Matrix Canonical Forms

Roger Horn
University of Utah

ICTP School: Linear Algebra: Thursday, June 25, 2009

Roger Horn (University of Utah) Matrix Canonical Forms



SVD remarks

o A=[a ... ay] = [a]

o 01 = [|Ally = max),—1 [|Axlly > [|A¢j|[, = [|3j[, = |ay]

2
@ Uunitary = U'U=I1=%X=1
o Agiven, A= VEW" and X =1 = A= VIW" is unitary
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Structured unitary equivalence: The CS decomposition

, Ui U
o Given: U = [ Us, Uny
p+q=n
@ Available to choose: V, W &€ M, unitary, which we insist must be
structured conformally to the partitioning of U: V = V] & V>,
W=WwWaoeW, Vi W) € Mp, Vo, W, € Mq
ViluiWip ViUp W, } . [ Zu1 22 ]
VoUat Wi VoUnoWs | | Za1 Zao
is unitary. We want to choose the small unitary matrices
Vi, Vo, Wi, W5 so that Z has a simple structure. We may then pre-
or post-multiply Z by any unitary matrices of the forms V @ lg or
I, ® W in which V € M, and W € M, are unitary.
@ Use the SVD to choose V4 and W so that
V1U11W1:Z:diag(c71 ..... U’p),lza’lz"'ZUpZO. Now

ats

] unitary, Ui1 € M,, Uy € Mg, p < q,

@ Then U—>Z:VUW:[

o1 2o
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Structured unitary equivalence: The CS decomposition

@ Pre- and post-multiply by K, @ I (K is the reversal matrix). Now Z
has the form

0

7= [ KoKy 212 ] . KZK, = C

L1 2

with C = diag(cy, ..., G)and0< ¢ < - < <1
@ 71 is g-by-p so there is a unitary Q1 € M such that

Q121 = Ry = { Ig ] is g-by-p and R is upper triangular

@ 75 is p-by-q so there is a unitary Q> € M, such that
Z1pQ =L =[ L 0 ]is p-by-g and L is lower triangular
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Structured unitary equivalence: The CS decomposition

Pre-multiply by /1, © Q1 and post-multiply by /, & Q>. Now Z has the form

c (L 0]

L

Partition L and R conformally to Z;1 and keep in mind that each is
triangular, so their diagonal blocks are triangular:
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Structured unitary equivalence: The CS decomposition

i 0 200 0 1
C 220 0
/ 2 2 2 0
2 72 2
0 ? ?
0 0 ? [222]
L [0 0 0] |

Let S =diag(y/1—c?,...,y/1—c2). Invoke orthonormality of the top p
rows and the left p columns to get
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Structured unitary equivalence: The CS decomposition

i 0 I 0
C 0S

] I | 00
[/ 0 0] ? 2
0S50 ? 2
0 0 0| ? 2
| L [0 o0 0] [ 2

Now invoke orthonormality of rows p+1,..
p+1,..., 2p to get
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Structured unitary equivalence: The CS decomposition

T Jo T I 0 0 0 7
SNIEERE
I I ] 00 0 0
[/ 0 0] 0 0 0 0
050 [0C0] {o]
|0 0 0| 0 0 °? ?
[ Too o] 002 [

which is...

Roger Horn (University of Utah) Matrix Canonical Forms



Structured unitary equivalence: The CS decomposition

0001/ 0 0
0 C00 S 0
00 /0 O 0
I 000 O 0
0 S 00 —C 0

. [0o0000] [Z] .

The remaining unknown block is a direct summand of a unitary matrix, so
it is unitary and there are unitary matrices W’ and W" such that
W' z,W" = |,
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Structured unitary equivalence: The CS decomposition

@ Pre-multiply by / & W’ and post-multiply by / @& W" to obtain

@ which we re-organize as
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0
0
0
/
0
[

a

cownoono

00/ 0
Coo S
0/ 0 0
000 0
S 00 -C
0000 0]
0] I 0 0
0 050
I 000
0] [0 0 o
0 {oco
ol Lo o
0 [0 0 0]
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Structured unitary equivalence: The CS decomposition

e Finally, we adjust the signs and pre-/post-multiply by K & K & I,—p
to permute the diagonal blocks (this also reverses the order of the
diagonal entries in C — C" and S — §’) to obtain

so that C? 4+ 8% = |,

Roger Horn (University of Utah)

0 [0 0 0]
0 05 0
0 0 0 /|
0 (1 0 0]
o] 0C o
—1] Lo o o]
0] [0 0 0]
0 0 0 0
' o 3{05
0 0 0 0
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Structured unitary equivalence: The CS decomposition

. . Ui U .

@ The CS decomposition of U = [ Usi  Usp ] € Mpyqis
[vl 0 ] Ko [wl 0 ]

0 W 0 0 I, 0 W,

in which Ui1,C, S, Vi, Wi € Mp; U, Vo, Wo € Mg; V;,W; are
unitary; C = diag(oy, ..., 0p); 01, ...,0, are the decreasingly ordered

singular values of Ujq; and S = diag(y/1—07,...,,/1 —(73).

@ This is a parametric representation for all unitary 2-by-2 block
matrices with the given block sizes. The parameters are: p arbitrary
numbers between zero and one (the diagonal entries of C), and four
arbitrary unitary matrices Vi, Wy € M,, Vo, Wh € M.

@ Applications: angles between subspaces, structured inverses,
complementary nullities,...
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Canonical forms for similarity: The Jordan canonical form

@ The Jordan block of size ¢ with eigenvalue A is

Al 0
Jo(A) = ,
0 A

Ix/

A Jordan matrix is a direct sum of the form J, (A1) @ --- @ Jy,(Ap)
(3.1.11) Each A € M, is similar to a Jordan matrix.

What about uniqueness?

Jy(A) — Al = Jy(0). Translation by Al permits us to reduce to the
nilpotent case.

rank J;(0) = ¢ —1,rank Jx(0)2 =¢—2,..., rank J,(0)¢~1 =

1, rank J;(0)¢ =

e Convention: rank J;(0)% := ¢

e rank J;(0)K = max{¢ — k,0} for each k =1,2,...
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Canonical forms for similarity: The Jordan canonical form

rank Jy (0)%~1 — ranng(O)k = { é ::gi i k=12,...
J—J,,l()t)@ n,(A) and J — Al = Jp, (0) @ - - & Jp, (0)
rank(J — )u) — rank(J ANk = (rankJ,,l(O)k_l —
rank Jn, (0)) + - - - + (rank J,, (0)*~* — rank J,,(0)%)

=(1 ifnlzk)—l— 4 (1 |fnp2k)

= number of blocks with size k or larger

Define wy (J,A) = rank(J — A1)*~1 — rank(J — A)K

Then wy (J, A) — wiy1(J, A) = (# blocks of J with size k or larger)
— (# blocks of J with size k + 1 or larger) = # blocks of J with size
exactly k

wy (SJS™ ) = rank(SJS™! —
= rank(S(J — AI)S1)k-1 — rank S(U—ANS™ )

= rank(S(J — ANA1S7) —rank(S(J — AI)kS™T)

= rank(J — AN* 1 —rank(J — ADK = wy (4, A)

Thus, wy(SJS™1, A) = wyi(J, A) is a similarity invariant

k=1 rank(SJS_1 — Ak

\_/AA\/
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Canonical forms for similarity: The Jordan canonical form

@ Each A € M, is similar to a Jordan matrix, so the number of blocks
Jk(A) in the Jordan canonical form of A is exactly
wi (A, A) — wir1(A Q)

@ The sequence wy (A, A), ..., w,(A, A) is the Weyr characteristic of A
with respect to the eigenvalue A. It is similarity invariant and is
determined by the values of rank(A — Al)k, k=1,...,n

@ The Jordan canonical form of A is unique (up to permutation of its
direct summands): the number of blocks Jx(A) for each eigenvalue A
is determined by the Weyr characteristic of A.

@ (3.1.18) A and B are similar if and only if they have the same
eigenvalues, and the same Weyr characteristics with respect to each
of those eigenvalues.

Roger Horn (University of Utah) Matrix Canonical Forms



Some facts about the Weyr characteristic

@ wy (A A) = total number of Jordan blocks J;(A) of all sizes =
geometric multiplicity of A as an eigenvalue of A

@ wi(A,A) = number of Jordan blocks J;j(A) with i > k
o wx(A,A) =0if k > gy = index of A = size of largest J;j(A)
o Wi(AA)>wm(AA) > >wy (AA)>1>wy1(AA) =0
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The Weyr Canonical Form

@ Suppose that the distinct eigenvalues of A € M, are A1,..., A
Choose one of them, call it A, suppose the index of A is g, and let

Wy = Wk(A,)L),k: 1,...

the eigenvalue A is

[ A, Gi2
Ay,
L WA()\) =
]
o Wa(A) — Al = W,(0).
]
]

etc.

Go3

qufl,wq
A,

Only one Weyr block for each distinct eigenvalue.

/
Gilig1 = [

d-

,q. The Weyr block of A associated with

Wit1
0

rank W4(0) = wp + - - - + wyg, rank W4(0)2 = w3 +---+ wg, etc.
rank W (0) — rank Wa(0)? = wy, rank W4 (0)? — rank W4 (0)3 = ws,

@ Weyr characteristics of Wx(A) and A (with respect to A) are the

samel!
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The Weyr Canonical Form

@ The Weyr matrix of Ais Wa = Wa(A1) B -+ & Wa(Ay) (d blocks)
@ Wy is similar to J4: same eigenvalues and same Weyr characteristics!
@ (3.4.2.3) Weyr matrices are a canonical form for similarity.

°

In fact, Wy and Ju are permutation similar. So why bother?
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Jordan vs. Weyr: commutativity

o mi(JA)=2,wm(J,A)=2= W, = [/\0/2 )(212}

] , each block is upper triangular Toeplitz

o AW, =WA&S A= [ g /€ ] , which is block upper triangular.
@ Construct a Schur triangularization: F = UAU*, A upper triangular
o V=UDU: VW,V = Wy, V*AV:[g i].Thus,

there is a block unitary matrix conformal to the block structure of W,
that leaves W, invariant and reduces A to upper triangular form.

Roger Horn (University of Utah) Matrix Canonical Forms



Jordan vs. Weyr: commutativity

e (3.4.2.10) F = {A A1, Ay, ...} a commuting family = there is a
simultaneous similarity F — SFS™ = {W,, SA; S, SA S, ..}
that puts A into Weyr canonical form and upper triangularizes each
A; (moreover, there are certain identities between blocks on the same
superdiagonal of each SA;S™1).

@ There is no analog of this simultaneous reduction for the Jordan
canonical form!
@ Many applications, e.g., sub-algebras of M, generated by a

commuting family (Gerstenhaber (1961), Neubauer/Sethuraman
(1999), O'Meara/Visonhaler (2006))
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The unitary Weyr form

@ The Weyr canonical form theorem says that for each A € M, there is
a nonsingular S € M, such that A = SWiS™1. Let S = QR, in
which @ is unitary and R is nonsingular and upper triangular, with
positive diagonal entries. Then A = SW4S~! = Q(RW4R™1)Q*, so
A is unitarily similar to F = RW4R ™!, which has the form

H1 I”l

F1o
H2 /nz

F13
Fa3

H3 /ns

Fip
Fap

prlyp
HPI”p

@ The block sizes of the y; are determined by the Weyr characteristics

of A; if Hi = Hit+1 then n; > ni41, F[’j+]_ - Mn,v,

njt1

and has positive diagonal entries, so it has full rank.

is upper triangular
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The unitary Weyr form

@ (3.4.3.1) The upper triangular form

pil, Fo  F3 -+ Fp
alp, Foz3 -+ Fop
F = V3I'73 . :
Fp—l p
L luP/”p

is a substantial refinement of the Schur upper triangular form because
of the special structure of the superdiagonal blocks F; ;1. It has
many applications to problems involving unitary similarity. (3.4.3.3),
Problem 5 in (3.4)
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