Summer School and Advanced Workshop on Trends and

 Developments in Linear Algebra22 June - 10 July, 2009

Tensor decompositions and tensors ranks: general concepts and algorithms

Eugene Tyrtyshnikov Russian Academy of Sciences

Moscow
Russia

TENSOR DECOMPOSITIONS AND TENSOR RANKS: GENERAL CONCEPTS AND ALGORITHMS

Eugene Tyrtyshnikov
Institute of Numerical Mathematics
Russian Academy of Sciences

WHAT ARE TENSORS?

TENSOR $=$ MULTI-INDEX ARRAY $=$ MULTI-WAY ARRAY $=$ MULTI-DIMENSIONAL MATRIX:

$$
\begin{gathered}
A=\left[a_{i j \ldots k}\right] \\
i \in I, \quad j \in J, \quad \ldots, \quad k \in K
\end{gathered}
$$

Number of different indices is dimension.
Indices are called also modes.
Cardinalities of index ranges $\boldsymbol{I}, \boldsymbol{J}, \ldots, \boldsymbol{K}$ are mode sizes.
In case of dimension \boldsymbol{d} and mode sizes $\boldsymbol{n}_{1}, \boldsymbol{n}_{2}, \ldots, \boldsymbol{n}_{\boldsymbol{d}}$, \boldsymbol{A} is a tensor of size $\boldsymbol{n}_{\mathbf{1}} \times \boldsymbol{n}_{\mathbf{2}} \times \ldots \times \boldsymbol{n}_{\boldsymbol{d}}$.

Talking of tensors, tacitly assume that $\boldsymbol{d} \geq \mathbf{3}$.

TENSORS AND MATRICES

Let $\boldsymbol{A}=\left[\boldsymbol{a}_{i j k l m}\right]$.
Consider pairs of complementary long indices

$$
\begin{aligned}
& (\boldsymbol{i j}) \text { and }(\boldsymbol{k l m}) \\
& (\boldsymbol{k l}) \text { and }(\boldsymbol{i j m})
\end{aligned}
$$

Then \boldsymbol{A} gives rise to several matrices:

$$
\begin{aligned}
\boldsymbol{B}_{1} & =\left[\boldsymbol{b}_{(i j),(k l m)}\right], \\
\boldsymbol{B}_{2} & =\left[\boldsymbol{b}_{(k l),(i j m)}\right]
\end{aligned}
$$

with

$$
b_{(i j),(k l m)}=b_{(k l),(i j m)}=\ldots=a_{i j k l m}
$$

MODE UNFOLDING MATRICES

$$
\begin{aligned}
A_{1} & =\left[a_{i,(j k l m)}\right] \\
A_{2} & =\left[a_{j,(i k l m)}\right] \\
A_{3} & =\left[a_{k,(i j l m)}\right] \\
A_{4} & =\left[a_{l,(i j k m)}\right] \\
A_{5} & =\left[a_{m,(i j k l)}\right]
\end{aligned}
$$

Columns of unfolding matrices are called mode vectors.
If $\boldsymbol{d}=3$, typical names are columns, rows, fibers.
Ranks of unfolding matrices are called mode ranks or Tucker ranks.
L. R. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, V. 31, P. 279-311 (1966).

TENSOR-BY-MATRIX MULTIPLICATIONS

Also called mode contractions.
Given a tensor $\boldsymbol{A}=\left[\boldsymbol{a}_{i j k}\right]$ and matrices

$$
U=\left[u_{i^{\prime} i}\right], \quad V=\left[v_{\left.j^{\prime} j\right]}, \quad W=\left[w_{k^{\prime} k}\right]\right.
$$

define new tensors

$$
\begin{aligned}
A^{U} & =A \times_{1} U=\left[a_{i^{\prime} j k}^{U}\right] \\
A^{V} & =A \times_{2} V=\left[a_{i j^{\prime} k}^{V}\right] \\
A^{W} & =A \times_{3} W=\left[a_{i j k^{\prime}}^{W}\right]
\end{aligned}
$$

as follows:

$$
\begin{aligned}
& a_{i^{\prime} j k}^{U}=\sum_{i} u_{i^{\prime} i} a_{i j k} \quad \Leftrightarrow A_{1}^{U}=U A_{1} \\
& a_{i j^{\prime} k}^{V}=\sum_{j} v_{j^{\prime} j} a_{i j k} \quad \Leftrightarrow A_{2}^{V}=V A_{2} \\
& a_{i j k^{\prime}}^{W}=\sum_{k} w_{k^{\prime} k} a_{i j k} \quad \Leftrightarrow A_{3}^{W}=W A_{3}
\end{aligned}
$$

WHY CONTRACTIONS?

Let $\boldsymbol{A}=\left[\boldsymbol{a}_{i j k}\right]$ be $\boldsymbol{n} \times \boldsymbol{n} \times \boldsymbol{n}$ and mode ranks be equal to $\boldsymbol{r} \ll \boldsymbol{n}$.
Consider $\boldsymbol{Q} \boldsymbol{R}$ decompositions of unfolding matrices

$$
A_{1}=Q_{1} R_{1}, \quad A_{2}=Q_{2} R_{2}, \quad A_{3}=Q_{3} R_{2}
$$

$\boldsymbol{Q}_{1}, \boldsymbol{Q}_{2}, \boldsymbol{Q}_{3}$ are orthogonal $\boldsymbol{n} \times \boldsymbol{r}$ matrices.
Define the Tucker core tensor $\boldsymbol{G}=\left[\boldsymbol{g}_{\boldsymbol{\alpha} \boldsymbol{\beta} \gamma}\right]$
of contracted size $\boldsymbol{r} \times \boldsymbol{r} \times \boldsymbol{r}$:

$$
G=A \times_{1} Q_{1}^{\top} \times_{2} Q_{2}^{\top} \times_{3} Q_{3}^{\top} \quad \text { i.e. } \quad g_{\alpha \beta \gamma}=\sum_{i, j, k} a_{i j k} q_{i \alpha}^{1} q_{j \beta}^{2} q_{k \gamma}^{3}
$$

THEOREM

$$
A=G \times{ }_{1} Q_{1} \times{ }_{2} Q_{2} \times{ }_{3} Q_{3} \quad \text { i.e. } \quad a_{i j k}=\sum_{\alpha, \beta, \gamma} g_{\alpha \beta \gamma} q_{i \alpha}^{1} q_{j \beta}^{2} q_{k \gamma}^{3}
$$

IMPORTANT: \boldsymbol{A} is now represented in a contracted form with only $3 \boldsymbol{n r}+\boldsymbol{r}^{3} \ll \boldsymbol{n}^{3}$ parameters.

TUCKER DECOMPOSITION

Regarded as Tensor SVD or Higher Order SVD:

$$
A=G \times_{1} Q_{1} \times_{2} Q_{2} \times_{3} Q_{3} \quad \text { i.e. } \quad a_{i j k}=\sum_{\alpha, \beta, \gamma} g_{\alpha \beta \gamma} \boldsymbol{q}_{i \alpha}^{1} \boldsymbol{q}_{j \beta}^{2} \boldsymbol{q}_{k \gamma}^{3}
$$

Orthogonal matrices $\boldsymbol{Q}_{1}, \boldsymbol{Q}_{2}, \boldsymbol{Q}_{3}$ are Tucker factors or frame matrices.

THEOREM

Rows in each of unfolding matrices for the Tucker core can be made orthogonal and arranged in length-decreasing order. Row lengths of unfoldings for $\boldsymbol{G}=$ singular values of unfoldings for \boldsymbol{A}.

PROOF is easy via SVD of unfolding matrices:
if $\boldsymbol{A}_{1}=Q_{1} \Sigma_{1} V_{1}$ then $\left(A \times_{1} Q_{1}^{\top}\right)_{1}=\Sigma_{1} V_{1}$.
Same for other modes.

TUCKER APPROXIMATIONS

$$
a_{i j k} \approx \sum_{\alpha, \beta, \gamma} g_{\alpha \beta \gamma} q_{i \alpha}^{1} q_{j \beta}^{2} q_{k \gamma}^{3}
$$

APPLICATIONS:

- Multi-way Principal Component Analysis (senior frame matrices are most informative).
- Tensor data compression (ignore small and get to reduced Tucker ranks \ll mode sizes).
- New generation of numerical algorithms with all data in the Tucker format.
Enjoy linear and even sublinear complexity in total size of data (could be petabytes).
I. Oseledets, D. Savostyanov, E. Tyrtyshnikov, Linear algbera for tensor problems, submitted to Computing (2008).
G. Beylkin, M. Mohlenkamp, Algorithms for numerical analysis in high dimensions, SIAM J. Sci. Comput., 26 (6), pp. 2133-2159 (2005).

CANONICAL DECOMPOSITION

$$
a_{i j \ldots k}=\sum_{t=1}^{\rho} u_{i t} v_{j t \ldots} \ldots w_{k t}
$$

Minimal $\boldsymbol{\rho}=\mathbf{t R a n k}$ is called canonical rank or tensor rank of \boldsymbol{A}.

THEOREM

Let mode ranks be egual to \boldsymbol{r}. Then

$$
r \leq \operatorname{tRank}(A) \leq r^{2}
$$

CANONICAL APPROXIMATIONS

$$
a_{i j \ldots k} \approx \sum_{t=1}^{\rho} u_{i t} v_{j t \ldots} w_{k t}
$$

play same compression role as Tucker.
Could be better but not necessarily!

TENSOR RANKS IN COMPLEXITY THEORY

In the "row-by-column" rule for multiplication of $\boldsymbol{n} \times \boldsymbol{n}$ matrices we have \boldsymbol{n}^{2} multiplications. Can we reduce this number?

$$
\begin{gathered}
{\left[\begin{array}{ll}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right]=\left[\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right]=\left[\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right]} \\
c_{k}=\sum_{i=1}^{n} \sum_{j=1}^{n} h_{i j k} a_{i} b_{j}
\end{gathered}
$$

Let $\boldsymbol{\rho}=$ tensor rank of $\boldsymbol{h}_{\boldsymbol{i j k}}$ and canonical decomposition read

$$
\begin{gathered}
\boldsymbol{h}_{i j k}=\sum_{t=1}^{\rho} \boldsymbol{u}_{i t} \boldsymbol{v}_{j t} \boldsymbol{w}_{k t} \Rightarrow \\
\boldsymbol{c}_{k}=\sum_{t=1}^{\rho} \boldsymbol{w}_{k t}\left(\sum_{i=1}^{4} \boldsymbol{u}_{i t} a_{i}\right)\left(\sum_{j=1}^{n} \boldsymbol{v}_{j t} \boldsymbol{b}_{j}\right)
\end{gathered}
$$

Now we have ρ multiplications!
If $\boldsymbol{n}=\mathbf{2}$ then $\boldsymbol{\rho}=\mathbf{7}$ (Strassen, 1965).
By recursion \Rightarrow only $\boldsymbol{O}\left(\boldsymbol{n}^{\log _{2} 7}\right)$ multiplications for arbitrary \boldsymbol{n}.

TUCKER VS CANONICAL FOR MATRICES

$$
a_{i j}=\sum_{\alpha=1}^{r} \sum_{\beta=1}^{r} g_{\alpha \beta} \boldsymbol{q}_{i \alpha}^{1} q_{j \beta}^{2} \Leftrightarrow A=Q_{1} G Q_{2}^{\top}
$$

Tucker $=$ a pseudo-skeleton decomposition of \boldsymbol{A}.

$$
a_{i j}=\sum_{t=1}^{\rho} u_{i t} v_{j t} \quad \Leftrightarrow \quad A=\boldsymbol{U} V^{\top}
$$

Canonical $=$ a skeleton or dyadic decomposition of \boldsymbol{A}.

Tensor (canonical) rank seems to be a true generalization of the matrix rank concept.

However, tensor rank for dimension ≥ 3 and matrix rank have noticably different properties.

KRONECKER PRODUCT REPRESENTATION

Tucker decomposition:

$$
A=\sum_{\alpha, \beta, \gamma} g_{\alpha \beta \gamma} u_{\alpha} \otimes \boldsymbol{v}_{\beta} \otimes w_{\gamma}
$$

Canonical decomposition:

$$
A=\sum_{t} u_{t} \otimes v_{t} \otimes w_{t}
$$

KRUSKAL (ESSENTIAL) UNIQUENESS

Minimal canonical decomposition

$$
A=\sum_{t} u_{t} \otimes v_{t} \otimes w_{t}
$$

is said to be essentially unique if

$$
\sum_{t} u_{i t} \otimes \boldsymbol{v}_{j t} \otimes \boldsymbol{w}_{k t}=\sum_{t} \bar{u}_{i t} \otimes \overline{\boldsymbol{v}}_{j t} \otimes \bar{w}_{k t}
$$

implies that, upon some reordering,

$$
\begin{gathered}
u_{t}\left\|\bar{u}_{t}, \quad v_{t}\right\| \bar{v}_{t}, \quad w_{t} \| \bar{w}_{t} \\
\left\|u_{t} \otimes v_{t} \otimes w_{t}\right\|=\left\|\bar{u}_{t} \otimes \bar{v}_{t} \otimes \bar{w}_{t}\right\|
\end{gathered}
$$

Matrix skeleton (dyadic) decomposition is NOT ESSENTIALLY UNIQUE. This becomes an obstacle in Principal Component Analysis, e.g. in separation of signals.

Despite that, tensors possess ESSENTIAL UNIQUENESS (under mild assumptions).

INDEPENDENT COMPONENT RECONSTRUCTION

EXAMPLE (De Lathauwer) where the PCA fails.

Assume we need to separate two independent zero-mean signals

$$
x_{1}(t)=\sqrt{2} \sin t, \quad x_{2}(t)=\left\{\begin{array}{cc}
1 & \text { if } \quad k \pi \leq t<k \pi+\pi / 2 \\
-1 & \text { if } k \pi+\pi / 2 \leq t<k \pi+\pi
\end{array}\right.
$$

defined on the interval $0 \leq t \leq 4 \pi$ and mixed by a matrix

$$
A=\left(\begin{array}{cc}
-1 & -3 \sqrt{3} \\
3 \sqrt{3} & -5
\end{array}\right)
$$

FIG. 1. Signals to be separated.

Fig. 2. Observations of linearly mixed signals.

FIG. 3. Seperation results produced by the PCA.

FIG. 4. Separation results of the tensor technique.

Fig. 2. Observations of linearly mixed signals.

FIG. 3. Seperation results produced by the PCA.

FIG. 4. Separation results of the tensor technique.

Fig. 2. Observations of linearly mixed signals.

Fig. 3. Seperation results produced by the PCA.

FIG. 4. Separation results of the tensor technique.

KRUSKAL (ESSENTIAL) UNIQUENESS

Canonical decomposition

$$
A=\sum_{t=1}^{\rho} u_{t} \otimes v_{t} \otimes w_{t}
$$

is defined by matrices with $\boldsymbol{\rho}$ columns:

$$
U=\left[u_{i t}\right], \quad V=\left[v_{j t}\right], \quad W=\left[w_{k t}\right]
$$

A matrix is said to have Kruskal rank \boldsymbol{r} if \boldsymbol{r} is the maximal number s.t. any \boldsymbol{r} columns are linearly independent.

KRUSKAL THEOREM

Let the Kruskal ranks for $\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{W}$ coincide with their ranks and

$$
\operatorname{rank} U+\operatorname{rank} V+\operatorname{rank} W \geq 2 \rho+2
$$

Then this canonical decomposition is essentially unique.
J. B. Kruskal, Three-way arrays: rank and uniqueness for 3 -way and n-way arrays, Linear Algebra Appl., 18, pp. 95-138 (1977).

SIMULTANEOUS DIAGONALIZATION

Tensor decomposition of an $\boldsymbol{n} \times \boldsymbol{n} \times \boldsymbol{n}$ tensor

$$
\boldsymbol{a}_{i j k}=\sum_{t=1}^{\rho} \boldsymbol{u}_{i t} \boldsymbol{v}_{j t} \boldsymbol{w}_{k t}
$$

means simultaneous diagonalization of \boldsymbol{n} slice matrices

$$
M_{k}=\left[a_{i j k}\right]=U\left[\begin{array}{lll}
w_{k 1} & & \\
& \ddots & \\
& & w_{k \rho}
\end{array}\right] V^{\top}
$$

$$
\boldsymbol{U} \text { and } \boldsymbol{V} \text { are } \boldsymbol{n} \times \boldsymbol{\rho}
$$

RELATED SIMULTANEOUS EIGENVALUE PROBLEM

$$
M_{k} x=\lambda_{k} y
$$

$2 \times 2 \times 2$ TENSORS

When tensor rank is equal to 2 ?
If so, we have simultaneously

$$
\begin{aligned}
& M_{1}=U W_{1} V \\
& M_{2}=U W_{2} V
\end{aligned}
$$

If $\boldsymbol{M}_{\boldsymbol{2}}$ is nonsingular, it follows that

$$
\boldsymbol{M}_{1} \boldsymbol{M}_{2}^{-1}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{-1}, \quad \boldsymbol{D}=\boldsymbol{W}_{1} \boldsymbol{W}_{2}^{-1} \text { is a diagonal matrix. }
$$

EXAMPLE

$$
M_{1}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad M_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Tensor with slices $\boldsymbol{M}_{\mathbf{1}}, \boldsymbol{M}_{\mathbf{2}}$ must be of tensor rank ≥ 3.

COROLLARY

Tensor rank for a tensor of size $\mathbf{2 \times 2 \times 2}$ can be greater than $\mathbf{2}$.
It cannot exceed 4 , but can it be greater than 3 ?

PRESERVATION OF TENSOR RANK

LEMMA

Tensor rank is invariant under mode contractions by nonsingular matrices.

COROLLARY 1.

Tensor rank calculation for general $2 \times 2 \times 2$ tensor
reduces to a particular case of tensor with slices

$$
M_{1}=\left[\begin{array}{cc}
* & 0 \\
0 & *
\end{array}\right], \quad M_{2}=\left[\begin{array}{cc}
* & * \\
* & *
\end{array}\right]
$$

COROLLARY 2.

Maximum of tensor ranks for $2 \times 2 \times 2$ tensors is equal to 3 .

TENSOR RANK DEPENDS ON THE SUBFIELD

It does not happen for matrices!
However, for tensor over \mathbb{R} tensor ranks over \mathbb{R} and \mathbb{C} may differ.
PROOF.
Consider $2 \times 2 \times 2$ tensor with slices

$$
M_{1}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \quad M_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Matrix $\boldsymbol{M}_{\mathbf{1}} \boldsymbol{M}_{2}^{-1}$ has eigenvalues $\pm \sqrt{-1}$.
Hence, it cannot be diagonalized by a real similarity \Rightarrow tensor rank over \mathbb{R} is equal to 3 .
But tensor rank over \mathbb{C} is 2 .

RANK INSTABILITY

- Matrix rank can be made larger by arbitrarily small perturbation, but cannot be made smaller. The same for Tucker ranks.
- Tensor (canonical) rank may decrease by an arbitrary small perturbation, at least for some tensors.

EXAMPLE (could be 3D Laplacian)

$$
a \otimes a \otimes b+a \otimes b \otimes a+b \otimes a \otimes a=
$$

$$
\begin{aligned}
a \otimes(a+\varepsilon b) \otimes\left(b+\varepsilon^{-1} a\right)+\left(b-\varepsilon^{-1} a\right) & \times a \otimes a \\
+ & \varepsilon a \otimes b \otimes b
\end{aligned}
$$

Notice large numbers in a lower-rank tensor.

DIFFICULTY

Best approximation to a given tensor by tensors of a prescribed tensor rank may not exist.

BEST TENSOR APPROXIMATIONS

THEOREM 1.

For a tensor of canonical rank ρ,
best approximations of rank $\mathbf{1}$ and rank $\boldsymbol{\rho}$ always exist.

Is it possible to produce an example of tensor with non-existence
of best approximations of any rank strictly in between of $\mathbf{1}$ and $\boldsymbol{\rho}$?

THEOREM 2.

Best approximations of a prescribed tensor rank and a predetermined upper bound on moduli of the factor entries always exist.

THEOREM 3.

Best approximations of a prescribed tensor rank with nonnegativity constraint for all entries of factors always exist.

GENERIC RANKS

A minimal finite set $\mathcal{R}\left(n_{1}, \ldots, n_{d}\right)=\left\{r_{s}\right\}$ of positive integers s.t. tensors with tensor ranks from this set are dense in the set of all tensor of size

$$
n_{1} \times \ldots \times n_{d}
$$

is said to consist of generic ranks for $\boldsymbol{n}_{\boldsymbol{1}} \times \ldots \times \boldsymbol{n}_{\boldsymbol{d}}$ tensors.

Real $2 \times 2 \times 2$ tensors has generic ranks 2 and 3 .
2 in $\sim 79 \%$ and 3 in $\sim 21 \%$ cases.

The set of complex $\mathbf{2} \times \mathbf{2} \times \mathbf{2}$ tensors has generic rank 2 .

THEOREM (HYPOTHESIS?)

For complex tensors there is a single value of generic rank (depending on size).

HYPOTHESIS (THEOREM?)

For real tensors there could be onle two possible generic ranks (depending on size).

ALTERNATING LEAST SQUARES

R. A. Harshman,

Foundations of the Parafac procedure: models and conditions for an explanatory multimodal factor analysis, UCLA Working Papers in Phonetics, 16: 1-84 (1970).

Given \boldsymbol{A}, find an optimal canonical decomposition with factor matrices $\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{W}$
with prescribed number of columns.

ALS reads

- Freeze $\boldsymbol{V}, \boldsymbol{W}$ and substitute \boldsymbol{U} with the best LS fit.
- Freeze $\boldsymbol{U}, \boldsymbol{W}$ and do the same with \boldsymbol{V}.
- Freeze $\boldsymbol{U}, \boldsymbol{V}$ and do the same with \boldsymbol{W}.
- Repeat until convergence.

Convergence theory?

ONE STEP OF ALS

With \boldsymbol{U} and \boldsymbol{V} frozen, find \boldsymbol{W} from the LS problem

$$
\sum_{t=1}^{\rho} u_{i t} v_{j t} w_{k t} \stackrel{\text { LS }}{=} a_{i j k}
$$

In the matrix form, find vectors of size $\boldsymbol{\rho}$

$$
x_{k}=\left[\begin{array}{c}
w_{k 1} \\
\cdots \\
w_{k \rho}
\end{array}\right]
$$

solving

$$
\boldsymbol{U} \square \boldsymbol{V} \stackrel{\text { LS }}{=} \boldsymbol{b}_{k} \equiv\left[\begin{array}{c}
a_{11 k} \\
a_{12 k} \\
\cdots \\
a_{n n k}
\end{array}\right]
$$

$$
\boldsymbol{U} \square V=\left[u_{1} \otimes v_{1}, \ldots, u_{\rho} \otimes v_{\rho}\right]
$$

