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SVD remarks

A = [a1 . . . an ] = [aij ]

σ1 = kAk2 = maxkxk2=1 kAxk2 �


Aej

2 = 

aj

2 � jaij j

U unitary ) U�U = I ) Σ = I
A given, A = VΣW � and Σ = I ) A = VIW � is unitary
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Structured unitary equivalence: The CS decomposition

Given: U =
�
U11 U12
U21 U22

�
unitary, U11 2 Mp , U22 2 Mq , p � q,

p + q = n
Available to choose: V ,W 2 Mn unitary, which we insist must be
structured conformally to the partitioning of U: V = V1 � V2,
W = W1 �W2, V1,W1 2 Mp , V2,W2 2 Mq

Then U ! Z = VUW =

�
V1U11W1 V1U12W2

V2U21W1 V2U22W2

�
=

�
Z11 Z12
Z21 Z22

�
is unitary. We want to choose the small unitary matrices
V1,V2,W1,W2 so that Z has a simple structure. We may then pre-
or post-multiply Z by any unitary matrices of the forms V̂ � Iq or
Ip � Ŵ in which V̂ 2 Mp and Ŵ 2 Mq are unitary.
Use the SVD to choose V1 and W1 so that
V1U11W1 = Σ = diag(σ1, . . . , σp), 1 � σ1 � � � � � σp � 0. Now

Z =
�

Σ Z12
Z21 Z22

�
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Structured unitary equivalence: The CS decomposition

Pre- and post-multiply by Kp � Iq (K is the reversal matrix). Now Z
has the form

Z =
�
KpΣKp Z12
Z21 Z22

�
, KpΣKp =

24 0
C

I

35
with C = diag(c1, . . . , cs ) and 0 < c1 � � � � � cs < 1
Z21 is q-by-p so there is a unitary Q1 2 Mq such that

Q1Z21 = R21 =
�
R
0

�
is q-by-p and R is upper triangular

Z12 is p-by-q so there is a unitary Q2 2 Mq such that
Z12Q2 = L12 =

�
L 0

�
is p-by-q and L is lower triangular
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Structured unitary equivalence: The CS decomposition

Pre-multiply by Ip �Q1 and post-multiply by Ip �Q2. Now Z has the form266664
24 0

C
I

35 �
L 0

�
�
R
0

�
[Z22]

377775
Partition L and R conformally to Z11 and keep in mind that each is
triangular, so their diagonal blocks are triangular:
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Structured unitary equivalence: The CS decomposition

2666666664

24 0
C

I

35 24 24 ? 0 0
? ? 0
? ? ?

35 24 0
0
0

35 35
2664
24 ? ? ?
0 ? ?
0 0 ?

35
�
0 0 0

�
3775 [Z22]

3777777775
Let S = diag(

q
1� c21 , . . . ,

p
1� c2s ). Invoke orthonormality of the top p

rows and the left p columns to get
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Structured unitary equivalence: The CS decomposition

2666666664

24 0
C

I

35 24 24 I 0 0
0 S 0
0 0 0

35 24 0
0
0

35 35
2664
24 I 0 0
0 S 0
0 0 0

35
�
0 0 0

�
3775

2664
24 ? ? ?

? ? ?
? ? ?

35 24 ?
?
?

35
�

? ? ?
�

[?]

3775

3777777775
Now invoke orthonormality of rows p + 1, . . . , 2p and of columns
p + 1, . . . , 2p to get
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Structured unitary equivalence: The CS decomposition

2666666664

24 0
C

I

35 24 24 I 0 0
0 S 0
0 0 0

35 24 0
0
0

35 35
2664
24 I 0 0
0 S 0
0 0 0

35
�
0 0 0

�
3775

2664
24 0 0 0
0 �C 0
0 0 ?

35 24 0
0
?

35
�
0 0 ?

�
[?]

3775

3777777775
which is...
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Structured unitary equivalence: The CS decomposition

26666664

266664
0 0 0 I 0
0 C 0 0 S
0 0 I 0 0
I 0 0 0 0
0 S 0 0 �C

377775
266664
0
0
0
0
0

377775
�
0 0 0 0 0

�
[Z?]

37777775
The remaining unknown block is a direct summand of a unitary matrix, so
it is unitary and there are unitary matrices W 0 and W 00 such that
W 0Z?W 00 = I .
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Structured unitary equivalence: The CS decomposition

Pre-multiply by I �W 0 and post-multiply by I �W 00 to obtain26666664

266664
0 0 0 I 0
0 C 0 0 S
0 0 I 0 0
I 0 0 0 0
0 S 0 0 �C

377775
266664
0
0
0
0
0

377775
�
0 0 0 0 0

�
[I ]

37777775
which we re-organize as2666666664

24 0 0 0
0 C 0
0 0 I

35 24 I 0 0
0 S 0
0 0 0

35 24 0
0
0

35
24 I 0 0
0 S 0
0 0 0

35 24 0 0 0
0 �C 0
0 0 I

35 24 0
0
0

35
�
0 0 0

� �
0 0 0

�
[Iq�p ]

3777777775
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Structured unitary equivalence: The CS decomposition

Finally, we adjust the signs and pre-/post-multiply by K �K � Iq�p
to permute the diagonal blocks (this also reverses the order of the
diagonal entries in C ! C 0 and S ! S 0) to obtain2666666664

24 I 0 0
0 C 0 0
0 0 0

35 24 0 0 0
0 S 0 0
0 0 I

35 24 0
0
0

35
24 0 0 0
0 �S 0 0
0 0 �I

35 24 I 0 0
0 C 0 0
0 0 0

35 24 0
0
0

35
�
0 0 0

� �
0 0 0

�
[Iq�p ]

3777777775
For a more easily remembered form, let

C =

24 I 0 0
0 C 0 0
0 0 0

35 , S =

24 0 0 0
0 S 0 0
0 0 I

35
so that C2 + S2 = Ip .
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Structured unitary equivalence: The CS decomposition

The CS decomposition of U =
�
U11 U12
U21 U22

�
2 Mp+q is

�
V1 0
0 V2

� 24 C S 0
�S C 0
0 0 Iq�p

35 � W1 0
0 W2

�

in which U11, C,S ,V1,W1 2 Mp ; U22,V2,W2 2 Mq ; Vi ,Wi are
unitary; C = diag(σ1, . . . , σp); σ1, . . . , σp are the decreasingly ordered

singular values of U11; and S = diag(
q
1� σ21 , . . . ,

q
1� σ2p ).

This is a parametric representation for all unitary 2-by-2 block
matrices with the given block sizes. The parameters are: p arbitrary
numbers between zero and one (the diagonal entries of C), and four
arbitrary unitary matrices V1,W1 2 Mp , V2,W2 2 Mq .

Applications: angles between subspaces, structured inverses,
complementary nullities,...
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Canonical forms for similarity: The Jordan canonical form

The Jordan block of size ` with eigenvalue λ is

J`(λ) =

266664
λ 1 0

. . . . . .
. . . 1

0 λ

377775
`�`

A Jordan matrix is a direct sum of the form Jn1(λ1)� � � � � Jnp (λp)
(3.1.11) Each A 2 Mn is similar to a Jordan matrix.
What about uniqueness?
J`(λ)� λI = J`(0). Translation by λI permits us to reduce to the
nilpotent case.
rank J`(0) = `� 1, rank Jk (0)2 = `� 2, . . . , rank J`(0)`�1 =
1, rank J`(0)` = 0
Convention: rank J`(0)0 := `
rank J`(0)k = maxf`� k, 0g for each k = 1, 2, . . .
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Canonical forms for similarity: The Jordan canonical form

rank J`(0)k�1 � rank J`(0)k =
�
1 if ` � k
0 if ` < k

, k = 1, 2, . . .

J = Jn1(λ)� � � � � Jnp (λ) and J � λI = Jn1(0)� � � � � Jnp (0)
rank(J � λI )k�1 � rank(J � λI )k = (rank Jn1(0)

k�1 �
rank Jn1(0)

k ) + � � �+ (rank Jnp (0)k�1 � rank Jnp (0)k )
= (1 if n1 � k) + � � �+ (1 if np � k)
= number of blocks with size k or larger
De�ne wk (J,λ) = rank(J � λI )k�1 � rank(J � λI )k

Then wk (J,λ)� wk+1(J,λ) = (# blocks of J with size k or larger)
� (# blocks of J with size k + 1 or larger) = # blocks of J with size
exactly k
wk (SJS�1,λ) = rank(SJS�1 � λI )k�1 � rank(SJS�1 � λI )k

= rank(S(J � λI )S�1)k�1 � rank(S(J � λI )S�1)k

= rank(S(J � λI )k�1S�1)� rank(S(J � λI )kS�1)
= rank(J � λI )k�1 � rank(J � λI )k = wk (J,λ)
Thus, wk (SJS�1,λ) = wk (J,λ) is a similarity invariant
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Canonical forms for similarity: The Jordan canonical form

Each A 2 Mn is similar to a Jordan matrix, so the number of blocks
Jk (λ) in the Jordan canonical form of A is exactly
wk (A,λ)� wk+1(A,λ)
The sequence w1(A,λ), . . . ,wn(A,λ) is the Weyr characteristic of A
with respect to the eigenvalue λ. It is similarity invariant and is
determined by the values of rank(A� λI )k , k = 1, . . . , n.
The Jordan canonical form of A is unique (up to permutation of its
direct summands): the number of blocks Jk (λ) for each eigenvalue λ
is determined by the Weyr characteristic of A.

(3.1.18) A and B are similar if and only if they have the same
eigenvalues, and the same Weyr characteristics with respect to each
of those eigenvalues.
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Some facts about the Weyr characteristic

w1(A,λ) = total number of Jordan blocks Ji (λ) of all sizes =
geometric multiplicity of λ as an eigenvalue of A

wk (A,λ) = number of Jordan blocks Ji (λ) with i � k
wk (A,λ) = 0 if k > qλ = index of λ = size of largest Ji (λ)

w1(A,λ) � w2(A,λ) � � � � � wqλ
(A,λ) � 1 > wqλ+1(A,λ) = 0
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The Weyr Canonical Form

Suppose that the distinct eigenvalues of A 2 Mn are λ1, . . . ,λd .
Choose one of them, call it λ, suppose the index of λ is q, and let
wk := wk (A,λ), k = 1, . . . , q. The Weyr block of A associated with
the eigenvalue λ is

WA(λ) =

26666664
λIw1 G12

λIw2 G23
. . . . . .

. . . Gwq�1,wq
λIwq

37777775 ,Gi ,i+1 =
�
Iwi+1
0

�

Only one Weyr block for each distinct eigenvalue.
WA(λ)� λI = WA(0).
rankWA(0) = w2 + � � �+ wq , rankWA(0)2 = w3 + � � �+ wq , etc.
rankWA(0)� rankWA(0)2 = w2, rankWA(0)2 � rankWA(0)3 = w3,
etc.
Weyr characteristics of WA(λ) and A (with respect to λ) are the
same!
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The Weyr Canonical Form

The Weyr matrix of A is WA = WA(λ1)� � � � �WA(λd ) (d blocks)

WA is similar to JA: same eigenvalues and same Weyr characteristics!

(3.4.2.3) Weyr matrices are a canonical form for similarity.

In fact, WA and JA are permutation similar. So why bother?
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Jordan vs. Weyr: commutativity

J =
�
J2(λ) 0
0 J2(λ)

�
,

w1(J,λ) = 2,w2(J,λ) = 2) WJ =

�
λI2 I2
0 λI2

�
AJ = JA, A =

�
B C
D E

�
, each block is upper triangular Toeplitz

AWJ = WJA, A =
�
F G
0 F

�
, which is block upper triangular.

Construct a Schur triangularization: F = U∆U�, ∆ upper triangular

V = U � U: V �WJV = WJ , V �AV =
�

∆ D
0 ∆

�
. Thus,

there is a block unitary matrix conformal to the block structure of WJ

that leaves WJ invariant and reduces A to upper triangular form.
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Jordan vs. Weyr: commutativity

(3.4.2.10) F = fA,A1,A2, . . .g a commuting family ) there is a
simultaneous similarity F ! SFS�1 = fWA,SA1S�1,SA2S�1, . . .g
that puts A into Weyr canonical form and upper triangularizes each
Ai (moreover, there are certain identities between blocks on the same
superdiagonal of each SAjS�1).

There is no analog of this simultaneous reduction for the Jordan
canonical form!

Many applications, e.g., sub-algebras of Mn generated by a
commuting family (Gerstenhaber (1961), Neubauer/Sethuraman
(1999), O�Meara/Visonhaler (2006))
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The unitary Weyr form

The Weyr canonical form theorem says that for each A 2 Mn there is
a nonsingular S 2 Mn such that A = SWAS�1. Let S = QR, in
which Q is unitary and R is nonsingular and upper triangular, with
positive diagonal entries. Then A = SWAS�1 = Q(RWAR�1)Q�, so
A is unitarily similar to F = RWAR�1, which has the form

F =

26666664
µ1In1 F12 F13 � � � F1p

µ2In2 F23 � � � F2p

µ3In3
. . .

...
. . . Fp�1,p

µp Inp

37777775
The block sizes of the µi are determined by the Weyr characteristics
of A; if µi = µi+1 then ni � ni+1, Fi ,i+1 2 Mni ,ni+1 is upper triangular
and has positive diagonal entries, so it has full rank.
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The unitary Weyr form

(3.4.3.1) The upper triangular form

F =

26666664
µ1In1 F12 F13 � � � F1p

µ2In2 F23 � � � F2p

µ3In3
. . .

...
. . . Fp�1,p

µp Inp

37777775
is a substantial re�nement of the Schur upper triangular form because
of the special structure of the superdiagonal blocks Fi ,i+1. It has
many applications to problems involving unitary similarity. (3.4.3.3),
Problem 5 in (3.4)
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