Matrix Canonical Forms

Roger Horn

University of Utah
ICTP School: Linear Algebra: Thursday, June 25, 2009

SVD remarks

- $A=\left[\begin{array}{lll}a_{1} & \ldots & a_{n}\end{array}\right]=\left[a_{i j}\right]$

$$
\text { - } \sigma_{1}=\|A\|_{2}=\max _{\|x\|_{2}=1}\|A x\|_{2} \geq\left\|A e_{j}\right\|_{2}=\left\|a_{j}\right\|_{2} \geq\left|a_{i j}\right|
$$

- U unitary $\Rightarrow U^{*} U=I \Rightarrow \Sigma=I$
- A given, $A=V \Sigma W^{*}$ and $\Sigma=I \Rightarrow A=V I W^{*}$ is unitary

Structured unitary equivalence: The CS decomposition

- Given: $U=\left[\begin{array}{ll}U_{11} & U_{12} \\ U_{21} & U_{22}\end{array}\right]$ unitary, $U_{11} \in M_{p}, U_{22} \in M_{q}, p \leq q$, $p+q=n$
- Available to choose: $V, W \in M_{n}$ unitary, which we insist must be structured conformally to the partitioning of $U: V=V_{1} \oplus V_{2}$, $W=W_{1} \oplus W_{2}, V_{1}, W_{1} \in M_{p}, V_{2}, W_{2} \in M_{q}$
- Then $U \rightarrow Z=V U W=\left[\begin{array}{ll}V_{1} U_{11} W_{1} & V_{1} U_{12} W_{2} \\ V_{2} U_{21} W_{1} & V_{2} U_{22} W_{2}\end{array}\right]=\left[\begin{array}{ll}Z_{11} & Z_{12} \\ Z_{21} & Z_{22}\end{array}\right]$ is unitary. We want to choose the small unitary matrices $V_{1}, V_{2}, W_{1}, W_{2}$ so that Z has a simple structure. We may then preor post-multiply Z by any unitary matrices of the forms $\hat{V} \oplus I_{q}$ or $I_{p} \oplus \hat{W}$ in which $\hat{V} \in M_{p}$ and $\hat{W} \in M_{q}$ are unitary.
- Use the SVD to choose V_{1} and W_{1} so that
$V_{1} U_{11} W_{1}=\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{p}\right), 1 \geq \sigma_{1} \geq \cdots \geq \sigma_{p} \geq 0$. Now
$Z=\left[\begin{array}{cc}\Sigma & Z_{12} \\ Z_{21} & Z_{22}\end{array}\right]$

Structured unitary equivalence: The CS decomposition

- Pre- and post-multiply by $K_{p} \oplus I_{q}$ (K is the reversal matrix). Now Z has the form

$$
Z=\left[\begin{array}{cc}
K_{p} \Sigma K_{p} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right], \quad K_{p} \Sigma K_{p}=\left[\begin{array}{ccc}
0 & & \\
& C & \\
& & I
\end{array}\right]
$$

with $C=\operatorname{diag}\left(c_{1}, \ldots, c_{s}\right)$ and $0<c_{1} \leq \cdots \leq c_{s}<1$

- Z_{21} is q-by- p so there is a unitary $Q_{1} \in M_{q}$ such that $Q_{1} Z_{21}=R_{21}=\left[\begin{array}{l}R \\ 0\end{array}\right]$ is q-by- p and R is upper triangular
- Z_{12} is p-by- q so there is a unitary $Q_{2} \in M_{q}$ such that $Z_{12} Q_{2}=L_{12}=\left[\begin{array}{ll}L & 0\end{array}\right]$ is p-by- q and L is lower triangular

Structured unitary equivalence: The CS decomposition

Pre-multiply by $I_{p} \oplus Q_{1}$ and post-multiply by $I_{p} \oplus Q_{2}$. Now Z has the form

$$
\left[\begin{array}{cc}
{\left[\begin{array}{ccc}
0 & & \\
& C & \\
& I
\end{array}\right]} & {\left[\begin{array}{ll}
L & 0
\end{array}\right]} \\
& {\left[\begin{array}{l}
R \\
0
\end{array}\right]}
\end{array}\right.
$$

Partition L and R conformally to Z_{11} and keep in mind that each is triangular, so their diagonal blocks are triangular:

Structured unitary equivalence: The CS decomposition

$$
\left[\begin{array}{lll}
{\left[\begin{array}{lll}
0 & & \\
& C & \\
& & I
\end{array}\right]} & {\left[\left[\begin{array}{lll}
? & 0 & 0 \\
? & ? & 0 \\
? & ? & ?
\end{array}\right]\right.} & {\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{array}\left[\begin{array}{lll}
{\left[\begin{array}{lll}
? & ? & ? \\
0 & ? & ? \\
0 & 0 & ?
\end{array}\right]} \\
0 & 0 & 0
\end{array}\right]\right] \quad\left[Z_{22}\right]
$$

Let $S=\operatorname{diag}\left(\sqrt{1-c_{1}^{2}}, \ldots, \sqrt{1-c_{s}^{2}}\right)$. Invoke orthonormality of the top p rows and the left p columns to get

Structured unitary equivalence: The CS decomposition

$$
\left[\begin{array}{ccc}
{\left[\begin{array}{lll}
0 & & \\
& C & \\
& & I
\end{array}\right]} & {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & S & 0 \\
0 & 0 & 0
\end{array}\right]} & {\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{array}\right]
$$

Now invoke orthonormality of rows $p+1, \ldots, 2 p$ and of columns $p+1, \ldots, 2 p$ to get

Structured unitary equivalence: The CS decomposition

$$
\left[\begin{array}{lll}
{\left[\begin{array}{lll}
0 & & \\
& C & \\
& & I
\end{array}\right]} & {\left[\left[\begin{array}{lll}
I & 0 & 0 \\
0 & S & 0 \\
0 & 0 & 0
\end{array}\right]\right.} & {\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{array}\right]
$$

which is...

Structured unitary equivalence: The CS decomposition

$$
\left[\begin{array}{ccccc}
{\left[\begin{array}{cccc}
0 & 0 & 0 & I
\end{array} 0\right.} \\
0 & C & 0 & 0 & S \\
0 & 0 & l & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & S & 0 & 0 & -C
\end{array}\right] \stackrel{\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]}{\left[\begin{array}{llll}
{\left[Z_{?}\right]}
\end{array}\right]}
$$

The remaining unknown block is a direct summand of a unitary matrix, so it is unitary and there are unitary matrices W^{\prime} and $W^{\prime \prime}$ such that $W^{\prime} Z_{\text {? }} W^{\prime \prime}=I$.

Structured unitary equivalence: The CS decomposition

- Pre-multiply by $I \oplus W^{\prime}$ and post-multiply by $I \oplus W^{\prime \prime}$ to obtain

$$
\left[\begin{array}{ccccc}
{\left[\begin{array}{cccc}
0 & 0 & 0 & I
\end{array} 0\right.} \\
0 & C & 0 & 0 & S \\
0 & 0 & I & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & S & 0 & 0 & -C
\end{array}\right]\left[\begin{array}{l}
{\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array} 0\right.}
\end{array}\right]
$$

- which we re-organize as

$$
\left[\begin{array}{lcc}
{\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & C & 0 \\
0 & 0 & 1
\end{array}\right]} & {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & S & 0 \\
0 & 0 & 0
\end{array}\right]} & {\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & S & 0 \\
0 & 0 & 0
\end{array}\right]} & {\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -C & 0 \\
0 & 0 & 1
\end{array}\right]} & {\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
{\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]} & {\left[I_{q-p}\right]}
\end{array}\right]
$$

Structured unitary equivalence: The CS decomposition

- Finally, we adjust the signs and pre-/post-multiply by $K \oplus K \oplus I_{q-p}$ to permute the diagonal blocks (this also reverses the order of the diagonal entries in $C \rightarrow C^{\prime}$ and $S \rightarrow S^{\prime}$) to obtain

$$
\left[\begin{array}{ccc}
{\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & C^{\prime} & 0 \\
0 & 0 & 0
\end{array}\right]} & {\left[\begin{array}{lcc}
0 & 0 & 0 \\
0 & S^{\prime} & 0 \\
0 & 0 & I
\end{array}\right]} & {\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
{\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -S^{\prime} & 0 \\
0 & 0 & -I
\end{array}\right]} & {\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & C^{\prime} & 0 \\
0 & 0 & 0
\end{array}\right]} & {\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
{\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]} & {\left[I_{q-p}\right]}
\end{array}\right]
$$

- For a more easily remembered form, let

$$
\mathcal{C}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & C^{\prime} & 0 \\
0 & 0 & 0
\end{array}\right], \quad \mathcal{S}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & S^{\prime} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

so that $\mathcal{C}^{2}+\mathcal{S}^{2}=I_{p}$.

Structured unitary equivalence: The CS decomposition

- The CS decomposition of $U=\left[\begin{array}{ll}U_{11} & U_{12} \\ U_{21} & U_{22}\end{array}\right] \in M_{p+q}$ is

$$
\left[\begin{array}{cc}
V_{1} & 0 \\
0 & V_{2}
\end{array}\right]\left[\begin{array}{ccc}
\mathcal{C} & \mathcal{S} & 0 \\
-\mathcal{S} & \mathcal{C} & 0 \\
0 & 0 & I_{q-p}
\end{array}\right]\left[\begin{array}{cc}
W_{1} & 0 \\
0 & W_{2}
\end{array}\right]
$$

in which $U_{11}, \mathcal{C}, \mathcal{S}, V_{1}, W_{1} \in M_{p} ; U_{22}, V_{2}, W_{2} \in M_{q} ; V_{i}, W_{i}$ are unitary; $\mathcal{C}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{p}\right) ; \sigma_{1}, \ldots, \sigma_{p}$ are the decreasingly ordered singular values of U_{11}; and $\mathcal{S}=\operatorname{diag}\left(\sqrt{1-\sigma_{1}^{2}}, \ldots, \sqrt{1-\sigma_{p}^{2}}\right)$.

- This is a parametric representation for all unitary 2-by-2 block matrices with the given block sizes. The parameters are: p arbitrary numbers between zero and one (the diagonal entries of \mathcal{C}), and four arbitrary unitary matrices $V_{1}, W_{1} \in M_{p}, V_{2}, W_{2} \in M_{q}$.
- Applications: angles between subspaces, structured inverses, complementary nullities,...

Canonical forms for similarity: The Jordan canonical form

- The Jordan block of size ℓ with eigenvalue λ is

$$
J_{\ell}(\lambda)=\left[\begin{array}{cccc}
\lambda & 1 & & 0 \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
0 & & & \lambda
\end{array}\right]_{\ell \times \ell}
$$

- A Jordan matrix is a direct sum of the form $J_{n_{1}}\left(\lambda_{1}\right) \oplus \cdots \oplus J_{n_{p}}\left(\lambda_{p}\right)$
- (3.1.11) Each $A \in M_{n}$ is similar to a Jordan matrix.
- What about uniqueness?
- $J_{\ell}(\lambda)-\lambda I=J_{\ell}(0)$. Translation by λI permits us to reduce to the nilpotent case.
- $\operatorname{rank} J_{\ell}(0)=\ell-1$, rank $J_{k}(0)^{2}=\ell-2, \ldots, \operatorname{rank} J_{\ell}(0)^{\ell-1}=$ 1 , rank $J_{\ell}(0)^{\ell}=0$
- Convention: rank $J_{\ell}(0)^{0}:=\ell$
- rank $J_{\ell}(0)^{k}=\max \{\ell-k, 0\}$ for each $k=1,2, \ldots$

Canonical forms for similarity: The Jordan canonical form

- $\operatorname{rank} J_{\ell}(0)^{k-1}-\operatorname{rank} J_{\ell}(0)^{k}=\left\{\begin{array}{l}1 \text { if } \ell \geq k \\ 0 \text { if } \ell<k\end{array}, k=1,2, \ldots\right.$
- $J=J_{n_{1}}(\lambda) \oplus \cdots \oplus J_{n_{p}}(\lambda)$ and $J-\lambda I=J_{n_{1}}(0) \oplus \cdots \oplus J_{n_{p}}(0)$
- $\operatorname{rank}(J-\lambda I)^{k-1}-\operatorname{rank}(J-\lambda I)^{k}=\left(\operatorname{rank} J_{n_{1}}(0)^{k-1}-\right.$ $\left.\operatorname{rank} J_{n_{1}}(0)^{k}\right)+\cdots+\left(\operatorname{rank} J_{n_{p}}(0)^{k-1}-\operatorname{rank} J_{n_{p}}(0)^{k}\right)$
- = (1 if $\left.n_{1} \geq k\right)+\cdots+\left(1\right.$ if $\left.n_{p} \geq k\right)$
- = number of blocks with size k or larger
- Define $w_{k}(J, \lambda)=\operatorname{rank}(J-\lambda I)^{k-1}-\operatorname{rank}(J-\lambda I)^{k}$
- Then $w_{k}(J, \lambda)-w_{k+1}(J, \lambda)=$ (\# blocks of J with size k or larger) $-(\#$ blocks of J with size $k+1$ or larger $)=\#$ blocks of J with size exactly k
- $w_{k}\left(S J S^{-1}, \lambda\right)=\operatorname{rank}\left(S J S^{-1}-\lambda I\right)^{k-1}-\operatorname{rank}\left(S J S^{-1}-\lambda I\right)^{k}$
- $=\operatorname{rank}\left(S(J-\lambda I) S^{-1}\right)^{k-1}-\operatorname{rank}\left(S(J-\lambda I) S^{-1}\right)^{k}$
- $=\operatorname{rank}\left(S(J-\lambda I)^{k-1} S^{-1}\right)-\operatorname{rank}\left(S(J-\lambda I)^{k} S^{-1}\right)$
- $=\operatorname{rank}(J-\lambda I)^{k-1}-\operatorname{rank}(J-\lambda I)^{k}=w_{k}(J, \lambda)$
- Thus, $w_{k}\left(S J S^{-1}, \lambda\right)=w_{k}(J, \lambda)$ is a similarity invariant

Canonical forms for similarity: The Jordan canonical form

- Each $A \in M_{n}$ is similar to a Jordan matrix, so the number of blocks $J_{k}(\lambda)$ in the Jordan canonical form of A is exactly $w_{k}(A, \lambda)-w_{k+1}(A, \lambda)$
- The sequence $w_{1}(A, \lambda), \ldots, w_{n}(A, \lambda)$ is the Weyr characteristic of A with respect to the eigenvalue λ. It is similarity invariant and is determined by the values of $\operatorname{rank}(A-\lambda I)^{k}, k=1, \ldots, n$.
- The Jordan canonical form of A is unique (up to permutation of its direct summands): the number of blocks $J_{k}(\lambda)$ for each eigenvalue λ is determined by the Weyr characteristic of A.
- (3.1.18) A and B are similar if and only if they have the same eigenvalues, and the same Weyr characteristics with respect to each of those eigenvalues.

Some facts about the Weyr characteristic

- $w_{1}(A, \lambda)=$ total number of Jordan blocks $J_{i}(\lambda)$ of all sizes $=$ geometric multiplicity of λ as an eigenvalue of A
- $w_{k}(A, \lambda)=$ number of Jordan blocks $J_{i}(\lambda)$ with $i \geq k$
- $w_{k}(A, \lambda)=0$ if $k>q_{\lambda}=$ index of $\lambda=$ size of largest $J_{i}(\lambda)$
- $w_{1}(A, \lambda) \geq w_{2}(A, \lambda) \geq \cdots \geq w_{q_{\lambda}}(A, \lambda) \geq 1>w_{q_{\lambda}+1}(A, \lambda)=0$

The Weyr Canonical Form

- Suppose that the distinct eigenvalues of $A \in M_{n}$ are $\lambda_{1}, \ldots, \lambda_{d}$. Choose one of them, call it λ, suppose the index of λ is q, and let $w_{k}:=w_{k}(A, \lambda), k=1, \ldots, q$. The Weyr block of A associated with the eigenvalue λ is
- $W_{A}(\lambda)=\left[\begin{array}{ccccc}\lambda I_{w_{1}} & G_{12} & & & \\ & \lambda I_{w_{2}} & G_{23} & & \\ & & \ddots & \ddots & \\ & & & \ddots & G_{w_{q}-1, w_{q}} \\ & & & & \lambda I_{w_{q}}\end{array}\right], G_{i, i+1}=\left[\begin{array}{c}I_{w_{i+1}} \\ 0\end{array}\right]$
- Only one Weyr block for each distinct eigenvalue.
- $W_{A}(\lambda)-\lambda I=W_{A}(0)$.
- $\operatorname{rank} W_{A}(0)=w_{2}+\cdots+w_{q}$, rank $W_{A}(0)^{2}=w_{3}+\cdots+w_{q}$, etc.
- $\operatorname{rank} W_{A}(0)-\operatorname{rank} W_{A}(0)^{2}=w_{2}$, $\operatorname{rank} W_{A}(0)^{2}-\operatorname{rank} W_{A}(0)^{3}=W_{3}$, etc.
- Weyr characteristics of $W_{A}(\lambda)$ and A (with respect to λ) are the same!

The Weyr Canonical Form

- The Weyr matrix of A is $W_{A}=W_{A}\left(\lambda_{1}\right) \oplus \cdots \oplus W_{A}\left(\lambda_{d}\right)$ (d blocks)
- W_{A} is similar to J_{A} : same eigenvalues and same Weyr characteristics!
- (3.4.2.3) Weyr matrices are a canonical form for similarity.
- In fact, W_{A} and J_{A} are permutation similar. So why bother?

Jordan vs. Weyr: commutativity

- $J=\left[\begin{array}{cc}J_{2}(\lambda) & 0 \\ 0 & J_{2}(\lambda)\end{array}\right]$,
- $w_{1}(J, \lambda)=2, w_{2}(J, \lambda)=2 \Rightarrow W_{J}=\left[\begin{array}{cc}\lambda I_{2} & I_{2} \\ 0 & \lambda I_{2}\end{array}\right]$
- $A J=J A \Leftrightarrow A=\left[\begin{array}{cc}B & C \\ D & E\end{array}\right]$, each block is upper triangular Toeplitz
- $A W_{J}=W_{J} A \Leftrightarrow A=\left[\begin{array}{cc}F & G \\ 0 & F\end{array}\right]$, which is block upper triangular.
- Construct a Schur triangularization: $F=U \Delta U^{*}, \Delta$ upper triangular
- $V=U \oplus U: \quad V^{*} W_{J} V=W_{J}, \quad V^{*} A V=\left[\begin{array}{cc}\Delta & D \\ 0 & \Delta\end{array}\right]$. Thus, there is a block unitary matrix conformal to the block structure of W_{J} that leaves W_{J} invariant and reduces A to upper triangular form.

Jordan vs. Weyr: commutativity

- (3.4.2.10) $\mathcal{F}=\left\{A, A_{1}, A_{2}, \ldots\right\}$ a commuting family \Rightarrow there is a simultaneous similarity $\mathcal{F} \rightarrow S \mathcal{F} S^{-1}=\left\{W_{A}, S A_{1} S^{-1}, S A_{2} S^{-1}, \ldots\right\}$ that puts A into Weyr canonical form and upper triangularizes each A_{i} (moreover, there are certain identities between blocks on the same superdiagonal of each $S A_{j} S^{-1}$).
- There is no analog of this simultaneous reduction for the Jordan canonical form!
- Many applications, e.g., sub-algebras of M_{n} generated by a commuting family (Gerstenhaber (1961), Neubauer/Sethuraman (1999), O'Meara/Visonhaler (2006))

The unitary Weyr form

- The Weyr canonical form theorem says that for each $A \in M_{n}$ there is a nonsingular $S \in M_{n}$ such that $A=S W_{A} S^{-1}$. Let $S=Q R$, in which Q is unitary and R is nonsingular and upper triangular, with positive diagonal entries. Then $A=S W_{A} S^{-1}=Q\left(R W_{A} R^{-1}\right) Q^{*}$, so A is unitarily similar to $F=R W_{A} R^{-1}$, which has the form

$$
F=\left[\begin{array}{ccccc}
\mu_{1} I_{n_{1}} & F_{12} & F_{13} & \cdots & F_{1 p} \\
& \mu_{2} I_{n_{2}} & F_{23} & \cdots & F_{2 p} \\
& & \mu_{3} I_{n_{3}} & \ddots & \vdots \\
& & & \ddots & F_{p-1, p} \\
& & & & \mu_{p} I_{n_{p}}
\end{array}\right]
$$

- The block sizes of the μ_{i} are determined by the Weyr characteristics of A; if $\mu_{i}=\mu_{i+1}$ then $n_{i} \geq n_{i+1}, F_{i, i+1} \in M_{n_{i}, n_{i+1}}$ is upper triangular and has positive diagonal entries, so it has full rank.

The unitary Weyr form

- (3.4.3.1) The upper triangular form

$$
F=\left[\begin{array}{ccccc}
\mu_{1} I_{n_{1}} & F_{12} & F_{13} & \cdots & F_{1 p} \\
& \mu_{2} I_{n_{2}} & F_{23} & \cdots & F_{2 p} \\
& & \mu_{3} I_{n_{3}} & \ddots & \vdots \\
& & & \ddots & F_{p-1, p} \\
& & & & \mu_{p} I_{n_{p}}
\end{array}\right]
$$

is a substantial refinement of the Schur upper triangular form because of the special structure of the superdiagonal blocks $F_{i, i+1}$. It has many applications to problems involving unitary similarity. (3.4.3.3), Problem 5 in (3.4)

References

R. Horn and I. Olkin, When does $A^{*} A=B^{*} B$ and why does one want to know?, Amer. Math. Monthly 103 (1996) 470-482.
C. Paige and M. Wei, History and generality of the CS decomposition, Linear Algebra Appl. 208/209 (1994) 303-326.

