Matrix Canonical Forms

Roger Horn

University of Utah
ICTP School: Linear Algebra: Friday, June 26, 2009

Canonical forms for congruence and *congruence

- Congruence $A \rightarrow S A S^{T}$ (change variables in quadratic form $x^{T} A x$)
- *Congruence $A \rightarrow S A S^{*}$ (change variables in Hermitian form $x^{*} A x$)
- Congruence and *congruence are simpler than similarity: no inverses; identical row and column operations for congruence (complex conjugates for *congruence).
- The singular and nonsingular canonical structures are fundamentally different.

Example: *Congruence for Hermitian matrices

- Sylvester's Inertia Theorem (1852): Two Hermitian matrices are *congruent if and only if they have the same number of positive eigenvalues and the same number of negative eigenvalues (and hence also the same number of zero eigenvalues).
- Reformulate: Two Hermitian matrices are *congruent if and only if they have the same number of eigenvalues on each of the two open rays $\left\{t e^{i 0}: t>0\right\}$ and $\left\{t e^{i \pi}: t>0\right\}$ in the complex plane.
- Canonical form: $\left(e^{i 0} I_{n_{+}}\right) \oplus\left(e^{i \pi} I_{n_{-}}\right) \oplus 0_{n_{0}}$

Example: *Congruence for normal matrices

- Unitary *congruence: Two normal matrices are unitarily *congruent (unitarily similar!) if and only if they have the same eigenvalues.
- Ikramov (2001): Two normal matrices are *congruent if and only if they have the same number of eigenvalues on each open ray $\left\{t e^{i \theta}: t>0\right\}, \theta \in[0,2 \pi)$ in the complex plane.
- Canonical form: $\left(e^{i \theta_{1}} I_{n_{\theta_{1}}}\right) \oplus \cdots \oplus\left(e^{i \theta_{k}} I_{n_{\theta_{k}}}\right) \oplus 0_{n_{0}}$, $0 \leq \theta_{1}<\cdots<\theta_{k}<2 \pi$
- What comes next? Find a theorem about *congruence of general n -by- n matrices that includes Sylvester's and Ikramov's theorems as special cases. Find an analogous theorem for congruence.

Example: Congruence of complex symmetric matrices

- Two complex symmetric matrices are congruent if and only if they have the same rank. Why?
- We know that if $A=A^{T}$ then there is a unitary U such that $A=U \Sigma U^{T}$. If rank $A=r$, let $D=\operatorname{diag}\left(\sqrt{\sigma_{1}}, \ldots, \sqrt{\sigma_{r}}, 1, \ldots, 1\right)$. Then $A=(U D)\left(I_{r} \oplus 0_{n-r}\right)(U D)^{T}$
- Canonical form: $I_{r} \oplus 0_{n-r}$
- What comes next? Find a theorem about congruence of general n-by- n matrices that includes this observation as a special case.

Nullities are *congruence and congruence invariants

- $\operatorname{rank} A=\operatorname{rank} S A S^{*}$
- $\operatorname{dim} N(A)=\operatorname{dim} N\left(S A S^{*}\right)=\operatorname{dim} N\left(S A^{*} S^{*}\right)=\operatorname{dim} N\left(A^{*}\right)$
- Moreover,

$$
\operatorname{dim}\left(N(A) \cap N\left(A^{*}\right)\right)=\operatorname{dim}\left(N\left(S A S^{*}\right) \cap N\left(S A^{*} S^{*}\right)\right)
$$

- $\operatorname{rank} A=\operatorname{rank} S A S^{\top}$
- $\operatorname{dim} N(A)=\operatorname{dim} N\left(S A S^{T}\right)=\operatorname{dim} N\left(S A^{T} S^{T}\right)=\operatorname{dim} N\left(A^{T}\right)$
- Moreover,

$$
\operatorname{dim}\left(N(A) \cap N\left(A^{T}\right)\right)=\operatorname{dim}\left(N\left(S A S^{*}\right) \cap N\left(S A^{T} S^{*}\right)\right)
$$

- These observations are the key to the regularization algorithm:
- Reduce A by congruence (respectively, *congruence) to the direct sum of a nonsingular part and a singular part. Deal with each part separately.

Regularization for *congruence and congruence

- Each singular A is *congruent to $\mathcal{A} \oplus \mathcal{S}$ in which
- \mathcal{A} is nonsingular
- $\mathcal{S}=J_{n_{1}}(0) \oplus \cdots \oplus J_{n_{p}}(0)$
- block sizes n_{i} uniquely determined by the *congruence class of A.
- *congruence class of \mathcal{A} uniquely determined by the *congruence class of A
- Same for congruence.

Regularization algorithm: Step 1

- Step 1: Choose nonsingular S so the top rows of $S A$ are independent and the bottom m_{1} rows are zero, then form SAS*; partition it so that the upper left block is square:

$$
\begin{aligned}
A & \longmapsto S A=\left[\begin{array}{c}
A^{\prime} \\
0
\end{array}\right] \quad \text { independent rows } \\
& \longmapsto S A S^{*}=\left[\begin{array}{c}
A^{\prime} S^{*} \\
0
\end{array}\right]=\left[\begin{array}{c|c}
M & N \\
\hline 0 & 0_{m_{1}}
\end{array}\right] \quad(M \text { is square })
\end{aligned}
$$

- $m_{1}=\operatorname{dim} N(A)=\operatorname{dim} N\left(A^{*}\right)=$ the nullity of A
- $m_{2}=\operatorname{rank} N$
- $m_{1}-m_{2}=$ nullity of $N=\operatorname{dim}\left(N(A) \cap N\left(A^{*}\right)\right)=$ the normal nullity of A
- $m_{2}=$ the non-normal nullity of $A=$ the nullity of M
- Same for congruence.

Regularization algorithm: Step 2

- Step 2: Choose nonsingular R so the top rows of $R N$ are zero and the bottom m_{2} rows are independent:

$$
R N=\left[\begin{array}{l}
0 \\
E
\end{array}\right] \quad \leftarrow m_{2} \text { independent rows }
$$

$$
\begin{aligned}
{\left[\begin{array}{c|c}
M & N \\
\hline 0 & 0_{m_{1}}
\end{array}\right] } & \longmapsto(R \oplus I)\left[\begin{array}{c|c}
M & N \\
\hline 0 & 0_{m_{1}}
\end{array}\right](R \oplus I)^{*} \\
& \left.=\left[\begin{array}{cc|c}
R M R^{*} & R N \\
\hline 0 & 0_{m_{1}}
\end{array}\right]=\left[\begin{array}{cc|c}
A_{(1)} & B & 0 \\
C & D & E \\
\hline 0 & 0_{m_{1}}
\end{array}\right]\right\} m_{2}
\end{aligned}
$$

D is m_{2}-by- m_{2} and $A_{(1)}$ is strictly smaller than A.

- Same for congruence.

The regularizing decomposition

- If $A_{(1)}$ is nonsingular or missing, stop.
- If $A_{(1)}$ is present and singular, repeat steps 1 and 2 on $A_{(1)}$ to obtain m_{3} (the nullity of $A_{(1)}$) and m_{4} (the non-normal nullity of $A_{(1)}$). Repeat (for τ steps, say) until either a nonsingular block $\left(m_{2 \tau+1}=0\right)$ or an empty block is obtained.
- A singular $A \in M_{n}$ is *congruent to $\mathcal{A} \oplus \mathcal{S}$ in which the regular part \mathcal{A} is nonsingular and

$$
\mathcal{S}=J_{1}^{\left[m_{1}-m_{2}\right]} \oplus J_{2}^{\left[m_{2}-m_{3}\right]} \oplus \cdots \oplus J_{2 \tau-1}^{\left[m_{2 \tau-1}-m_{2 \tau}\right]} \oplus J_{2 \tau}^{\left[m_{2 \tau}\right]}
$$

- $J_{k}^{[p]}:=J_{k} \oplus \cdots \oplus J_{k}$ (p direct summands)
- The integers $m_{1} \geq m_{2} \geq \cdots \geq m_{2 \tau} \geq 0$, as well as the *congruence class of \mathcal{A}, are uniquely determined by the * congruence class of A.

Example 1

- $\left.A=\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]=\left[\begin{array}{cc}M & N \\ {[0} & 0\end{array}\right] \quad 0.\right] ; M=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], N=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
- $R=\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right], R N=\left[\begin{array}{l}0 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ E\end{array}\right]$
- $R M R^{*}=\left[\begin{array}{ll}-1 & 1 \\ -1 & 1\end{array}\right]=\left[\begin{array}{cc}A_{(1)} & B \\ C & D\end{array}\right]$
- $A_{(1)}=[-1], m_{1}=1, m_{2}=1, m_{3}=0$.
- Same for congruence
- A is * congruent to $[-1] \oplus J_{2}$ and ${ }^{T}$ congruent to $[1] \oplus J_{2}$:
- $[i][-1][i]=[+1]$

Example 2

- $\left.A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]=\left[\begin{array}{cc}M & N \\ {[0} & 0\end{array}\right] \quad 0.\right] ; M=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], N=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
- $R=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], R N=\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ E\end{array}\right]$
- $R M R^{*}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}A_{(1)} & B \\ C & D\end{array}\right]$
- $A_{(1)}=[1], m_{1}=1, m_{2}=1, m_{3}=0$.
- Same for congruence
- A is both * congruent and ${ }^{T}$ congruent to $[1] \oplus J_{2}$.

Examples 1 \& 2

- The matrices in Examples 1 and 2

$$
A=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

are congruent since they are both congruent to $[1] \oplus J_{2}$.

- However, they are not *congruent:

$$
\begin{gathered}
A \text { is * congruent to }[-1] \oplus J_{2}, \\
B \text { is * congruent to }[+1] \oplus J_{2} \text {, and } \\
{[s][-1][\bar{s}]=|s|^{2}[-1] \neq[+1]}
\end{gathered}
$$

The regular part

- Define: $A^{-*}:=\left(A^{-1}\right)^{*}$. The matrix $A^{-*} A$ is the ${ }^{*}$ cosquare of A.
- If $A \rightarrow S^{*} A S$, then

$$
A^{-*} A \rightarrow\left(S^{-1} A^{-*} S^{-*}\right)\left(S^{*} A S\right)=S^{-1}\left(A^{-*} A\right) S
$$

- If $A^{-*} A \rightarrow S^{-1}\left(A^{-*} A\right) S$, then

$$
A^{-*} A \rightarrow S^{-1}\left(A^{-*} S^{-*} S^{*} A\right) S^{-1}=\left(S^{*} A S\right)^{-*}\left(S^{*} A S\right)
$$

- *congruence of A corresponds to similarity of $A^{-*} A$
- The Jordan Canonical Form of the *cosquare of A is a *congruence invariant of A.
- Same for congruence and cosquares $A^{-T} A$

The JCF of *cosquares and cosquares

$$
\left(A^{-*} A\right)^{-1}=A^{-1} A^{*} \stackrel{\stackrel{s}{\sim}}{\sim} A^{*} A^{-1}=\left(A^{-*} A\right)^{*} \stackrel{s}{\sim} \overline{A^{-*} A}
$$

- The Jordan Canonical Form of $A^{-*} A$ is a direct sum of blocks of two types:

$$
\left[\begin{array}{cc}
J_{k}(\mu) & 0 \\
0 & J_{k}(1 / \bar{\mu})
\end{array}\right] \text { with } 0<|\mu|<1, \text { and } J_{k}(\lambda) \text { with }|\lambda|=1
$$

$$
\left(A^{-T} A\right)^{-1}=A^{-1} A^{T} \stackrel{\stackrel{s}{\sim}}{\sim} A^{T} A^{-1}=\left(A^{-T} A\right)^{T} \stackrel{s}{\sim} A^{-T} A
$$

- The Jordan Canonical Form of $A^{-T} A$ is a direct sum of blocks of two types:

$$
\left[\begin{array}{cc}
J_{k}(\mu) & 0 \\
0 & J_{k}(1 / \mu)
\end{array}\right] \text { with } 0 \neq \mu \neq(-1)^{k+1}, \text { and } J_{k}\left((-1)^{k+1}\right)
$$

Canonical blocks for *congruence and congruence

$$
\begin{aligned}
& \Gamma_{1}=[1], \quad \Gamma_{2}=\left[\begin{array}{rr}
0 & -1 \\
1 & 1
\end{array}\right] \\
& \text { (real) }
\end{aligned}
$$

- $\Gamma_{k}^{-T} \Gamma_{k}$ is similar to $J_{k}\left((-1)^{k+1}\right)$, so Γ_{k} is indecomposable under congruence or *congruence.

Canonical blocks for *congruence and congruence

$$
\begin{gathered}
\Delta_{k}=\left[\begin{array}{cccc}
& & & 1 \\
& & / & i \\
& 1 & / & \\
1 & i & &
\end{array}\right]_{k \times k} \quad \text { (symmetric) } \\
\Delta_{1}=[1], \quad \Delta_{2}=\left[\begin{array}{cc}
0 & 1 \\
1 & i
\end{array}\right]
\end{gathered}
$$

- $\Delta_{k}^{-*} \Delta_{k}$ is similar to $J_{k}(1)$, so Δ_{k} is indecomposable under *congruence.

Canonical form for *congruence

- Each square complex A is *-congruent to a direct sum, determined uniquely up to permutation of summands, of matrices of three types

$$
J_{k}(0), \quad e^{i \theta} \Delta_{k}, \quad\left[\begin{array}{cc}
0 & I_{k} \\
J_{k}(\mu) & 0
\end{array}\right]
$$

in which $0 \leq \theta<2 \pi$ and $0<|\mu|<1$.

- There is one block $\pm e^{i \theta} \Delta_{k}$ for each block $J_{k}(\lambda)$ of $\mathcal{A}^{-*} \mathcal{A}$ with $\lambda=e^{2 i \theta}$. The \pm is determined by the inertias of certain Hermitian matrices (2 algorithms).
- There is one block $\left[\begin{array}{cc}0 & I_{k} \\ J_{k}(\mu) & 0\end{array}\right]$ for each pair of blocks $J_{k}(\mu) \oplus J_{k}\left(\bar{\mu}^{-1}\right)$ of $\mathcal{A}^{-*} \mathcal{A}$ with $|\mu|>1$.
- The angles θ in the coefficients of the Δ_{k} blocks are the canonical angles of A of order k

Canonical form for congruence

- Each square complex A is congruent to a direct sum, determined uniquely up to permutation of summands, of matrices of the three types

$$
J_{k}(0), \quad \Gamma_{k}, \quad\left[\begin{array}{cc}
0 & I_{k} \\
J_{k}(\mu) & 0
\end{array}\right]
$$

in which $\mu \neq 0, \mu \neq(-1)^{k+1}$, and μ is determined up to replacement by $1 / \mu$.

- There is one block $\left[\begin{array}{cc}0 & I_{k} \\ J_{k}(\mu) & 0\end{array}\right]$ for each pair of blocks $J_{k}(\mu) \oplus J_{k}\left(\mu^{-1}\right)$ of $\mathcal{A}^{-T} \mathcal{A}$ with $\mu \neq(-1)^{k+1}$.
- There is one block Γ_{k} for each block $J_{k}\left((-1)^{k+1}\right)$ of $\mathcal{A}^{-T} \mathcal{A}$.
- Nonsingular matrices are congruent if and only if their cosquares are similar; this is NOT true for *congruence.

*Congruence to a diagonal matrix

- Matrices that are diagonalizable by *congruence must have *congruence canonical blocks that are all 1-by-1, so only blocks of the form $J_{1}(0)=[0]$ and $e^{i \theta} \Delta_{1}=\left[e^{i \theta}\right]$ can occur in their *canonical forms: Nullity $=$ normal nullity, and $\mathcal{A}^{-*} \mathcal{A}$ is diagonalizable with all eigenvalues of modulus 1 .
- For a normal matrix, * congruence to a diagonal matrix can be achieved with a unitary matrix. The (only) *congruence invariants are the rays that its eigenvalues lie on, and the multiplicity of eigenvalues on each ray. (Ikramov's theorem)
- For a Hermitian matrix, only two rays can occur: $(0, \infty)$ and $(-\infty, 0)$. So the (only) *congruence invariants are the respective multiplicities, that is, the number of positive and the number of negative eigenvalues. (Sylvester's Inertia Theorem)
- The *congruence canonical form is the desired generalization of Sylvester's Inertia Theorem from Hermitian matrices to all complex square matrices.

Canonical forms for congruence: Applications

- A is congruent to A^{T} via S such that $S^{2}=I$
- A is ${ }^{*}$ congruent to A^{T} via S such that $S \bar{S}=1$
- Canonical pairs for any Hermitian pair via $A=H+i K$
- Canonical pairs for any symmetric/skew-symmetric pair
- Canonical form for A such that $A+A^{*}$ is positive (semi)definite
- Squared normal matrices: A^{2} is normal, e.g., $A^{2}=I$
- Zero and the field of values $F(A)=\left\{x^{*} A x: x^{*} x=1\right\}$
- Convexity of the rank- k numerical range (quantum error correction; Li \& Sze)
- Characterization of matrices A such that $S A S^{T}=A \Rightarrow \operatorname{det} S=+1$
- The congruence canonical form of A contains no blocks of odd size, that is, no blocks $J_{k}(0)$ or Γ_{k} with odd k. (T. Gerasimova et al.)

References

T. Gerasimova, R. Horn, and V. Sergeichuk, Matrices that are self-congruent only via matrices of determinant one.
R. Horn and V. Sergeichuk, A regularizing algorithm for matrices of bilinear and sesquilinear forms, Linear Algebra Appl. 412 (2006) 380-395. R. Horn and V. Sergeichuk, Canonical matrices of bilinear and sesquilinear forms, Linear Algebra Appl. 428 (2008) 193-223.
C.-K. Li and N.-S. Sze, Canonical forms, higher rank numerical ranges, totally isotropic subspaces, and matrix equations, Proc. Amer. Math. Soc. 136 (2008), 3013-3023.
rhorn@math.utah.edu

