)
,

Laplacian

∆gf := divg∇gf = α
∂T

∂p

(
1
α

D+
n (P⊗ P)D+T

n
∂f
∂p

)
,

where

p = υ(P) = [p1, . . . , pn(n+1)/2]T , g = det(gαβ) = 2n(n−1)/2(det P)n+1.
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Means and Interpolation
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What does a mean mean?

Webster dictionary

mean: occupying a position about midway between extremes.
Etymology: mean is derived from the French root word mien whose
origin is the Latin word medius, a term used to refer to a place, time,
quantity, value, kind, or quality which occupies a middle position.

average: a single value (as a mean, mode, or median) that summarizes or
represents the general significance of a set of unequal values.
Etymology: from earlier average proportionally distributed charge for
damage at sea, modification of Middle French avarie damage to ship or
cargo, from Old Italian avaria, from Arabic ’awAriyah damaged
merchandise.
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Generalization of the notion of mean

Means of two positive numbers have been constructed by the
ancient Greeks using geometric proportions. (Two overlapping lists
of ten means by Nicomachus and Pappus.)
The three principal means are generalized to more than two positive
numbers, to positive functions, etc.
In 1975, Anderson and Trapp, and Pusz and Woronowicz
introduced the geometric mean for a pair of positive operators on a
Hilbert space.
Since, several researchers have been interested in means of positive
definite matrices (Ando, Bhatia, Holbrook, Hiai, Kosaki, Kubo,
Lawdon, Li, Lim, Mathias, Petz, Tamesi, etc.)

W. N. ANDERSON AND G. E. TRAPP, Shorted operators, SIAM J. Appl.
Math., 28 (1975), pp. 60–71.

W. PUSZ AND S. L. WORONOWICZ, Functional calculus for sesquilinear
forms and the purification map, Rep. Math. Phys., 8 (1975), pp. 159–170.
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Metric-based definition of a mean
For m positive numbers x1, . . . , xm we have

The arithmetic mean is the unique minimizer of
m∑

k=1

de(x, xk)2, where

de(x, y) = |x− y| is the Euclidean distance in IR.

The geometric mean is the unique minimizer of
m∑

k=1

dh(xk, x)2, where

dh(x, y) = | log x− log y| is the hyperbolic distance in IR∗+.

Definition (M.M. ‘02)
Let (M , d) be a differentiable manifold. A mean associated with d(·, ·) of m
points in M is defined by

M(x1, . . . , xm) := arg min
x∈M

m∑
k=1

d(xk, x)2.

M.M., Means and averaging in the group of rotations, SIAM J. Matrix
Anal. Appl., 24 (2002), pp. 1–16.
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Means on P(n)

Definition
A weighted mean associated with a distance d(·, ·) of K symmetric
positive-definite matrices A1, . . . ,AK with weights w1, . . .wK is

M(A1, . . . ,AK ; w1, . . . ,wK) = arg min
A∈P(n)

K∑
k=1

wk d2(A,Ak).

M.M., A differential-geometric approach to the geometric mean of
symmetric positive-definite matrices, SIAM J. Matrix Anal. Appl., 26
(2005), pp. 735–747.
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Means on P(n)

Euclidean mean (Weighted arithmetic mean):

ME(A1, . . . ,AK ; w1, . . . ,wK) =
1
K

(w1A1 + · · ·+ wkAK).

Riemannian mean (Weighted geometric mean):
MR(A1, . . . ,AK ; w1, . . . ,wK) is the unique solution to

K∑
k=1

wk Log(XA−1
k ) = 0.

This nonlinear matrix equation can be solved in closed form for K = 2
or in special cases.

Otherwise, it can be solved numerically: M.M, Bini, etc.
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Proposition (M.M. ‘05)
Given K positive-definite symmetric matrices {Pk}1≤k≤K in P(n), set
αk = n

√
det Pk and P̃k = Pk/αk. Then the geometric mean of {Pk}1≤k≤K

is the geometric mean of {P̃k}1≤k≤K multiplied by the geometric mean of
{αk}1≤k≤K , i.e.,

G(P1, . . . ,PK) = K
√
α1 · αKG(P̃1, . . . , P̃K).
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Proposition (M.M. ‘05)
The geometric mean of two positive-definite symmetric matrices P1 and
P2 in P(2) is given by

G(P1,P2) =
√
α1α2

√
α2P1 +

√
α1P2√

det(
√
α2P1 +

√
α1P2)

.

where α1 and α2 are the determinants of P1 and P2, respectively.
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Multivariate interpolation of SPD matrices

Classical multivariate interpolation on an n-simplex is a barycentric
coordinate-weighted arithmetic average

u(x1, . . . , xn+1) =
n+1∑
i=1

µi(x1, . . . , xn+1)ui.

By analogy, we define the geodesic multivariate interpolation on an
n-simplex as a barycentric coordinate-weighted geometric average

A(x1, . . . , xn+1) =MR(Ai, µi(x1, . . . , xn+1)),

i.e., A(x1, . . . , xn+1) is the solution of

n+1∑
i=1

µi(x1, . . . , xn+1) Log(X−1Ai) = 0.
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Multivariate interpolation of SPD matrices
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Closest isotropic matrix

Definition
Given a SPD matrix A, the closest isotropic matrix, with respect to a
distance d(·, ·), is the matrix αI where α is the minimizer of d(A, βI)
over all β > 0..

Closest Euclidean: (equal trace)

AE = 1
3 tr(A)I.

Closest Riemannian: (equal determinant)

AR = (det A)1/3I.
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Anisotropy indices

An anisotropy index of a symmetric positive-definite matrix P is a
measure of nearness to isotropic matrices:
Euclidean anisotropy index:

AE = tr(P2)− 1
3 tr2 P.

Riemannian anisotropy index:

AR = tr(Log2 P)− 1
3 tr2(Log P).
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Regularisation
of SPD matrix fields



SPD matrices Means and interpolation PDE regularization

Diffusion tensor MRI

Diffusion Tensor Magnetic Resonance Imaging
(DT-MRI) is a new modality that provides a
non-invasive probe into the microstructure of
biological tissues.

It measures the probability density function for
the displacements of particles that undergo
Brownian motion due to thermal fluctuations:

p(x, x0; τ) =
1√

(4πτ)3 det D
exp

(
−(x− x0)TD−1(x− x0)

4τ

)
,

where D is a diffusion tensor.
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Diffusion ellipsoids
At each voxel, DT-MRI delivers a diffusion tensor
(SPD)

D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 =
3∑

i=1

λiui ⊗ ui,

with 0 < λ1 ≤ λ2 ≤ λ3.

λ1 ∼ λ2 ∼ λ3 λ1 ∼ λ2 << λ3 λ1 << λ2 ∼ λ3
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DT-MR image
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PDE regularization of a scalar-valued image

Let f : Ω→ R (Ω ⊂ Rd, d = 2, 3 ), be a given “noisy” image.
To regularize the image, we solve the PDE

∂tu = div (D∇u) , in Ω× [0,T),
(D∇uij) · ν = 0, on ∂Ω× [0,T),
u(x, 0) = f (x), in Ω.

Linear diffusion (linear scale space): D = cI
Nonlinear isotropic diffusion (Perona-Malik): D = g(|∇u|2)I, with
g(·) is a decreasing nonnegative function, e.g.,
g(s) = 1/(1 + s/λ2), or g(s) = exp(−s/λ2).

Nonlinear anisotropic diffusion: D = g(∇u⊗∇u).
If A = Q diag(λ1, . . . , λn)QT with QQT = I, then
g(A) = Q diag(g(λ1), . . . , g(λn))QT
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Multi-channel images

A multi-channel image is a vector- or matrix-valued image:

f : Ω→ Rn (or Rn×m)

Examples:
• Color images: 3 channels (RGB)
• DT-MRI images: 6 channels (6 independent diffusivities)

The simplest way of regularization of a multi-channel image is to
regularize each channel independently.

But, because of the lack of correlation between channels, edges in each
channel move independently by diffusion.

Therefore, the regularization of the different channels better be coupled.
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Manifold-valued images as embedding maps

Let

(M, g) be a compact Riemannian manifold of dimension m

(N, h) be a complete Riemannian manifold of dimension n

A manifold-valued image is a map

Φ : M →N

x 7→Φ(x) = (Φ1(x), . . . ,Φn(x))

M is called the domain manifold and N is called target manifold.

In the DT-MRI context, we take:

M = Ω ⊂ R3 with the Euclidean metric, i.e., gij = δij.

N = P(3) with its Riemannian metric.
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Harmonic energy functional

To the embedding map

Φ : M →N

x 7→Φ(x)

we associate the energy

E(Φ) = 1
2

∫
Ω

gij(x)
∂Φα

∂xi
∂Φβ

∂xj hαβ(Φ)
√

g(x)dx.

This is a generalization of the Dirichlet integral.

In string theory, it is known as the Polyakov action.

It was introduced to the field of image processing by Kimmel,
Sochen, and Malladi (1997)
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Euler-Lagrange equation

Minimization of the energy E(Φ) yields the Euler-Lagrange equation

δE
δΦµ

= −
(
∂i
(√

ggij∂jΦα
)

+ Γαβγ(Φ)∂iΦβ∂jΦγgij
)

hαµ

where Γαβγ are the Christoffel symbols with respect to the metric h.
The regularization of a multi-channel image can be performed by the
gradient descent

Φα
t = − 1

√
g

hαµ
δE
δΦµ

With gij = δij, we have

Φα
t = ∆Φα + Γαβγ(Φ)∂iΦβ∂iΦγ .
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Smoothing by the geometric heat flow
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Geometric Perona-Malik flow

Minimize the functional

E(Φ) =
∫

Ω
ψ(‖∇gΦ‖)dΩ,

where
ψ(s) = λ2 log(1 + s2/λ2)/2.

Gradient descent yields

Φα
t = ∂i (D(‖∇gΦ‖)∂iΦα) + D(‖∇gΦ‖)Γαβγ(Φ)∂iΦβ∂iΦγ ,

with

D(s) :=
ψ′(s)

2s
= 1

2

[
1 +

( s
λ

)2
]−1

.
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Smoothing by the geometric Perona-Malik flow
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DT-MR images as immersions

Now we view a DT-MR image as a 3-dimensional surface in a
9-dimensional manifold:

Ψ : M = Ω→N = Ω⊗P(3)
x 7→Ψ(x) = (x,P(x))

Here, M is the domain manifold and N is the space-feature manifold.
Knowing the metric h on N and the map Ψ we can construct a metric g
on M by the process of “pullback”

gij(x) = hαβ(Φ)∂iΨα∂jΨβ

The Riemannian metric associated with this surface is then

gij(P) = δij + tr(P−1∂iPP−1∂jP).
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Minimal immersion flow

Minimize the functional

E(P) =
∫

Ω

√
det(gij(P))dΩ.

Gradient descent yields

∂tpα = ∆gpα + tr
{

Γα(P)∇p
[
I3 + (∇p)TG∇p

]−1 (∇p)T
}
,

with
p :=

(
P11 P22 P33 P21 P32 P31

)T

This is the mean curvature flow.
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Smoothing by the minimal immersion flow
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Smoothing of real DT-MRI data
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