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WHAT ARE TENSORS?TENSOR = MULTI-INDEX ARRAY = MULTI-WAY ARRAY =MULTI-DIMENSIONAL MATRIX:

A = [aij...k]

i ∈ I, j ∈ J, ... , k ∈ KNumber of di�erent indies is dimension.Indies are alled also modes .Cardinalities of index ranges I, J, ..., K are mode sizes .In ase of dimension d and mode sizes n1, n2, ..., nd,
A is a tensor of size n1 × n2 × ... × nd.Talking of tensors, taitly assume that d ≥ 3.



TENSORS AND MATRICESLet A = [aijklm].Consider pairs of omplementary long indies

(ij) and (klm)

(kl) and (ijm)

.........Then A gives rise to several matries:
B1 = [b(ij),(klm)],

B2 = [b(kl),(ijm)]

.........with

b(ij),(klm) = b(kl),(ijm) = ... = aijklm



MODE UNFOLDING MATRICES

A1 = [ai,(jklm)]

A2 = [aj,(iklm)]

A3 = [ak,(ijlm)]

A4 = [al,(ijkm)]

A5 = [am,(ijkl)]Columns of unfolding matries are alled mode vetors .If d = 3, typial names are olumns, rows, �bers .Ranks of unfolding matries are alled mode ranks or Tuker ranks .

L. R. Tuker, Some mathematial notes on three-mode fator analysis,Psyhometrika, V. 31, P. 279�311 (1966).



TENSOR-BY-MATRIX MULTIPLICATIONSAlso alled mode ontrations .Given a tensor A = [aijk] and matries

U = [ui′i], V = [vj′j], W = [wk′k],de�ne new tensors
AU = A ×1 U = [aU

i′jk]

AV = A ×2 V = [aV
ij′k]

AW = A ×3 W = [aW
ijk′]as follows:

aU
i′jk =

∑

i

ui′i aijk ⇔ AU
1 = UA1

aV
ij′k =

∑

j

vj′j aijk ⇔ AV
2 = V A2

aW
ijk′ =

∑

k

wk′k aijk ⇔ AW
3 = WA3



WHY CONTRACTIONS?Let A = [aijk] be n × n × n and mode ranks be equal to r ≪ n.Consider QR deompositions of unfolding matries

A1 = Q1R1, A2 = Q2R2, A3 = Q3R2

Q1, Q2, Q3 are orthogonal n × r matries.De�ne the Tuker ore tensor G = [gαβγ]of ontrated size r × r × r:
G = A ×1 Q⊤

1 ×2 Q⊤
2 ×3 Q⊤

3 i.e. gαβγ =
∑

i,j,k

aijk q1
iα q2

jβ q3
kγ

THEOREM

A = G ×1 Q1 ×2 Q2 ×3 Q3 i.e. aijk =
∑

α,β,γ

gαβγ q1
iα q2

jβ q3
kγIMPORTANT: A is now represented in a ontrated formwith only 3nr + r3 ≪ n3 parameters.



TUCKER DECOMPOSITIONRegarded as Tensor SVD or Higher Order SVD :

A = G ×1 Q1 ×2 Q2 ×3 Q3 i.e. aijk =
∑

α,β,γ

gαβγ q1
iα q2

jβ q3
kγ

Orthogonal matries Q1, Q2, Q3 are Tuker fators or frame matries .THEOREMRows in eah of unfolding matries for the Tuker ore an bemade orthogonal and arranged in length-dereasing order .Row lengths of unfoldings for G = singular values of unfoldings for A.PROOF is easy via SVD of unfolding matries:if A1 = Q1Σ1V1 then (A ×1 Q⊤
1 )1 = Σ1V1.Same for other modes.



TUCKER APPROXIMATIONS

aijk ≈
∑

α,β,γ

gαβγ q1
iα q2

jβ q3
kγAPPLICATIONS:

• Multi-way Prinipal Component Analysis(senior frame matries are most informative).

• Tensor data ompression(ignore small and get to redued Tuker ranks ≪ mode sizes).

• New generation of numerial algorithmswith all data in the Tuker format.Enjoy linear and even sublinear omplexity in total size of data(ould be petabytes).I. Oseledets, D. Savostyanov, E. Tyrtyshnikov,Linear algbera for tensor problems, submitted to Computing (2008).G. Beylkin, M. Mohlenkamp, Algorithms for numerial analysis inhigh dimensions, SIAM J. Si. Comput., 26 (6), pp. 2133-2159 (2005).



CANONICAL DECOMPOSITION

aij...k =

ρ
∑

t=1

uit vjt... wkt

Minimal ρ = tRank is alled anonial rank or tensor rank of A.THEOREMLet mode ranks be egual to r. Then
r ≤ tRank(A) ≤ r2.

CANONICAL APPROXIMATIONS
aij...k ≈

ρ
∑

t=1

uit vjt... wktplay same ompression role as Tuker.Could be better but not neessarily!



TENSOR RANKS IN COMPLEXITY THEORYIn the �row-by-olumn� rule for multipliation of n × n matrieswe have n2 multipliations. Can we redue this number?

[

c1 c2

c3 c4

]

=

[

a1 a2

a3 a4

]

=

[

b1 b2

b3 b4

]

ck =
n
∑

i=1

n
∑

j=1

hijk ai bjLet ρ = tensor rank of hijk and anonial deomposition read

hijk =

ρ
∑

t=1

uit vjt wkt ⇒

ck =

ρ
∑

t=1

wkt

(

4
∑

i=1

uitai

)





n
∑

j=1

vjtbj





Now we have ρ multipliations!If n = 2 then ρ = 7 (Strassen, 1965).By reursion ⇒ only O(nlog2 7) multipliations for arbitrary n.



TUCKER VS CANONICAL FOR MATRICES

aij =
r
∑

α=1

r
∑

β=1

gαβq1
iαq2

jβ ⇔ A = Q1GQ⊤
2Tuker = a pseudo-skeleton deomposition of A.

aij =

ρ
∑

t=1

uitvjt ⇔ A = UV ⊤

Canonial = a skeleton or dyadi deomposition of A.

Tensor (anonial) rank seems to be a true generalizationof the matrix rank onept.

However, tensor rank for dimension ≥ 3 and matrix rankhave notiably di�erent properties.



KRONECKER PRODUCT REPRESENTATION

Tuker deomposition:
A =

∑

α,β,γ

gαβγ uα ⊗ vβ ⊗ wγ

Canonial deomposition:
A =

∑

t

ut ⊗ vt ⊗ wt



KRUSKAL (ESSENTIAL) UNIQUENESSMinimal anonial deomposition

A =
∑

t

ut ⊗ vt ⊗ wtis said to be essentially unique if
∑

t

uit ⊗ vjt ⊗ wkt =
∑

t

ūit ⊗ v̄jt ⊗ w̄ktimplies that, upon some reordering,
ut || ūt, vt || v̄t, wt || w̄t,

||ut ⊗ vt ⊗ wt|| = ||ūt ⊗ v̄t ⊗ w̄t||.

Matrix skeleton (dyadi) deomposition is NOT ESSENTIALLY UNIQUE.This beomes an obstale in Prinipal Component Analysis,e.g. in separation of signals.Despite that, tensors possess ESSENTIAL UNIQUENESS(under mild assumptions).



INDEPENDENT COMPONENT RECONSTRUCTIONEXAMPLE (De Lathauwer) where the PCA fails.Assume we need to separate two independent zero-mean signals

x1(t) =
√

2 sin t, x2(t) =

{

1 if kπ ≤ t < kπ + π/2,
−1 if kπ + π/2 ≤ t < kπ + π,de�ned on the interval 0 ≤ t ≤ 4π and mixed by a matrix

A =

(

−1 −3
√

3

3
√

3 −5

)

.



x1(t)

4π3π2π1π0π

1.510.50-0.5-1-1.5
x2(t)

4π3π2π1π0π

1.510.50-0.5-1-1.5Fig. 1. Signals to be separated.

y1(t)

4π3π2π1π0π

21.510.50-0.5-1-1.5-2

y2(t)

4π3π2π1π0π

43210-1-2-3-4Fig. 2. Observations of linearly mixed signals.



z1(t)

4π3π2π1π0π

21.510.50-0.5-1-1.5-2
z2(t)

4π3π2π1π0π

21.510.50-0.5-1-1.5-2Fig. 3. Seperation results produed by the PCA.

s1(t)

4π3π2π1π0π

1.510.50-0.5-1-1.5

s2(t)

4π3π2π1π0π

1.510.50-0.5-1-1.5Fig. 4. Separation results of the tensor tehnique.
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KRUSKAL (ESSENTIAL) UNIQUENESSCanonial deomposition
A =

ρ
∑

t=1

ut ⊗ vt ⊗ wtis de�ned by matries with ρ olumns:

U = [uit], V = [vjt], W = [wkt].A matrix is said to have Kruskal rank r if
r is the maximal number s.t. any r olumns are linearly independent.KRUSKAL THEOREMLet the Kruskal ranks for U, V, W oinide with their ranks and

rankU + rankV + rankW ≥ 2ρ + 2.Then this anonial deomposition is essentially unique.J. B. Kruskal, Three-way arrays: rank and uniqueness for 3-way and n-way arrays,Linear Algebra Appl., 18, pp. 95�138 (1977).



SIMULTANEOUS DIAGONALIZATIONTensor deomposition of an n × n × n tensor

aijk =

ρ
∑

t=1

uit vjt wktmeans simultaneous diagonalization of n slie matries

Mk = [aijk] = U





wk1 . . .

wkρ



V ⊤

U and V are n × ρRELATED SIMULTANEOUS EIGENVALUE PROBLEM

Mkx = λky



2 × 2 × 2 TENSORSWhen tensor rank is equal to 2?If so, we have simultaneously

M1 = UW1V
M2 = UW2VIf M2 is nonsingular, it follows that

M1M
−1
2 = UDU−1, D = W1W

−1
2 is a diagonal matrix.

EXAMPLE

M1 =

[

0 1
0 0

]

, M2 =

[

1 0
0 1

]

Tensor with slies M1, M2 must be of tensor rank ≥ 3.COROLLARYTensor rank for a tensor of size 2 × 2 × 2 an be greater than 2.It annot exeed 4, but an it be greater than 3?



PRESERVATION OF TENSOR RANK

LEMMATensor rank is invariant under mode ontrations by nonsingular matries.

COROLLARY 1.Tensor rank alulation for general 2 × 2 × 2 tensorredues to a partiular ase of tensor with slies

M1 =

[

∗ 0
0 ∗

]

, M2 =

[

∗ ∗
∗ ∗

]

.

COROLLARY 2.Maximum of tensor ranks for 2 × 2 × 2 tensors is equal to 3.



TENSOR RANK DEPENDS ON THE SUBFIELDIt does not happen for matries!However, for tensor over R tensor ranks over R and C may di�er.PROOF.Consider 2 × 2 × 2 tensor with slies

M1 =

[

0 −1
1 0

]

, M2 =

[

1 0
0 1

]

.Matrix M1M
−1
2 has eigenvalues ±

√
−1.Hene, it annot be diagonalized by a real similarity ⇒tensor rank over R is equal to 3.But tensor rank over C is 2.



RANK INSTABILITY

• Matrix rank an be made larger by arbitrarily small perturbation,but annot be made smaller.The same for Tuker ranks.

• Tensor (anonial) rankmay derease by an arbitrary small perturbation,at least for some tensors.EXAMPLE (ould be 3D Laplaian)
a ⊗ a ⊗ b + a ⊗ b ⊗ a + b ⊗ a ⊗ a =

a ⊗ (a + εb) ⊗ (b + ε−1a) + (b − ε−1a) × a ⊗ a

+εa ⊗ b ⊗ bNotie large numbers in a lower-rank tensor.DIFFICULTYBest approximation to a given tensor by tensorsof a presribed tensor rank may not exist .



BEST TENSOR APPROXIMATIONSTHEOREM 1.For a tensor of anonial rank ρ,best approximations of rank 1 and rank ρ always exist.Is it possible to produe an example of tensor with non-existeneof best approximations of any rank stritly in between of 1 and ρ?THEOREM 2.Best approximations of a presribed tensor rank and a predetermined upperbound on moduli of the fator entries always exist.THEOREM 3.Best approximations of a presribed tensor rank with nonnegativity onstraintfor all entries of fators always exist.



GENERIC RANKSA minimal �nite set R(n1, ..., nd) = {rs} of positive integers s.t. tensorswith tensor ranks from this set are dense in the set of all tensor of size

n1 × ... × ndis said to onsist of generi ranks for n1 × ... × nd tensors.Real 2 × 2 × 2 tensors has generi ranks 2 and 3.

2 in ∼ 79% and 3 in ∼ 21% ases.The set of omplex 2 × 2 × 2 tensors has generi rank 2.THEOREM (HYPOTHESIS?)For omplex tensors there is a single value of generi rank(depending on size).HYPOTHESIS (THEOREM?)For real tensors there ould be onle two possible generi ranks(depending on size).



ALTERNATING LEAST SQUARESR. A. Harshman,Foundations of the Parafa proedure: models and onditions for an explanatorymultimodal fator analysis, UCLA Working Papers in Phonetis, 16: 1�84 (1970).

Given A, find an optimal anonial deompositionwith fator matries U, V, Wwith presribed number of olumns.ALS reads

• Freeze V, W and substitute U with the best LS �t.

• Freeze U, W and do the same with V .
• Freeze U, V and do the same with W .
• Repeat until onvergene.

Convergene theory?



ONE STEP OF ALSWith U and V frozen, �nd W from the LS problem

ρ
∑

t=1

uit vjt wkt

LS

= aijk.In the matrix form, �nd vetors of size ρ

xk =





wk1

...
wkρ



solving

U�V

LS
= bk ≡









a11k

a12k

...
annk









U�V = [u1 ⊗ v1, ..., uρ ⊗ vρ] (Khartri-Rao produt)


