Matrix Canonical Forms

Roger Horn

University of Utah

ICTP School: Linear Algebra: Friday, June 26, 2009

Roger Horn (University of Utah)

イロト イポト イヨト イヨト

- Congruence $A \rightarrow SAS^T$ (change variables in quadratic form $x^T A x$)
- *Congruence $A \rightarrow SAS^*$ (change variables in Hermitian form x^*Ax)
- Congruence and *congruence are simpler than similarity: no inverses; identical row and column operations for congruence (complex conjugates for *congruence).
- The singular and nonsingular canonical structures are fundamentally different.

イロト イ理ト イヨト イヨト

- Sylvester's Inertia Theorem (1852): Two Hermitian matrices are *congruent if and only if they have the same number of positive eigenvalues and the same number of negative eigenvalues (and hence also the same number of zero eigenvalues).
- Reformulate: Two Hermitian matrices are *congruent if and only if they have the same number of eigenvalues on each of the two open rays $\{te^{i0}: t > 0\}$ and $\{te^{i\pi}: t > 0\}$ in the complex plane.
- Canonical form: $(e^{i0}I_{n_+}) \oplus (e^{i\pi}I_{n_-}) \oplus 0_{n_0}$

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

- Unitary *congruence: Two normal matrices are unitarily *congruent (unitarily similar!) if and only if they have the same eigenvalues.
- Ikramov (2001): Two normal matrices are *congruent if and only if they have the same number of eigenvalues on each open ray {te^{iθ} : t > 0}, θ ∈ [0, 2π) in the complex plane.
- Canonical form: $(e^{i\theta_1}I_{n_{\theta_1}}) \oplus \cdots \oplus (e^{i\theta_k}I_{n_{\theta_k}}) \oplus 0_{n_0}, 0 \le \theta_1 < \cdots < \theta_k < 2\pi$
- What comes next? Find a theorem about *congruence of general *n*by-*n* matrices that includes Sylvester's and Ikramov's theorems as special cases. Find an analogous theorem for congruence.

- Two complex symmetric matrices are congruent if and only if they have the same rank. Why?
- We know that if $A = A^T$ then there is a unitary U such that $A = U\Sigma U^T$. If rank A = r, let $D = \text{diag}(\sqrt{\sigma_1}, \dots, \sqrt{\sigma_r}, 1, \dots, 1)$. Then $A = (UD)(I_r \oplus 0_{n-r})(UD)^T$
- Canonical form: $I_r \oplus 0_{n-r}$
- What comes next? Find a theorem about congruence of general *n*-by-*n* matrices that includes this observation as a special case.

イロン 不問と 不良と 不良とう

Nullities are *congruence and congruence invariants

- rank $A = \operatorname{rank} SAS^*$
- dim $N(A) = \dim N(SAS^*) = \dim N(SA^*S^*) = \dim N(A^*)$

Moreover,

 $\dim(N(A) \cap N(A^*)) = \dim(N(SAS^*) \cap N(SA^*S^*))$

• rank
$$A = \operatorname{rank} SAS^T$$

- dim $N(A) = \dim N(SAS^T) = \dim N(SA^TS^T) = \dim N(A^T)$
- Moreover,

$$\dim(N(A) \cap N(A^{T})) = \dim(N(SAS^{*}) \cap N(SA^{T}S^{*}))$$

- These observations are the key to the *regularization algorithm*:
- Reduce A by congruence (respectively, *congruence) to the direct sum of a nonsingular part and a singular part. Deal with each part separately.

イロト イポト イヨト イヨト

- ullet Each singular A is *congruent to $\mathcal{A}\oplus\mathcal{S}$ in which
 - ${\mathcal A}$ is nonsingular
 - $\mathcal{S} = J_{n_1}(0) \oplus \cdots \oplus J_{n_p}(0)$
 - block sizes n_i uniquely determined by the *congruence class of A.
 - *congruence class of ${\mathcal A}$ uniquely determined by the *congruence class of ${\mathcal A}$
- Same for congruence.

・ 何 ト ・ ヨ ト ・ ヨ ト

Regularization algorithm: Step 1

• Step 1: Choose nonsingular S so the top rows of SA are independent and the bottom m_1 rows are zero, then form SAS^* ; partition it so that the upper left block is square:

$$\begin{array}{l} A \longmapsto SA = \begin{bmatrix} A' \\ 0 \end{bmatrix} & \leftarrow \text{ independent rows} \\ \longmapsto SAS^* = \begin{bmatrix} A'S^* \\ 0 \end{bmatrix} = \begin{bmatrix} \underline{M \mid N} \\ 0 & 0_{m_1} \end{bmatrix} \quad (M \text{ is square}) \end{array}$$

•
$$m_1 = \dim N(A) = \dim N(A^*) =$$
the nullity of A

- $m_2 = \operatorname{rank} N$
- $m_1 m_2$ = nullity of $N = \dim(N(A) \cap N(A^*))$ = the normal nullity of A
- m_2 = the non-normal nullity of A = the nullity of M
- Same for congruence.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Regularization algorithm: Step 2

• **Step 2:** Choose nonsingular *R* so the top rows of *RN* are zero and the bottom *m*₂ rows are independent:

$$RN = \begin{bmatrix} 0 \\ E \end{bmatrix} \leftarrow m_2$$
 independent rows

۲

$$\begin{bmatrix} \underline{M} & \underline{N} \\ \hline 0 & 0_{m_1} \end{bmatrix} \longmapsto (R \oplus I) \begin{bmatrix} \underline{M} & \underline{N} \\ \hline 0 & 0_{m_1} \end{bmatrix} (R \oplus I)^*$$
$$= \begin{bmatrix} \underline{RMR^*} & \underline{RN} \\ \hline 0 & 0_{m_1} \end{bmatrix} = \begin{bmatrix} \underline{A_{(1)}} & \underline{B} & 0 \\ \underline{C} & D & \underline{E} \\ \hline 0 & 0_{m_1} \end{bmatrix} m_2$$

D is m_2 -by- m_2 and $A_{(1)}$ is strictly smaller than A.

• Same for congruence.

イロト イポト イヨト イヨト

- If $A_{(1)}$ is nonsingular or missing, stop.
- If $A_{(1)}$ is present and singular, repeat steps 1 and 2 on $A_{(1)}$ to obtain m_3 (the nullity of $A_{(1)}$) and m_4 (the non-normal nullity of $A_{(1)}$). Repeat (for τ steps, say) until either a nonsingular block ($m_{2\tau+1} = 0$) or an empty block is obtained.
- A singular A ∈ M_n is *congruent to A ⊕ S in which the regular part A is nonsingular and

$${\cal S} = J_1^{[m_1-m_2]} \oplus J_2^{[m_2-m_3]} \oplus \dots \oplus J_{2 au-1}^{[m_{2 au-1}-m_{2 au}]} \oplus J_{2 au}^{[m_{2 au}]}$$

- $J_k^{[p]} := J_k \oplus \cdots \oplus J_k$ (p direct summands)
- The integers $m_1 \ge m_2 \ge \cdots \ge m_{2\tau} \ge 0$, as well as the *congruence class of \mathcal{A} , are uniquely determined by the *congruence class of \mathcal{A} .

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

•
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} M & N \\ [0 & 0] & 0 \end{bmatrix}$$
; $M = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $N = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
• $R = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$, $RN = \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ E \end{bmatrix}$
• $RMR^* = \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} A_{(1)} & B \\ C & D \end{bmatrix}$
• $A_{(1)} = [-1]$, $m_1 = 1$, $m_2 = 1$, $m_3 = 0$.
• Same for congruence

- A is *congruent to $[-1] \oplus J_2$ and ^T congruent to $[1] \oplus J_2$:
- [i] [-1] [i] = [+1]

(日) (圖) (E) (E) (E)

• $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} M & N \\ [0 & 0] & 0 \end{bmatrix}$; $M = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $N = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ • $R = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $RN = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ E \end{bmatrix}$ • $RMR^* = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} A_{(1)} & B \\ C & D \end{bmatrix}$ • $A_{(1)} = [1], m_1 = 1, m_2 = 1, m_3 = 0.$

- Same for congruence
- A is both *congruent and ^T congruent to $[1] \oplus J_2$.

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ … 圖

• The matrices in Examples 1 and 2

$$A = \left[\begin{array}{rrr} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right] \quad \text{and} \quad B = \left[\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

are congruent since they are both congruent to $[1] \oplus J_2$. • However, they are not *congruent:

> A is *congruent to $[-1] \oplus J_2$, B is *congruent to $[+1] \oplus J_2$, and $[s] [-1] [\bar{s}] = |s|^2 [-1] \neq [+1]$

イロン 不問と 不良と 不良とう

The regular part

Define: A^{-*} := (A⁻¹)^{*}. The matrix A^{-*}A is the ^{*}cosquare of A.
If A → S^{*}AS, then

$$A^{-*}A \to (S^{-1}A^{-*}S^{-*})(S^*AS) = S^{-1}(A^{-*}A)S$$

• If $A^{-*}A \to S^{-1}(A^{-*}A) S$, then

$$A^{-*}A \to S^{-1}(A^{-*}S^{-*}S^{*}A)S^{-1} = (S^{*}AS)^{-*}(S^{*}AS)$$

- *congruence of A corresponds to similarity of $A^{-*}A$
- The Jordan Canonical Form of the *cosquare of A is a *congruence invariant of A.
- Same for congruence and cosquares $A^{-T}A$

イロン 不問と 不良と 不良とう

The JCF of *cosquares and cosquares

$$\left(A^{-*}A\right)^{-1} = A^{-1}A^* \stackrel{s}{\sim} A^*A^{-1} = \left(A^{-*}A\right)^* \stackrel{s}{\sim} \overline{A^{-*}A}$$

 The Jordan Canonical Form of A^{-*}A is a direct sum of blocks of two types:

$$\left[egin{array}{cc} J_k(\mu) & 0 \ 0 & J_k(1/ar\mu) \end{array}
ight]$$
 with $0<|\mu|<1$, and $J_k(\lambda)$ with $|\lambda|=1$

$$\left(A^{-T}A\right)^{-1} = A^{-1}A^{T} \stackrel{s}{\sim} A^{T}A^{-1} = \left(A^{-T}A\right)^{T} \stackrel{s}{\sim} A^{-T}A$$

• The Jordan Canonical Form of $A^{-T}A$ is a direct sum of blocks of two types:

$$\begin{bmatrix} J_k(\mu) & 0\\ 0 & J_k(1/\mu) \end{bmatrix} \text{ with } 0 \neq \mu \neq (-1)^{k+1} \text{, and } J_k((-1)^{k+1})$$

۲

۲

Canonical blocks for *congruence and congruence

Γ_k^{-T}Γ_k is similar to J_k((-1)^{k+1}), so Γ_k is indecomposable under congruence or *congruence.

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

 Δ_k^{-*}Δ_k is similar to J_k(1), so Δ_k is indecomposable under *congruence.

- 木間 と 木屋 と 木屋 と 一層

Canonical form for *congruence

 Each square complex A is *-congruent to a direct sum, determined uniquely up to permutation of summands, of matrices of three types

$$J_k(0), e^{i\theta}\Delta_k, \begin{bmatrix} 0 & I_k \\ J_k(\mu) & 0 \end{bmatrix}$$

in which $0 \le heta < 2\pi$ and $0 < |\mu| < 1$.

- There is one block ±e^{iθ}Δ_k for each block J_k(λ) of A^{-*}A with λ = e^{2iθ}. The ± is determined by the inertias of certain Hermitian matrices (2 algorithms).
- There is one block $\begin{bmatrix} 0 & I_k \\ J_k(\mu) & 0 \end{bmatrix}$ for each pair of blocks $J_k(\mu) \oplus J_k(\bar{\mu}^{-1})$ of $\mathcal{A}^{-*}\mathcal{A}$ with $|\mu| > 1$.
- The angles θ in the coefficients of the Δ_k blocks are the canonical angles of A of order k

ヘロト 人間 ト 人造 ト 人造 トー

Canonical form for congruence

• Each square complex A is congruent to a direct sum, determined uniquely up to permutation of summands, of matrices of the three types

$$J_k(0), \quad \Gamma_k, \quad \left[\begin{array}{cc} 0 & I_k \\ J_k(\mu) & 0 \end{array}
ight]$$

in which $\mu \neq 0, \ \mu \neq (-1)^{k+1},$ and μ is determined up to replacement by $1/\mu.$

- There is one block $\begin{bmatrix} 0 & I_k \\ J_k(\mu) & 0 \end{bmatrix}$ for each pair of blocks $J_k(\mu) \oplus J_k(\mu^{-1})$ of $\mathcal{A}^{-T}\mathcal{A}$ with $\mu \neq (-1)^{k+1}$.
- There is one block Γ_k for each block $J_k((-1)^{k+1})$ of $\mathcal{A}^{-T}\mathcal{A}$.
- Nonsingular matrices are congruent if and only if their cosquares are similar; this is NOT true for *congruence.

◆□> ◆圖> ◆理> ◆理> 三語

*Congruence to a diagonal matrix

- Matrices that are diagonalizable by *congruence must have *congruence canonical blocks that are all 1-by-1, so only blocks of the form J₁(0) = [0] and e^{iθ}Δ₁ = [e^{iθ}] can occur in their *canonical forms: Nullity = normal nullity, and A^{-*}A is diagonalizable with all eigenvalues of modulus 1.
- For a normal matrix, *congruence to a diagonal matrix can be achieved with a unitary matrix. The (only) *congruence invariants are the rays that its eigenvalues lie on, and the multiplicity of eigenvalues on each ray. (lkramov's theorem)
- For a Hermitian matrix, only two rays can occur: (0,∞) and (-∞, 0). So the (only) *congruence invariants are the respective multiplicities, that is, the number of positive and the number of negative eigenvalues. (Sylvester's Inertia Theorem)
- The *congruence canonical form is the desired generalization of Sylvester's Inertia Theorem from Hermitian matrices to all complex square matrices.

Canonical forms for congruence: Applications

- A is congruent to A^T via S such that $S^2 = I$
- A is *congruent to A^T via S such that $S\bar{S} = I$
- Canonical pairs for any Hermitian pair via A = H + iK
- Canonical pairs for any symmetric/skew-symmetric pair
- Canonical form for A such that $A + A^*$ is positive (semi)definite
- Squared normal matrices: A^2 is normal, e.g., $A^2 = I$
- Zero and the field of values $F(A) = \{x^*Ax : x^*x = 1\}$
- Convexity of the rank-k numerical range (quantum error correction; Li & Sze)
- Characterization of matrices A such that $SAS^T = A \Rightarrow \det S = +1$
 - The congruence canonical form of A contains no blocks of odd size, that is, no blocks $J_k(0)$ or Γ_k with odd k. (T. Gerasimova et al.)

・ロト ・個ト ・ヨト ・ヨトー

T. Gerasimova, R. Horn, and V. Sergeichuk, Matrices that are self-congruent only via matrices of determinant one.
R. Horn and V. Sergeichuk, A regularizing algorithm for matrices of bilinear and sesquilinear forms, *Linear Algebra Appl.* 412 (2006) 380-395.
R. Horn and V. Sergeichuk, Canonical matrices of bilinear and sesquilinear forms, *Linear Algebra Appl.* 428 (2008) 193-223.
C.-K. Li and N.-S. Sze, Canonical forms, higher rank numerical ranges, totally isotropic subspaces, and matrix equations, *Proc. Amer. Math. Soc.* 136 (2008), 3013-3023.

rhorn@math.utah.edu

イロト イ理ト イヨト イヨトー