Matrix Canonical Forms

Roger Horn

University of Utah

ICTP School: Linear Algebra: Thursday, June 25, 2009

SVD remarks

•
$$A = [a_1 \dots a_n] = [a_{ij}]$$

• $\sigma_1 = ||A||_2 = \max_{||x||_2 = 1} ||Ax||_2 \ge ||Ae_j||_2 = ||a_j||_2 \ge |a_{ij}|$

- U unitary $\Rightarrow U^*U = I \Rightarrow \Sigma = I$
- A given, $A = V\Sigma W^*$ and $\Sigma = I \Rightarrow A = VIW^*$ is unitary

- Given: $U=\left[\begin{array}{cc} U_{11} & U_{12} \\ U_{21} & U_{22} \end{array}\right]$ unitary, $U_{11}\in M_p$, $U_{22}\in M_q$, $p\leq q$, p+q=n
- Available to choose: $V, W \in M_n$ unitary, which we insist must be structured conformally to the partitioning of U: $V = V_1 \oplus V_2$, $W = W_1 \oplus W_2$, $V_1, W_1 \in M_p$, $V_2, W_2 \in M_q$
- Then $U \to Z = VUW = \left[\begin{array}{ccc} V_1 \, U_{11} \, W_1 & V_1 \, U_{12} \, W_2 \\ V_2 \, U_{21} \, W_1 & V_2 \, U_{22} \, W_2 \end{array} \right] = \left[\begin{array}{ccc} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{array} \right]$ is unitary. We want to choose the small unitary matrices $V_1, \, V_2, \, W_1, \, W_2$ so that Z has a simple structure. We may then preor post-multiply Z by any unitary matrices of the forms $\hat{V} \oplus I_q$ or $I_p \oplus \hat{W}$ in which $\hat{V} \in M_p$ and $\hat{W} \in M_q$ are unitary.
- Use the SVD to choose V_1 and W_1 so that $V_1U_{11}W_1=\Sigma=\mathrm{diag}(\sigma_1,\ldots,\sigma_p),\ 1\geq\sigma_1\geq\cdots\geq\sigma_p\geq0.$ Now $Z=\left[\begin{array}{cc} \Sigma & Z_{12} \\ Z_{21} & Z_{22} \end{array}\right]$

• Pre- and post-multiply by $K_p \oplus I_q$ (K is the reversal matrix). Now Z has the form

$$Z = \left[egin{array}{cc} \mathcal{K}_p \Sigma \mathcal{K}_p & Z_{12} \ Z_{21} & Z_{22} \end{array}
ight], \quad \mathcal{K}_p \Sigma \mathcal{K}_p = \left[egin{array}{cc} 0 & & & \ & C & & \ & & I \end{array}
ight]$$

with $C = \mathsf{diag}(c_1, \ldots, c_s)$ and $0 < c_1 \leq \cdots \leq c_s < 1$

- Z_{21} is q-by-p so there is a unitary $Q_1\in M_q$ such that $Q_1Z_{21}=R_{21}=\left[egin{array}{c}R\\0\end{array}
 ight]$ is q-by-p and R is upper triangular
- Z_{12} is p-by-q so there is a unitary $Q_2 \in M_q$ such that $Z_{12}Q_2 = L_{12} = \left[\begin{array}{cc} L & 0 \end{array} \right]$ is p-by-q and L is lower triangular

Pre-multiply by $I_p\oplus Q_1$ and post-multiply by $I_p\oplus Q_2$. Now Z has the form

$$\left[
\begin{array}{c}
0 \\
C \\
I
\end{array}
\right]
\left[
\begin{array}{c}
L & 0
\end{array}
\right]$$

$$\left[
\begin{array}{c}
R \\
0
\end{array}
\right]
\left[
\begin{array}{c}
Z_{22}
\end{array}
\right]$$

Partition L and R conformally to Z_{11} and keep in mind that each is triangular, so their diagonal blocks are triangular:

$$\begin{bmatrix}
\begin{bmatrix}
0 & & \\ & C & \\ & & I
\end{bmatrix} & \begin{bmatrix}
? & 0 & 0 \\ ? & ? & 0 \\ ? & ? & ?
\end{bmatrix} & \begin{bmatrix}
0 & \\ 0 & \\ 0 & \end{bmatrix}
\end{bmatrix} \\
\begin{bmatrix}
? & ? & ? \\ 0 & ? & ? \\ 0 & 0 & ? \\ 0 & 0 & 0
\end{bmatrix}$$

Let $S={
m diag}(\sqrt{1-c_1^2},\ldots,\sqrt{1-c_s^2}).$ Invoke orthonormality of the top p rows and the left p columns to get

$$\begin{bmatrix}
\begin{bmatrix}
0 & & \\ & C & \\ & & I
\end{bmatrix} & \begin{bmatrix}
I & 0 & 0 & \\ 0 & S & 0 & \\ 0 & 0 & 0
\end{bmatrix} \\
\begin{bmatrix}
I & 0 & 0 & \\ 0 & S & 0 & \\ 0 & S & 0 & \\ 0 & 0 & 0
\end{bmatrix} & \begin{bmatrix}
I & 0 & 0 & \\ 0 & S & 0 & \\ 0 & 0 & 0
\end{bmatrix} \\
\begin{bmatrix}
I & 0 & 0 & \\ 0 & S & 0 & \\ 0 & S & O & \\ 0 & O & O
\end{bmatrix} & \begin{bmatrix}
I & 0 & 0 & \\ 0 & S & O & \\ 0$$

Now invoke orthonormality of rows $p+1,\ldots,2p$ and of columns $p+1,\ldots,2p$ to get

$$\begin{bmatrix}
\begin{bmatrix}
0 & & \\
 & C \\
 & I
\end{bmatrix} & \begin{bmatrix}
I & 0 & 0 \\
0 & S & 0 \\
0 & 0 & 0
\end{bmatrix} & \begin{bmatrix}
0 \\
0 \\
0 & 0
\end{bmatrix} \\
\begin{bmatrix}
I & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} & \begin{bmatrix}
0 \\
0 \\
0 & -C & 0 \\
0 & 0 & ?
\end{bmatrix} & \begin{bmatrix}
0 \\
0 \\
?
\end{bmatrix}
\end{bmatrix}$$

which is...

$$\left[
\begin{bmatrix}
0 & 0 & 0 & I & 0 \\
0 & C & 0 & 0 & S \\
0 & 0 & I & 0 & 0 \\
I & 0 & 0 & 0 & 0 \\
0 & S & 0 & 0 & -C
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}
\right]$$

The remaining unknown block is a direct summand of a unitary matrix, so it is unitary and there are unitary matrices W' and W'' such that $W'Z_?W''=I$.

ullet Pre-multiply by $I\oplus W'$ and post-multiply by $I\oplus W''$ to obtain

$$\left[
 \begin{bmatrix}
 0 & 0 & 0 & I & 0 \\
 0 & C & 0 & 0 & S \\
 0 & 0 & I & 0 & 0 \\
 I & 0 & 0 & 0 & 0 \\
 0 & S & 0 & 0 & -C
 \end{bmatrix}
 \begin{bmatrix}
 0 \\
 0 \\
 0 \\
 0
 \end{bmatrix}
 \right]$$

which we re-organize as

• Finally, we adjust the signs and pre-/post-multiply by $K \oplus K \oplus I_{q-p}$ to permute the diagonal blocks (this also reverses the order of the diagonal entries in $C \to C'$ and $S \to S'$) to obtain

$$\begin{bmatrix}
\begin{bmatrix}
I & 0 & 0 \\
0 & C' & 0 \\
0 & 0 & 0
\end{bmatrix} & \begin{bmatrix}
0 & 0 & 0 \\
0 & S' & 0 \\
0 & 0 & I
\end{bmatrix} & \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix} \\
\begin{bmatrix}
0 & 0 & 0 \\
0 & -S' & 0 \\
0 & 0 & -I
\end{bmatrix} & \begin{bmatrix}
I & 0 & 0 \\
0 & C' & 0 \\
0 & 0 & 0
\end{bmatrix} & \begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix} \\
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix} \\
\begin{bmatrix}
I_{q-p}
\end{bmatrix}$$

• For a more easily remembered form, let

$$C = \begin{bmatrix} I & 0 & 0 \\ 0 & C' & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad S = \begin{bmatrix} 0 & 0 & 0 \\ 0 & S' & 0 \\ 0 & 0 & I \end{bmatrix}$$

so that $C^2 + S^2 = I_p$.

ullet The *CS* decomposition of $U=\left[egin{array}{cc} U_{11} & U_{12} \ U_{21} & U_{22} \end{array}
ight]\in M_{p+q}$ is

$$\left[\begin{array}{cc} V_1 & 0 \\ 0 & V_2 \end{array}\right] \left[\begin{array}{ccc} \mathcal{C} & \mathcal{S} & 0 \\ -\mathcal{S} & \mathcal{C} & 0 \\ 0 & 0 & I_{q-p} \end{array}\right] \left[\begin{array}{ccc} W_1 & 0 \\ 0 & W_2 \end{array}\right]$$

in which $U_{11},\mathcal{C},\mathcal{S},V_1,W_1\in M_p;\ U_{22},V_2,W_2\in M_q;\ V_i,W_i$ are unitary; $\mathcal{C}=\operatorname{diag}(\sigma_1,\ldots,\sigma_p);\ \sigma_1,\ldots,\sigma_p$ are the decreasingly ordered singular values of $U_{11};$ and $\mathcal{S}=\operatorname{diag}(\sqrt{1-\sigma_1^2},\ldots,\sqrt{1-\sigma_p^2}).$

- This is a parametric representation for all unitary 2-by-2 block matrices with the given block sizes. The parameters are: p arbitrary numbers between zero and one (the diagonal entries of C), and four arbitrary unitary matrices V_1 , $W_1 \in M_p$, V_2 , $W_2 \in M_q$.
- Applications: angles between subspaces, structured inverses, complementary nullities,...

Canonical forms for similarity: The Jordan canonical form

• The Jordan block of size ℓ with eigenvalue λ is

$$J_\ell(\lambda) = \left[egin{array}{cccc} \lambda & 1 & & 0 \ & \ddots & \ddots & \ & & \ddots & 1 \ 0 & & & \lambda \end{array}
ight]_{\ell imes\ell}$$

- ullet A Jordan matrix is a direct sum of the form $J_{n_1}(\lambda_1)\oplus\cdots\oplus J_{n_p}(\lambda_p)$
- (3.1.11) Each $A \in M_n$ is similar to a Jordan matrix.
- What about uniqueness?
- $J_{\ell}(\lambda) \lambda I = J_{\ell}(0)$. Translation by λI permits us to reduce to the nilpotent case.
- rank $J_\ell(0)=\ell-1$, rank $J_k(0)^2=\ell-2,\ldots$, rank $J_\ell(0)^{\ell-1}=1$, rank $J_\ell(0)^\ell=0$
- Convention: rank $J_{\ell}(0)^0 := \ell$
- rank $J_{\ell}(0)^k = \max\{\ell-k,0\}$ for each $k=1,2,\ldots$

Canonical forms for similarity: The Jordan canonical form

- ullet rank $J_\ell(0)^{k-1}$ rank $J_\ell(0)^k = \left\{egin{array}{l} 1 ext{ if } \ell \geq k \ 0 ext{ if } \ell < k \end{array}
 ight.$, $k=1,2,\ldots$
- $J = J_{n_1}(\lambda) \oplus \cdots \oplus J_{n_p}(\lambda)$ and $J \lambda I = J_{n_1}(0) \oplus \cdots \oplus J_{n_p}(0)$
- $\operatorname{rank}(J \lambda I)^{k-1} \operatorname{rank}(J \lambda I)^k = (\operatorname{rank} J_{n_1}(0)^{k-1} \operatorname{rank} J_{n_1}(0)^k) + \dots + (\operatorname{rank} J_{n_p}(0)^{k-1} \operatorname{rank} J_{n_p}(0)^k)$
- = $(1 \text{ if } n_1 \geq k) + \cdots + (1 \text{ if } n_p \geq k)$
- \bullet = number of blocks with size k or larger
- Define $w_k(J, \lambda) = \operatorname{rank}(J \lambda I)^{k-1} \operatorname{rank}(J \lambda I)^k$
- Then $w_k(J,\lambda) w_{k+1}(J,\lambda) = (\# \text{ blocks of } J \text{ with size } k \text{ or larger}) (\# \text{ blocks of } J \text{ with size } k+1 \text{ or larger}) = \# \text{ blocks of } J \text{ with size exactly } k$
- $w_k(SJS^{-1}, \lambda) = \operatorname{rank}(SJS^{-1} \lambda I)^{k-1} \operatorname{rank}(SJS^{-1} \lambda I)^k$
- $\bullet = \operatorname{rank}(S(J \lambda I)S^{-1})^{k-1} \operatorname{rank}(S(J \lambda I)S^{-1})^{k}$
- $\bullet = \operatorname{rank}(S(J \lambda I)^{k-1}S^{-1}) \operatorname{rank}(S(J \lambda I)^kS^{-1})$
- = rank $(J \lambda I)^{k-1}$ rank $(J \lambda I)^k = w_k(J, \lambda)$
- Thus, $w_k(SJS^{-1}, \lambda) = w_k(J, \lambda)$ is a similarity invariant

Canonical forms for similarity: The Jordan canonical form

- Each $A \in M_n$ is similar to a Jordan matrix, so the number of blocks $J_k(\lambda)$ in the Jordan canonical form of A is exactly $w_k(A, \lambda) w_{k+1}(A, \lambda)$
- The sequence $w_1(A, \lambda), \ldots, w_n(A, \lambda)$ is the Weyr characteristic of A with respect to the eigenvalue λ . It is similarity invariant and is determined by the values of $\operatorname{rank}(A \lambda I)^k$, $k = 1, \ldots, n$.
- The Jordan canonical form of A is unique (up to permutation of its direct summands): the number of blocks $J_k(\lambda)$ for each eigenvalue λ is determined by the Weyr characteristic of A.
- (3.1.18) A and B are similar if and only if they have the same eigenvalues, and the same Weyr characteristics with respect to each of those eigenvalues.

Some facts about the Weyr characteristic

- $w_1(A, \lambda) = \text{total number of Jordan blocks } J_i(\lambda) \text{ of all sizes} = \text{geometric multiplicity of } \lambda \text{ as an eigenvalue of } A$
- $w_k(A, \lambda) = \text{number of Jordan blocks } J_i(\lambda) \text{ with } i \geq k$
- $w_k(A, \lambda) = 0$ if $k > q_\lambda = index$ of $\lambda = size$ of largest $J_i(\lambda)$
- $w_1(A, \lambda) \ge w_2(A, \lambda) \ge \cdots \ge w_{q_\lambda}(A, \lambda) \ge 1 > w_{q_\lambda + 1}(A, \lambda) = 0$

The Weyr Canonical Form

• Suppose that the distinct eigenvalues of $A \in M_n$ are $\lambda_1, \ldots, \lambda_d$. Choose one of them, call it λ , suppose the index of λ is q, and let $w_k := w_k(A, \lambda), k = 1, \dots, q$. The Weyr block of A associated with the eigenvalue λ is

•
$$W_A(\lambda) = \begin{bmatrix} \lambda I_{w_1} & G_{12} & & & & & & \\ & \lambda I_{w_2} & G_{23} & & & & & \\ & & \ddots & \ddots & & & \\ & & & \ddots & G_{w_q-1,w_q} \\ & & & \lambda I_{w_q} \end{bmatrix}$$
, $G_{i,i+1} = \begin{bmatrix} I_{w_{i+1}} & & & \\ 0 & & & \\ & & & 1 \end{bmatrix}$

- Only one Weyr block for each distinct eigenvalue.
- $W_{\Delta}(\lambda) \lambda I = W_{\Delta}(0)$.
- rank $W_A(0) = w_2 + \cdots + w_a$, rank $W_A(0)^2 = w_3 + \cdots + w_a$, etc.
- ullet rank $W_A(0)$ rank $W_A(0)^2=w_2$, rank $W_A(0)^2$ rank $W_A(0)^3=w_3$. etc.
- Weyr characteristics of $W_A(\lambda)$ and A (with respect to λ) are the same!

The Weyr Canonical Form

- ullet The Weyr matrix of A is $W_A=W_A(\lambda_1)\oplus\cdots\oplus W_A(\lambda_d)$ (d blocks)
- ullet W_A is similar to J_A : same eigenvalues and same Weyr characteristics!
- (3.4.2.3) Weyr matrices are a canonical form for similarity.
- In fact, W_A and J_A are permutation similar. So why bother?

Jordan vs. Weyr: commutativity

•
$$J = \begin{bmatrix} J_2(\lambda) & 0 \\ 0 & J_2(\lambda) \end{bmatrix}$$
,

- $w_1(J,\lambda) = 2$, $w_2(J,\lambda) = 2 \Rightarrow W_J = \begin{bmatrix} \lambda I_2 & I_2 \\ 0 & \lambda I_2 \end{bmatrix}$
- $AJ = JA \Leftrightarrow A = \begin{bmatrix} B & C \\ D & E \end{bmatrix}$, each block is upper triangular Toeplitz
- $AW_J = W_J A \Leftrightarrow A = \begin{bmatrix} F & G \\ 0 & F \end{bmatrix}$, which is block upper triangular.
- ullet Construct a Schur triangularization: $F=U\Delta U^*$, Δ upper triangular
- $V = U \oplus U$: $V^*W_JV = W_J$, $V^*AV = \begin{bmatrix} \Delta & D \\ 0 & \Delta \end{bmatrix}$. Thus, there is a block unitary matrix conformal to the block structure of W_J that leaves W_J invariant and reduces A to upper triangular form.

Jordan vs. Weyr: commutativity

- (3.4.2.10) $\mathcal{F} = \{A, A_1, A_2, \ldots\}$ a commuting family \Rightarrow there is a simultaneous similarity $\mathcal{F} \to S\mathcal{F}S^{-1} = \{W_A, SA_1S^{-1}, SA_2S^{-1}, \ldots\}$ that puts A into Weyr canonical form and upper triangularizes each A_i (moreover, there are certain identities between blocks on the same superdiagonal of each SA_iS^{-1}).
- There is no analog of this simultaneous reduction for the Jordan canonical form!
- Many applications, e.g., sub-algebras of M_n generated by a commuting family (Gerstenhaber (1961), Neubauer/Sethuraman (1999), O'Meara/Visonhaler (2006))

The unitary Weyr form

• The Weyr canonical form theorem says that for each $A \in M_n$ there is a nonsingular $S \in M_n$ such that $A = SW_AS^{-1}$. Let S = QR, in which Q is unitary and R is nonsingular and upper triangular, with positive diagonal entries. Then $A = SW_AS^{-1} = Q(RW_AR^{-1})Q^*$, so A is unitarily similar to $F = RW_AR^{-1}$, which has the form

$$F = \begin{bmatrix} \mu_1 I_{n_1} & F_{12} & F_{13} & \cdots & F_{1p} \\ & \mu_2 I_{n_2} & F_{23} & \cdots & F_{2p} \\ & & & \mu_3 I_{n_3} & \ddots & \vdots \\ & & & & \ddots & F_{p-1,p} \\ & & & & \mu_p I_{n_p} \end{bmatrix}$$

• The block sizes of the μ_i are determined by the Weyr characteristics of A; if $\mu_i = \mu_{i+1}$ then $n_i \ge n_{i+1}$, $F_{i,i+1} \in M_{n_i,n_{i+1}}$ is upper triangular and has positive diagonal entries, so it has full rank.

The unitary Weyr form

• (3.4.3.1) The upper triangular form

$$F = \begin{bmatrix} \mu_1 I_{n_1} & F_{12} & F_{13} & \cdots & F_{1p} \\ & \mu_2 I_{n_2} & F_{23} & \cdots & F_{2p} \\ & & & \mu_3 I_{n_3} & \ddots & \vdots \\ & & & \ddots & F_{p-1,p} \\ & & & & \mu_p I_{n_p} \end{bmatrix}$$

is a substantial refinement of the Schur upper triangular form because of the special structure of the superdiagonal blocks $F_{i,i+1}$. It has many applications to problems involving unitary similarity. (3.4.3.3), Problem 5 in (3.4)

References

R. Horn and I. Olkin, When does $A^*A = B^*B$ and why does one want to know?, Amer. Math. Monthly 103 (1996) 470-482.

C. Paige and M. Wei, History and generality of the CS decomposition, *Linear Algebra Appl.* 208/209 (1994) 303-326.