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Abstract

Let f be a convex function defined on an interval I , 0 ≤ α ≤ 1 and let
A,B be n×n complex Hermitian matrices with spectrum in I . It is proved that
the eigenvalues of f(αA + (1 − α)B) are weakly majorized by the eigenvalues of
αf(A)+(1−α)f(B). Further if f is log-convex it is proved that the eigenvalues of
f(αA+(1−α)B) are weakly log-majorized by the eigenvalues of f(A)αf(B)1−α . If
I = [0,∞), f(0) ≤ 0 and f is monotone, then it is proved that there exits unitaries
U, V such that Uf(A)U∗+V f(B)V ∗ ≤ f(A+B). As applications we shall obtain
generalizations of the famous Golden-Thomson trace inequality, a representation
theorem and a harmonic-geometric mean inequality. Some related inequalities are
also discussed.
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1. INTRODUCTION

Throughout Mn shall denote the set of n × n complex matrices and Hn shall

denote the set of all Hermitian matrices in Mn . We shall denote by Sn , the set of all

positive semidefinite matrices in Mn . The set of all positive definite matrices in Mn

shall be denoted by Pn . Let I be an interval in R . We shall denote by Hn(I), the

set of all Hermitian matrices in Mn whose spectrum is contained in I .

Let f be a real valued function defined on I . The function f is called convex if

f(αs+ (1− α)t) ≤ αf(s) + (1− α)f(t)

for all 0 ≤ α ≤ 1 and s, t ∈ I . Likewise f is called concave if −f is convex. Further

if f is positive then f is called log-convex if



f(αs+ (1− α)t) ≤ f(s)αf(t)1−α

and is called log-concave if

f(s)αf(t)1−α ≤ f(αs+ (1− α)t).

If I = (0,∞) and f is positive then f is called multiplicativily convex if

f(sαt1−α) ≤ f(s)αf(t)1−α

for all 0 ≤ α ≤ 1 and s, t ∈ I .

A norm ||| · ||| on Mn is called unitarily invariant or symmetric if

|||UAV ||| = |||A|||

for all A ∈ Mn and for all unitaries U, V ∈ Mn . The most basic unitarily invariant

norms are the Ky Fan norms || · ||(k), (k = 1, 2, · · · , n), defined as

||A||(k) =
k∑
j=1

sj(A), (k = 1, 2, · · · , n)

and the Schatten p -norms defined as

||A||p =
( n∑
j=1

(sj(A))p
)1/p

1 ≤ p < ∞ , where s1(A) ≥ s2(A) ≥ · · · ≥ sn(A) are the singular values of A ,

that is, the eigenvalues of |A| = (A∗A)1/2. It is customary to assume a normalization

condition that |||diag(1, 0, . . . , 0)||| = 1. The spectral norm (or operator norm) is given

by ||A|| = s1(A) . An A ∈Mn is called a contraction if ||A|| ≤ 1 .

Throughout I shall denote an arbitrary interval (unless specified otherwise) in R

and ||| · ||| shall denote an arbitrary unitarily invariant norm on Mn . For (column)

vectors x, y ∈ Cn their inner product is denoted by 〈x, y〉 = y∗x . For an A ∈ Mn ,

λj(A), 1 ≤ j ≤ n will always denote the eigenvalues of A arranged in the decreas-

ing order whereas sj(A), 1 ≤ j ≤ n will always denote the singular values of A ar-

ranged in the decreasing order. We shall use the notation λ(A) to denote the row vector

(λ1(A), λ2(A), . . . , λn(A)) .

Let A ∈ Hn(I) have spectral decomposition

A = U∗diag(λ1, λ2, . . . , λn)U

where U is a unitary and λ1, λ2, . . . , λn are the eigenvalues of A . Let f be a real

valued function defined on I . Then f(A) is defined by
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f(A) = U∗diag(f(λ1), f(λ2), . . . , f(λn))U .

For A,B ∈ Hn we consider four kinds of ordering:

(i) B ≤ A (or A ≥ B)
def⇐⇒ A−B positive semidefinite,

(ii) (eigenvalue inequalities)

λ(B) ≤ λ(A)
def⇐⇒ λj(B) ≤ λj(A) (j = 1, 2, . . . , n)

def⇐⇒ B ≤ U∗AU ∃ unitary U ∈Mn,

(iii) (weak log-majorization )

λ(B) ≺wlog λ(A)
def⇐⇒

k∏
j=1

λj(B) ≤
k∏
j=1

λj(A) (k = 1, 2, . . . , n).

(iv) (weak majorization )

λ(B) ≺w λ(A)
def⇐⇒

k∑
j=1

λj(B) ≤
k∑
j=1

λj(A) (k = 1, 2, . . . , n).

Trivially we can see

B ≤ A =⇒ λ(B) ≤ λ(A) =⇒ λ(B) ≺w λ(A).

λ(A), λ(B) > 0, λ(B) ≺wlog λ(A) =⇒ λ(B) ≺w λ(A).

f increasing on I , A,B ∈ Hn(I) , λ(B) ≤ λ(A) =⇒ λ(f(B)) ≤ λ(f(A)),

f increasing and convex on I , A,B ∈ Hn(I) , λ(B) ≺w λ(A) =⇒ λ(f(B)) ≺w
λ(f(A)).

In Section 2, we shall prove that for a convex function f on I

λ(f(αA+ (1− α)B)) ≺w λ(αf(A) + (1− α)f(B))

for all A,B ∈ Hn(I) and 0 ≤ α ≤ 1 . If further 0 ∈ I and f(0) ≤ 0 then

λ(f(X∗AX)) ≺w λ(X∗f(A)X)

for all A ∈ Hn(I) and for all contractions X ∈ Mn . If in addition the function f is

also increasing (or decreasing), it is proved that
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λ(f(αA+ (1− α)B)) ≤ λ(αf(A) + (1− α)f(B))

for all A,B ∈ Hn(I) and 0 ≤ α ≤ 1 . If further 0 ∈ I and f(0) ≤ 0 then

λ(f(X∗AX)) ≤ λ(X∗f(A)X)

for all A ∈ Hn(I) and for all contractions X ∈ Mn . In Section 3, for a log-convex

function f on I , we shall prove that

λ(f(αA+ (1− α)B)) ≺wlog λ(f(A)αf(B)1−α)

for all A,B ∈ Hn(I) and 0 ≤ α ≤ 1. In this section we shall also prove a representation

theorem. In Section 4, we shall prove matrix sub-additive inequalities for convex functions.

2. CONVEX FUNCTIONS

The following lemmas will be used to prove the main results in this section. The

reader may refer to [6] for their proofs.

Lemma 2.1. [6, page 281] Let A ∈ Hn(I) and f be a convex function on I .

Then for every unit vector x ∈ Cn ,

f(〈Ax, x〉) ≤ 〈f(A)x, x〉.

Lemma 2.2. [6, page 35] Let A ∈ Hn . Then

k∑
j=1

λj(A) = max
k∑
j=1

〈Auj, uj〉 (k = 1, 2, . . . , n)

where the maximum is taken over all choices of the orthonormal vectors u1, u2, . . . , uk.

Lemma 2.3. [6, page 93] Let A,B ∈Mn . Then

||A||(k) ≤ ||B||(k)

k = 1, 2, . . . , n if and only if

|||A||| ≤ |||B|||,

for all unitarily invariant norms ||| · |||.

Theorem 2.4. Let f be a convex function on I . Then

λ(f(αA+ (1− α)B)) ≺w λ(αf(A) + (1− α)f(B))
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for all A,B ∈ Hn(I) and 0 ≤ α ≤ 1 . If further 0 ∈ I and f(0) ≤ 0 then

λ(f(X∗AX)) ≺w λ(X∗f(A)X)

for all A ∈ Hn(I) and for all contractions X ∈Mn .

Proof. Let λ1, λ2, . . . , λn be the eigenvalues of αA+(1−α)B and let u1, u2, . . . , un

be the corresponding orthonormal eigenvectors arranged such that f(λ1) ≥ f(λ2) ≥ · · · ≥
f(λn). Let k = 1, 2, . . . , n. Then

k∑
j=1

λj(f(αA+ (1− α)B)) =
k∑
j=1

f(λj)

=
k∑
j=1

f(〈(αA+ (1− α)B)uj, uj〉)

=
k∑
j=1

f(α〈Auj, uj〉+ (1− α)〈Buj, uj〉)

≤
k∑
j=1

[αf(〈Auj, uj〉) + (1− α)f(〈Buj, uj〉)]

≤
k∑
j=1

[α〈f(A)uj, uj〉+ (1− α)〈f(B)uj, uj〉]

=
k∑
j=1

〈(αf(A) + (1− α)f(B))uj, uj〉

≤
k∑
j=1

λj(αf(A) + (1− α)f(B)),

using convexity of f, Lemma 2.1 and Lemma 2.2 respectively. This proves

λ(f(αA+ (1− α)B)) ≺w λ(αf(A) + (1− α)f(B)) .

To prove the second assertion, let λ1, λ2, . . . , λn be the eigenvalues of X∗AX and let

u1, u2, . . . , un be the corresponding orthonormal eigenvectors arranged such that f(λ1) ≥
f(λ2) ≥ · · · ≥ f(λn) . Since f(0) ≤ 0, to prove the desired inequality we can assume
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that ||Xuj|| 6= 0, j = 1, 2, . . . , n. Then

k∑
j=1

λj(f(X∗AX)) =
k∑
j=1

f(λj)

=
k∑
j=1

f(〈X∗AXuj, uj〉)

=
k∑
j=1

f(〈AXuj, Xuj〉)

=
k∑
j=1

f
(
||Xuj||2

〈
A

Xuj
||Xuj||

,
Xuj
||Xuj||

〉
+ (1− ||Xuj||2) · 0

)

≤
k∑
j=1

(
||Xuj||2f

(〈
A

Xuj
||Xuj||

,
Xuj
||Xuj||

〉)
+ (1− ||Xuj||2)f(0)

)

≤
k∑
j=1

(
||Xuj||2

〈
f(A)

Xuj
||Xuj||

,
Xuj
||Xuj||

〉)
=

k∑
j=1

〈(f(A)Xuj, Xuj〉

=
k∑
j=1

〈(X∗f(A)Xuj, uj〉

≤
k∑
j=1

λj(X
∗f(A)X),

using convexity of f, the condition f(0) ≤ 0, Lemma 2.1 and Lemma 2.2 respectively.

Thus

λ(f(X∗AX)) ≺w λ(X∗f(A)X).

This completes a proof. �

The following corollary which supplements the results of Ando, Bhatia, Kittaneh and

Zhan in [2,7]:

λ((A+B)r) ≺w λ(Ar +Br) (1)

for 0 ≤ r ≤ 1 and

λ(Ar +Br) ≺w λ((A+B)r) (2)

for r ≥ 1, A,B ∈ Sn, was proved in [3]. The proof follows on taking f(t) = tr , r ≤ 0

and I = (0,∞) in Theorem 2.4.
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Corollary 2.5. Let A,B ∈ Pn . Then

λ(21−r(A+B)r) ≺w λ(Ar +Br)

for all r ≤ 0 .

The following corollary follows on using Theorem 2.4 and Lemma 2.3.

Corollary 2.6. Let f is be a nonnegative convex function on I . Then

|||f(αA+ (1− α)B)||| ≤ |||αf(A) + (1− α)f(B)|||

for all A,B ∈ Hn(I) and 0 ≤ α ≤ 1 . If further 0 ∈ I and f(0) = 0 then

|||f(X∗AX)||| ≤ |||X∗f(A)X|||

for all A ∈ Hn(I) and for all contractions X ∈Mn .

Remark 2.7. Corollary 2.6 may not be true if f is not nonnegative. To see this one

may take f(t) = − log t . This is convex on (0,∞) . Let 0 ≤ α ≤ 1 . It is easy to find

s, t ∈ (0,∞) such that the inequality

|f(αs+ (1− α)t)| ≤ |αf(s) + (1− α)f(t)|

does not hold.

Remark 2.8. For A,B ∈ Hn , the inequality (see [6, page 294])

|||(A−B)2m+1||| ≤ 22m|||A2m+1 −B2m+1|||

is equivalent to

|||(A+B)2m+1||| ≤ 22m|||A2m+1 +B2m+1|||

m = 1, 2, . . . . The inequality,

||| |A+B|r||| ≤ 2r−1||| |A|r + |B|r|||, (3)

r ≥ 1, which follows on choosing the nonnegative convex function f(t) = |t|r, r ≥ 1, on

(−∞,∞) in Corollary 2.6, as a special case provides an analogue of the above inequality

for even powers. Another particular case of Corollary 2.6 when f(t) = tr , r ≥ 1 is

Theorem 1 in [8].
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If in addition, in Theorem 2.4 we also assume that f is increasing (or decreasing) we

have the following stronger result.

Theorem 2.9. Let f be an increasing (or decreasing) convex function on I . Then

λ(f(αA+ (1− α)B)) ≤ λ(αf(A) + (1− α)f(B)),

for all A,B ∈ Hn(I) and 0 ≤ α ≤ 1. If, in addition, 0 ∈ I and f(0) ≤ 0 , then

λ(f(X∗AX)) ≤ λ(X∗f(A)X)

for all A ∈ Hn(I) and all contractions X ∈Mn .

Proof. Since f is increasing, for any H ∈ Hn(I)

λj(f(H)) = f(λj(H)) (j = 1, 2, . . . , n).

It is known [6, page 58] that the eigenvalue λj(H) admits the following max-min char-

acterization:

λj(H) = max
dimM=j

min{〈Hx, x〉 ; ||x|| = 1, x ∈M} (4)

where M is a subspace of Cn . Then since f is increasing

λj(f(H)) = f(λj(H)) = f
(

max
dimM=j

min{〈Hx, x〉 ; ||x|| = 1, x ∈M}
)

= max
dimM=j

min{f(〈Hx, x〉) ; ||x|| = 1, x ∈M}.

Applying this to H = αA+ (1− α)B we have

λj(f(αA+ (1− α)B)) = max
dimM=j

min
{
f(〈(αA+ (1− α)B)x, x〉) ; ||x|| = 1, x ∈M

}
.

By convexity of f and Lemma 2.1, we get

f(〈(αA+ (1− α)B)x, x〉) = f(α〈Ax, x〉+ (1− α)〈Bx, x〉)

≤ αf(〈Ax, x〉) + (1− α)f(〈Bx, x〉)

≤ 〈(αf(A) + (1− α)f(B))x, x〉 (||x|| = 1).

Now using formula (4), we have

λj

(
f(αA+ (1− α)B)

)
≤ λj

(
αf(A) + (1− α)f(B)

)
.
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This completes a proof of the first assertion.

Now suppose 0 ∈ I and f(0) ≤ 0 . Since f(0) ≤ 0, we can assume that ||Xx|| 6= 0

for all unit vectors x ∈ Cn. We have as above

λj(f(X∗AX)) = max
dimM=j

min{f(〈X∗AXx, x〉); ||x|| = 1, x ∈M}.

Using convexity of f, the condition f(0) ≤ 0 and Lemma 2.1, we get

f(〈X∗AXx, x〉) = f
(
||Xx||2

〈
A

Xx

||Xx||
,
Xx

||Xx||

〉
+ (1− ||Xx||2) · 0

)
≤ ||Xx||2f

(〈
A

Xx

||Xx||
,
Xx

||Xx||

〉)
+ (1− ||Xx||2)f(0)

≤ ||Xx||2
〈
f(A)

Xx

||Xx||
,
Xx

||Xx||

〉
= 〈X∗f(A)Xx, x〉.

By (4) we get

λj(f(X∗AX)) ≤ λj(X
∗f(A)X).

This completes a proof of the second assertion. �

Remark 2.10. Theorem 2.9 may not be true if f is not increasing (or decreas-

ing). To see this one may take f(t) = |t| , t ∈ (−∞,∞), A =

(
−1 1

1 −1

)
and

B =

(
2 0

0 0

)
.

Remark 2.11. We would like to remark here that the inequality in Corollary 2.5

is sharp whereas inequalities (1) and (2) are not sharp. Taking the convex function

f(t) = tr, r ≥ 1 in Theorem 2.9, we get

λ((A+B)r) ≤ λ(2r−1(Ar +Br))

for all r ≥ 1 , which in turn gives a sharp upper bound for inequality (2). Now let

0 ≤ r ≤ 1 . Applying Theorem 2.9 to the decreasing convex function g(t) = −tr , we get

λ(2r−1(Ar +Br)) ≤ λ((A+B)r) .
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This provides a sharp lower bound for inequality (1). Taking the decreasing convex

function f(t) = tr, r ≤ 0 in Theorem 2.9, we get

λ(21−r(A+B)r) ≤ λ(Ar +Br),

which gives a stronger result than Corollary 2.5.

3. LOG-CONVEX FUNCTIONS

We begin this section with some lemmas. For a proof of the following two lemmas

the reader is refered to [1].

Lamma 3.1. [1, page 56] Let A,B ∈ Pn and 0 < r < 1 . Then

λ
(

1
r

log(Ar/2BrAr/2)
)
≺w λ(log(A1/2BA1/2)).

The following lemma is known as Trotter’s formula.

Lemma 3.2. [1, page 57] Let A,B ∈ Pn . Then

limr→0+[1
r

log(Ar/2BrAr/2)] = logA+ logB.

The next lemma follows from Lemma 3.1 and Lemma 3.2.

Lemma 3.3. Let A,B ∈ Pn . Then

λ(logA+ logB) ≺w λ(log(A1/2BA1/2)) .

Theorem 3.4. Let f be a log-convex function on I. Then

λ(f(αA+ (1− α)B)) ≺wlog λ(f(A)αf(B)1−α)

for all A,B ∈ Hn(I) and 0 ≤ α ≤ 1.

Proof. Let f be log-convex on I. Then the function log f(t) is convex function

on I . Therefore by Theorem 2.4 and Lemma 3.3, we get

λ(log f(αA+ (1− α)B)) ≺w λ(α log f(A) + (1− α) log f(B))

= λ(log f(A)α + log f(B)1−α)

≺w λ(log[f(A)α/2f(B)1−αf(A)α/2]).

This implies

k∏
j=1

λj(f(αA+ (1− α)B)) ≤
k∏
j=1

λj(f(A)αf(B)1−α), 1 ≤ k ≤ n,

that is,
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λ(f(αA+ (1− α)B)) ≺wlog λ(f(A)α/2f(B)1−αf(A)α/2) .

Since λj(f(A)α/2f(B)1−αf(A)α/2) = λj(f(A)αf(B)1−α) , we get

λ(f(αA+ (1− α)B)) ≺wlog λ(f(A)αf(B)1−α).

This completes a proof. �

Since for any X ∈Mn , we have

k∑
j=1

|λj(X)| ≤
k∑
j=1

sj(X),

(k = 1, 2, . . . , n), [6, page 42], by Lemma 2.3 we get a proof of the following corollary.

Corollary 3.5. Let f be a log-convex function on I. Then

|||f(αA+ (1− α)B)||| ≤ |||f(A)αf(B)1−α|||

for all A,B ∈ Hn(I) and 0 ≤ α ≤ 1.

Corollary 3.6. Let a > 1 and A,B ∈ Hn . Then

λ(aA+B) ≺w λ(aAaB).

Proof. Let p = max {||A||, ||B||} . Then −pI ≤ A,B ≤ pI . The function f(t) = at

is log-convex function on [−p, p] . Therefore by Theorem 3.4, we get

λ(aαA+(1−α)B) ≺w λ(aαAa(1−α)B)

for 0 ≤ α ≤ 1 . Now by taking α = 1
2

and then replacing A by 2A and B by 2B in

the above inequality, we get the desired result. �

Remark 3.7. As a special case of Corollary 3.6 when a = e we obtain the famous

Golden-Thompson inequality:

tr(eA+B) ≤ tr(eAeB)

for A,B ∈ Hn . Here for X ∈ Mn , tr(X) denotes the trace of X . The following

corollary may be considered as another generalization of the Golden-Thompson inequal-

ity.

Corollary 3.8. ( See [10, page 513-514].) Let f be a multiplicatively convex function

on (0,∞) . Then
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λ(f(eαA+(1−α)B)) ≺w λ(f(eA)αf(eB)1−α)

for all 0 ≤ α ≤ 1 and A,B ∈ Hn .

As another application of Theorem 3.4, we obtain a generalized harmonic-geometric

mean (Young’s) inequality.

Corollary 3.9. Let A,B ∈ Pn and 0 ≤ α ≤ 1 . Then

λ([αA−1 + (1− α)B−1]−r)) ≺w λ(AαrB(1−α)r) ≺w λ(|AαrB(1−α)r|)

for all r ≥ 0 .

Proof. Let p = max{||A||, ||A−1||, ||B||, ||B−1||} . Then −pI ≤ A,A−1, B,B−1 ≤ pI

and the function t→ t−r is log-convex on (0, p] . Therefore by Theorem 3.4

λ([αA+ (1− α)B]−r) ≺w λ(A−αrB−(1−α)r) .

Now on replacing A by A−1 and B by B−1 in the above inequality, we get

λ([αA−1 + (1− α)B−1]−r) ≺w λ(AαrB(1−α)r) .

The second inequality follows, since

k∑
j=1

λj(A
αrB(1−α)r) ≤

k∑
j=1

sj(A
αrB(1−α)r),

k = 1, 2, . . . , n. This completes the proof. �

Remark 3.10. For an increasing log-convex function f

λ(f(αA+ (1− α)B)) ≺wlog λ(f(A)αf(B)1−α)

can not be improved as

λ(f(αA+ (1− α)B)) ≤ λ(f(A)αf(B)1−α).

In fact, let A,B ∈ Hn and f(t) = et. By Theorem 3.4, we have

k∏
j=1

λj

[
exp

(
αA+ (1− α)B

)]
≤

k∏
j=1

λj

[
exp

(
αA
)

exp
(

(1− α)B
)]

(k = 1, 2, . . . , n).
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But

n∏
j=1

λj

[
exp

(
αA+ (1− α)B

)]
= det

[
exp

(
αA+ (1− α)B

)]
= det

[
exp

(
αA
)

exp
(

(1− α)B
)]

=
n∏
j=1

λj

[
exp

(
αA
)

exp
(

(1− α)B
)]
.

Thus it follows that we can find A,B ∈ Hn and an i, 1 ≤ i ≤ n such that

λi

(
exp

(
αA+ (1− α)B

))
≥ λi

(
exp(αA) exp((1− α)B)

)
.

Therefore the ordering

λ(exp(αA+ (1− α)B)) ≤ λ(exp(αA) exp((1− α)B))

does not hold.

Remark 3.11. Let f be a log-concave function on I. Then one might conjecture

that

λ(f(A)αf(B)1−α) ≺w λ(f(αA+ (1− α)B))

for all A,B ∈ Hn(I) and 0 ≤ α ≤ 1. However this fails. To see it one may take

f(t) = t6, I = (0,∞), α = 1
2
, A =

(
6 −5

−5 7

)
and B =

(
9 −1

−1 1

)
.

For a proof of the next lemma the reader is refered to [6, page 267].

Lemma 3.12. Let A,B ∈ Pn and 0 ≤ α ≤ 1 . Then

|||AαB1−α||| ≤ |||A|||α|||B|||1−α .

Next we prove a representation theorem.

Theorem 3.13. Let p, q > 1 be such that 1
p

+ 1
q

= 1 and A ∈ Pn . Then

max
X∈Σ
|||AX||| = |||Ap|||1/p

where Σ = {X ∈ Pn : |||Xq||| = 1} .

Proof. By Lemma 3.12, we have
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|||A1/pX1/q||| ≤ |||A|||1/p|||X|||1/q .

Now replace A by Ap and X by Xq to get

|||AX||| ≤ |||Ap|||1/p

using that |||Xq||| = 1 if X ∈ Σ . The equality occurs in the above inequality if we take

Xq = Ap

|||Ap||| . This completes a proof. �

The following corollary is the well known Minkowski’s inequality (see [6, page 88]) for

unitarily invariant norms.

Corollary 3.14. Let A,B ∈ Pn and p > 1 . Then

|||(A+B)p|||1/p ≤ |||Ap|||1/p + |||Bp|||1/p .

Proof. Let q = p
p−1

. Then 1
p

+ 1
q

= 1 . Therefore by Theorem 3.13, we have

|||(A+B)p|||1/p = max
X∈Σ
|||(A+B)X|||

≤ max
X∈Σ
|||AX|||+ max

X∈Σ
|||BX|||

= |||Ap|||1/p + |||Bp|||1/p.

This is the desired inequality. �

4. SUPPER-ADDITIVE INEQUALITIES

In this section we shall prove supper-additive inequalities for convex functions.

Theorem 4.1. Let f be a nonnegative convex function on I = [0,∞) with f(0) = 0

and A,B ∈ Sn. Then there exists unitary matrices U and V such that

Uf(A)U∗ + V f(B)V ∗ ≤ f(A+B).

Proof. Let A,B ∈ Sn. We can assume that A+B is invertible. Then

A = A1/2(A+B)−1/2(A+B)(A+B)−1/2A1/2 = X(A+B)X∗

and

B = B1/2(A+B)−1/2(A+B)(A+B)−1/2B1/2 = Y (A+B)Y ∗

where X = A1/2(A+ B)−1/2 and Y = B1/2(A+ B)−1/2 are contractions. Since for any

T ∈Mn, T ∗T and TT ∗ are unitarily congruent, we have by Theorem 2.9
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λ(f(A)) = λ(f(X(A+B)X∗)

≤ λ(Xf(A+B)X∗)

= λ((f(A+B))1/2X∗X(f(A+B))1/2)).

This implies there exists a unitary matrix U such that

Uf(A)U∗ ≤ (f(A+B))1/2X∗X(f(A+B))1/2. (5)

Similarly there exists a unitary matrix V such that

V f(B)V ∗ ≤ (f(A+B))1/2Y ∗Y (f(A+B))1/2. (6)

Adding (5) and (6) we get

Uf(A)U∗ + V f(B)V ∗ ≤ f(A+B)

since X∗X + Y ∗Y = In. This completes a proof. �

We would like to remark here that the inequality

λ(f(A) + f(B)) ≤ λ(f(A+B))

is not true. To see this one may take f(t) = t2, A =

(
1 0

0 0

)
and B =

(
1
2

1
2

1
2

1
2

)
. We

have the following analogous result for the concave functions which have a similar proof.

Theorem 4.2. Let f be an nonnegative concave function on I = [0,∞) with

f(0) = 0 and A,B ∈ Sn. Then there exists unitary matrices U and V such that

f(A+B) ≤ Uf(A)U∗ + V f(B)V ∗.
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