

2044-D3612

Summer School and Advanced Workshop on Trends and Developments in Linear Algebra

22 June - 10 July, 2009

Properties of Quantum Entropy and Related Convex Trace Functions

Properties of Quantum Entropy and Related Convex Trace Functions

Mary Beth Ruskai marybeth.ruskai@tufts.edu

Tufts University

June 26, 2009

M. B. Ruskai

Quantum Entropy

Quantum Entropy

Lecture Plan

- 1. Introduction and Background on Quantum Information
- 2. Properties of Entropy and Relative Entropy
- 3. Simple Proof of Joint Convexity of Relative Entropy
- 4. a) Noise in Quantum Information
 - b) More Inequalities and conjectures

I. Introduction and Background on Quantum Information

- 1. Preliminaries
- 2. Dirac bra and ket notation
- 3. Overview of quantum information
- 4. Some quantum mechanics basics
- 5. Quantum entropy
- 6. Tensor products and entanglement
- 7. Aside on SVD and "Schmidt" decompostion
- 8. Quantum relative entropy

Quantum Entropy

Hilbert space set-up

Full quantum theory associates a particle, e.g., electron with

$$\mathcal{H} = L_2(\mathbf{R}_3) \otimes \mathbf{C}_d$$
 $d = 2s + 1$, s denotes "spin"

Quantum info suppress "spatial" part in $L_2(\mathbf{R}_3)$ and focus on spin, typically spin $\frac{1}{2}$ or \mathbb{C}_2 . Many particles or qubits use $\mathbb{C}_2^{\otimes n}$ can also consider d > 2 and $C_d \otimes C_{d'} \otimes \dots$ etc.

Will work with $\mathcal{H} = \mathbf{C}_d$ or tensor products of these

and
$$\mathcal{B}(\mathcal{H}) = M_d = \text{space of } d \times d \text{ matrices}$$

 M_d = also a Hilbert space with inner product $\langle A, B \rangle = \operatorname{Tr} A^* B$ will also consider linear maps $\Phi: M_d \mapsto M_{d'}$

Most results extend to ∞ dim. \mathcal{H} in suitable way and can even replace M_d by a von Neumann algebra

M. B. Ruskai

Quantum Entropy

Basic notation

A, B, C self-adjoint matrices

A > B means A - B positive definite $\langle v, (A - B)v \rangle > 0 \quad \forall \ v \neq 0$

 $A \ge B$ or $A \ge B$ means A - B positive semi-definite, but $A \ne B$.

 $A \ge B$ means A - B positive semi-definite (with A = B allowed)

difference rarely significant $\begin{cases} f & \text{obviously diverges when } B = 0 \\ \lim f(B + \epsilon I) & \text{well defined as } \epsilon \to 0 \end{cases}$

operator (or matrix) inequality has one of above forms

trace inequality has form $\operatorname{Tr} AC > \operatorname{Tr} BC$ or $\operatorname{Tr} AC \geq \operatorname{Tr} BC$

with usual meanings for $>, \ge$ when $\operatorname{Tr} X \in \mathbf{R}$ (usually $[0, \infty)$ study trace inequalities related to maps $M_d \mapsto R$ that are convex

M. B. Ru

Quantum Entropy

Functions of operators

For $A = UDU^*$, define $f(A) = U f(D) U^*$

$$A = U \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_m \end{pmatrix} U^{\dagger} \qquad f(A) = U \begin{pmatrix} f(\lambda_1) & 0 & \dots & 0 \\ 0 & f(\lambda_2) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 & f(\lambda_m) \end{pmatrix} U^{\dagger}$$

equiv. to any reasonable def using power series, integral rep., etc. also applies to operators, e.g., L_Q acting on M_d space of matrices For example, for $L_A(X) = AX$ find $L_{\log A}(X) = \log L_A(X)$

Examples of trace functions

R, Q > 0 but often extend to $R, Q \ge 0$

applications often use $\operatorname{Tr} R = \operatorname{Tr} Q = 1$ but not essential

$$S(R) = -\text{Tr } R \log R$$
 quantum entropy (concave)

$$H(R,Q) = \operatorname{Tr} R(\log R - \log Q)$$
 relative entropy (jointly convex)

$$K$$
 fixed ${\rm Tr}\, K^*R^pKQ^{1-p}$ jointly
$$\begin{cases} {\rm concave} & 0$$

- (i) math lead to many interesting matrix inequalities
- (ii) original interest in quantum statistical mechanics now important in quantum information theory

M. B. Ruskai

Quantum Entrop

Dirac notation: $\mathbf{u}.\mathbf{v}$ in finite-dim vector space \mathbf{C}_d

Inner product
$$\langle v, u \rangle = \mathbf{v}^* \mathbf{u} = \begin{pmatrix} & \overline{v} & \end{pmatrix} \begin{pmatrix} u \end{pmatrix}$$

Reverse order
$$|u\rangle\langle v|=$$
 u $\mathbf{v}^*=\left(u\right)^{-1}\left(\overline{v}\right)^{-1}$

get $n \times n$ matrix of map $w \mapsto \langle v, w \rangle u$

$$P_u = \frac{1}{\|u\|^2} u u^* = \frac{|u\rangle\langle u|}{\|u\|^2}$$
 projection onto 1-dim subspace span $\{u\}$.

"ket"
$$|u\rangle \leftrightarrow \mathbf{u} \leftrightarrow \mathsf{col} \; \mathsf{vec} \;\;\;\; \mathsf{dual} \;\; \mathsf{"bra"} \;\; \langle u| \leftrightarrow \mathbf{u}^* \leftrightarrow \mathsf{row} \; \mathsf{vec} \;\;\;$$

- Can be justified by Riesz rep. theorem.
- Put complex conj. on "left" i.e., $\langle v, u \rangle$ linear in u; anti-lin in v.
- Use any convenient label, e.g. $|\lambda_k\rangle$ or $|k\rangle$ for eigenfect v_k of λ_k

conventions

in view of above $\langle u, v \rangle = \mathbf{u}^* \mathbf{v}$ anti-linear in u and linear in v

$$a\langle u,v\rangle=\langle u,av\rangle=\langle \overline{a}u,v\rangle$$

math physics MBR this lecture

$$A^*$$
 A^{\dagger} A^{\dagger} A^* adjoint

$$\overline{a}$$
 a^* \overline{a} complex conjugate

 a^* never – too confusing

$$\widehat{\Phi}$$
 adjoint wrt H-S inner prod

 $\Phi: M_d \mapsto M_{d'}$ linear map

$$\operatorname{Tr} A^* \Phi(B) = \langle A, \Phi(B) \rangle = \langle \widehat{\Phi}(A), B \rangle = \operatorname{Tr} [\widehat{\Phi}(A)]^* B$$

M. B. Rusk

Quantum Entropy

Quantum vs classical information

Classical – "bit" takes values in $\mathbf{Z}_2=\{0,1\}$, e..g, "on" or "off" encode info in strings of 0 & 1, elements of $\mathbf{Z}_2^{\otimes n}=\mathbf{Z}_2\otimes\mathbf{Z}_2\ldots\otimes\mathbf{Z}_2$ Quantum – "qubit" takes values in \mathbf{C}_2 (up to norm. and phase)

$$0 \sim inom{1}{0} \equiv |0
angle_z$$
 \uparrow spin "up" or \uparrow vertical polar

$$1 \sim egin{pmatrix} 0 \ 1 \end{pmatrix} \equiv |1
angle_z \quad \downarrow \quad ext{spin "down"} \quad ext{or} \quad o \quad ext{horiz polar}$$

Isomorphism between $\mathbf{Z}_2^{\otimes n}$ and O.N. prod basis for $\mathbf{C}_2^{\otimes n}$

"Computational basis", e.g.,
$$|0110\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Embed class in quant — but can do much more

$$0\sim inom{1}{0}\equiv |0
angle_z$$
 \uparrow spin "up" or \uparrow vertical polar $1\sim inom{0}{1}\equiv |1
angle_z$ \downarrow spin "down" or $ightarrow$ horiz polar

Now consider
$$\begin{pmatrix} 1 \\ \pm 1 \end{pmatrix}$$
 "spin" right \rightarrow or left \leftarrow (in *x*-direction)

$$\frac{1}{\sqrt{2}}\begin{pmatrix}1\\\pm1\end{pmatrix} = \frac{1}{\sqrt{2}}\begin{pmatrix}1\\0\end{pmatrix} + \frac{1}{\sqrt{2}}\begin{pmatrix}0\\1\end{pmatrix} = \frac{1}{\sqrt{2}}\big(|0\rangle_z + |1\rangle_z\big)$$

Then measure spin in z-direction. Get either \uparrow or \downarrow (i.e., 0 or 1) each with probability $\frac{1}{2}$. But not classical prob, i.e.,

Not a classical mixture but a superposition of vectors.

In some sense
$$2^{-n/2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{\otimes n} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \otimes \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \otimes \ldots \otimes \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 contains all 2^n strings of 00110101..., each with prob 2^{-n}

M. B. Ruskai

Quantum Entropy

Can one encode more than $\{0,1\}$ in qubit ??

4 states
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 \uparrow $\frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\xrightarrow{}$ $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $\xrightarrow{\frac{1}{\sqrt{2}}}\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ $\xleftarrow{}$??

Most general qubit
$$|\nu\rangle=a|0\rangle+b|1\rangle={a\choose b}={\sin\theta\choose e^{i\varphi}\cos\theta}$$
 use to encode $[0,\pi]$ or $[-1,1]$ or more $??$

NO — will see can only reliably distinguish orthog states

Thm: (Holevo bound) Accessible Information or max info/qubit one can extract ≤ 1 . Will give formal math thm and proof

non-orthog encoding can't reliably distinguish BUT advantages!

- Noisy communication (use quant particles to sed class info)
 non-orthog input may yield more distinguishable outputs
- Quant cryptography sacrifice info to detect eavesdropper

Quantum basics and von Neumann measurement

Fund Postulate of Q.M.: Observable represented by self-adj op A spectral decomp $A = \sum_k a_k E_k = \sum_k a_k |\alpha_k\rangle\langle\alpha_k|$

Measurement of A with system in some state ψ .

- (i) get some e-value (only possibility)
- (ii) leave system in e-state α_k
- (iii) probability is $|\langle \alpha_k, \psi \rangle|^2 = \text{Tr } E_k |\psi\rangle\langle\psi|$

Write $|\psi\rangle = \sum_k c_k |\alpha_k\rangle$ as a superposition of e-states, $c_k = \langle \alpha_k, \psi \rangle$

Coefficients c_k in superpos. give probs $|c_k|^2$ not classical

Average result of meas in state $|\psi\rangle$ is $\langle \psi, A\psi \rangle = \operatorname{Tr} A |\psi\rangle \langle \psi|$

set $\{E_k\}$ orthog projections $E_j E_k = E_k \delta_{jk}$ with $\sum_k E_k = I$ called

von Neumann measurement or projection valued measure (PVM)

corresponds to "yes-no" experiment (e.g., polarization filter)

13

M. B. Ruskai

Quantum Entropy

Density matrices: mixed vs. pure states

pure state often rep by vector $|\psi\rangle\in\mathcal{H}$ up to phase, with $\|\psi\|=1.$ better to use rank-1 projection $|\psi\rangle\langle\psi|$ (with $\|\psi\|=1$).

mixed state $ho = \sum_k p_k |\phi_k\rangle \langle \phi_k|$ is convex comb of pure states $p_k > 0, \sum_k p_k = 1$ and $\|\phi_k\| = 1$ but ϕ_k not nec orthog ρ called density matrix (D.M.) or density operator $\rho \in M_d$ is D.M. if and only if $\rho \geq 0$ and $\operatorname{Tr} \rho = 1$.

Interp: a) ensemble in quantum statistical mechanics

- b) know only part (subsystem) $\rho = \rho_A = \text{Tr}_B \, \rho_{AB}$
- c) $A \mapsto \operatorname{Tr} A \rho$ positive linear functional on M_d .

two kinds of probability in Q.M. (i) p_k traditional prob interp, but (ii) $|\phi_k\rangle$ can be superposition with different interp.

von Neumann (1927) defined mixed quantum state and its entropy

$$S(
ho) \equiv -\operatorname{Tr}
ho \log
ho = -\sum_k \lambda_k \log \lambda_k$$

where ρ spectral decomp $\ \rho = \sum_{\mathbf{k}} \lambda_{\mathbf{k}} |\chi_{\mathbf{k}} \rangle \langle \chi_{\mathbf{k}}| \ \ {\rm so} \ \lambda_{\mathbf{k}}$ e-vals

Density matrix
$$ho>0$$
 and ${\rm Tr}\,
ho=1 \Rightarrow S(
ho)\geq 0$ also find $ho=|\psi\rangle\langle\psi|$ pure $\Leftrightarrow
ho^2=\rho \Leftrightarrow S(
ho)=0$

But S(P) well-defined for and concave any pos semi-def ops will give three (3) proofs

 $S(
ho) \geq 0$ is result of normalization and/or phys interp

Shannon (1948): classical info with entropy equiv. to diag matrix

Next Time: more, including subadditivity properties

M. B. Ruskai

Quantum Entropy

Back to Measurement: Role of non-commutativity

Now consider two non-commuting observables

$$A = \sum_{j} a_{j} |\alpha_{j}\rangle\langle\alpha_{j}| = \sum_{j} a_{j}E_{j}, \qquad B = \sum_{k} b_{k} |\beta_{k}\rangle\langle\beta_{k}| = \sum_{k} b_{k}F_{k}$$

start in $|\psi\rangle$ measure A, then B ends in e-state $|\beta_k\rangle$ of B start in $|\psi\rangle$ measure B, then A ends in e-state $|\alpha_i\rangle$ of A

in mixed $ho = \sum_k p_k |\phi_k\rangle \langle \phi_k|$ average result of measuring A is $\sum_k p_k \langle \phi_k, A\phi_k\rangle = {\rm Tr}\, \rho\, A$

Define map $\Omega_{\mathcal{M}}$ describes result of PVM or vN measurement

$$\Omega_{\mathcal{M}}:
ho\mapsto\sum_{j}\mathsf{\textit{E}}_{j}
ho\mathsf{\textit{E}}_{j}=\sum_{j}|lpha_{j}
angle\langlelpha_{j},
ho\,lpha_{j}
angle\langlelpha_{j}|=\sum_{j}|lpha_{j}
angle\langlelpha_{j}|\operatorname{\mathsf{Tr}}
ho\,\mathsf{\textit{E}}_{j}$$

Measure B, then A ends with $F_k \mapsto \Omega_{\mathcal{M}}(F_k) = \sum_j E_j F_k E_j$

Quantum measurement: POVM

$$\sum_{ik} E_j F_k E_j = \sum_i E_j I E_j = I$$

 $\{E_iF_kE_i\}$ example of POVM positive operator valued measurement

Def: (Davies and Lewis) POVM $\mathcal{M} = \{G_b\}$ $G_b > 0$, $\sum_b G_b = I$

Result of POVM depends on order in which G_b performed

QC map for von Neumann measurement

$$\Omega_{\mathcal{M}}: \gamma \mapsto \sum_{j} (\operatorname{Tr} \gamma E_{j}) |\alpha_{j}\rangle \langle \alpha_{j}| \qquad E_{j} = |\alpha_{j}\rangle \langle \alpha_{j}| \quad \text{O.N.}$$

QC map for POVM using instrument with "pointer" $|f_b\rangle$

$$\Omega_{\mathcal{M}}: \gamma \mapsto \sum_{j} (\operatorname{Tr} \gamma G_b) |\phi_b\rangle \langle \phi_b| \otimes |f_b\rangle \langle f_b| \text{ where } |f_b\rangle \text{ O.N.}$$

M. B. Ruskai

Quantum Entropy

Tensor products and entanglement

Quant Info typical $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \ldots \otimes \mathcal{H}_n$ or $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \ldots$

- ullet Quantum Computer $\mathcal{H} = \mathbf{C}_2^{\otimes n}$ for n qubits
- Quantum Communication $\mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_E$

A = sender "Alice" B = receiver "Bob"

E = "Eve" (Eavesdropper – sexist), but also

E = Environment (can be Evil or Friendly)

Partial trace $\operatorname{\mathsf{Tr}}_B:\mathcal{B}(\mathcal{H}_A\otimes\mathcal{H}_B)\mapsto\mathcal{B}(\mathcal{H}_A)$ or $M_{d_A}\otimes M_{d_B}\mapsto M_{d_A}$

 $\operatorname{Tr}_B A \otimes B = A(\operatorname{Tr} B)$ extend by linearity

Formal partial inner product $|\phi_k\rangle$ O.N. basis for \mathcal{H}_B

 $\operatorname{Tr}_B X_{AB} = \sum_k \langle \phi_k, X_{AB} \phi_k \rangle_B$ means $\forall \chi, \psi \in \mathcal{H}_A$

 $X_A = \operatorname{Tr}_B X_{AB} \text{ iff } \langle \chi, X_A \psi \rangle = \sum_k \langle \chi \otimes \phi_k, X_{AB} \psi \otimes \phi_k \rangle_B$

pure state $|\psi\rangle\in\mathcal{H}=\mathcal{H}_A\otimes\mathcal{H}_B$ called "entangled" if it is not a tensor prod, i.e., can not be written $|\psi\rangle\neq\phi_A\otimes\phi_B$ Example max entang Bell states on $\mathbf{C}_2\otimes\mathbf{C}_2$

$$rac{1}{\sqrt{2}}ig(|00
angle\pm|11
angleig) \qquad rac{1}{\sqrt{2}}ig(|01
angle\pm|10
angleig)$$

have non-classical correlations long regarded as mysterious modern quant info attitude: accept as way world is and ask

What nifty new things can we do with entanglement?

Measure entanglement of pure state

 $E(\psi) = S \left({\rm Tr}_B \, |\psi\rangle\langle\psi| \right) = S \left({\rm Tr}_A \, |\psi\rangle\langle\psi| \right)$ essent unique mixed ρ_{AB} separable if convex comb of pure product states many (industry) of inequiv. entang measures for mixed states

M. B. Ruskai

Quantum Entropy

Aside: SVD and "Schmidt" decomposition

Singular Value Decomposition: Recall $B^*B = \sum_k \mu_k^2 |b_k\rangle\langle b_k| \equiv |B|^2$

Then $B = U|B| = \sum_k \mu_k |a_k\rangle \langle b_k| \qquad |a_k\rangle = U|b_k>$

U partial isometry – restriction to $(\ker B)^{\perp}$ unique unitary

Isomorphism $\mathcal{B}(\mathcal{H}) \simeq \mathcal{H} \otimes \mathcal{H} \qquad |v\rangle\langle w| \leftrightarrow |v\otimes w\rangle$

apply SVD + iso to $|\psi\rangle \in \mathcal{H} \otimes \mathcal{H} |\psi\rangle = \sum_k \mu_k |\alpha_k \otimes \beta_k\rangle$

pure $\rho_{AB}=|\psi\rangle\langle\psi|\Rightarrow$ reduced density matrices $\rho_{A}\equiv {\rm Tr}_{B}\,\rho_{AB}$ etc.

 $\rho_{A} = \sum_{k} |\mu_{k}|^{2} |\alpha_{k}\rangle \langle \alpha_{k}| \quad \rho_{B} = \sum_{k} |\mu_{k}|^{2} |\beta_{k}\rangle \langle \beta_{k}|$

Cor 1: $\rho_{AB} = |\psi\rangle\langle\psi|$ pure $\Rightarrow \rho_A, \rho_B$ have same non-zero e-vals

Cor 2: $\rho_{AB} = |\psi\rangle\langle\psi|$ pure $S(\rho_A) = S(\rho_B)$

Can reverse to get "purification" start with $\rho = \sum_{k} \lambda_{k} |\phi_{k}\rangle \langle \phi_{k}|$

Define $|\psi\rangle = \sum_{k} \sqrt{\lambda_{k}} |\phi_{k} \otimes \phi_{k}\rangle \in \mathcal{H} \otimes \mathcal{H}$ $\operatorname{Tr}_{\mathcal{B}} |\psi\rangle\langle\psi| = \rho$

Quant Info view: mystical result of Schmidt about tensor products

SVD for matrices started 1870's (Horn and Johnson, Chap. 3)

Schmidt(1907) equiv. result interp K(x, y) as kernal of operator

$$g(y) \mapsto f(x) = \int K(x, y)g(y)dy$$

Rediscovered by quantum chemists called Carleson-Keller (1961)

John Coleman (1963) pointed out due to Schmidt

OK interp for $\psi(x_1 \dots x_m, y_1 \dots y_n) \in L_2(\mathbf{R}^{m+n})$ wave function

wrong-headed to look for extension to higher order tensor products

More info: See Appendix A of King & Ruskai

IEEE Trans. Info. Theory, 47, 192209 (2001) quant-ph/9911079

I M. B. Rusk

Quantum Entropy

Aside: G Homogenous of degree one

Consequences of $G(\lambda A) = \lambda G(A)$

• G(A) convex $\Leftrightarrow G(A+B) \leq G(A) + G(B)$

convex \Rightarrow "subadditive" [in sense $G(A + B) \leq G(A) + G(B)$]

$$\frac{1}{2}G(A+B) = G(\frac{1}{2}A + \frac{1}{2}B) \le \frac{1}{2}G(A) + \frac{1}{2}G(B)$$

"subadditive" ⇒ convex

$$G[xA + (1-x)B] \leq G(xA) + G[(1-x)B]$$

= $xG(A) + (1-x)G(B)$

• G(x) convex $\Rightarrow \lim_{x\to 0} \frac{1}{x} [G(A+xB)-G(A)] \leq G(B)$

$$\lim_{x\to 0}\frac{G(A+xB)-G(A)}{x}\leq \lim_{x\to 0}\frac{G(A)+xG(B)-G(A)}{x}$$

Relative Entropy

Def: $H(\rho, \gamma) = \operatorname{Tr} \rho (\log \rho - \log \gamma)$

 ρ, γ pair of density matrices, but can be any pos semi-def ops.

Use Greek ρ, γ, \ldots for density matrices,

Use Roman R, Q for arb pos semi-def matrices

Joint Convexity
$$H\left(\sum_{j} R_{j}, \sum_{j} Q_{j}\right) \leq \sum_{j} H(R_{j}, Q_{j})$$

Cor: Monotone under Partial Trace (MPT)

$$H(R_1, Q_2) \leq H(R_{12}, Q_{12})$$

$$R_{12}, Q_{12} \in \mathcal{B}(\mathcal{H}_1 \otimes \mathcal{H}_2)$$
 $R_1 = \operatorname{Tr}_2 R_{12}$ etc.

M. B. Rus

Quantum Entropy

II. Properties of Entropy and Relative Entropy

- 1. Fundamental Properties of Entropy
 - 1.1 Concavity and subadditivity
 - 1.2 Minor properties
 - 1.3 Strong subadditiivty (SSA)
 - 1.4 First proof of concavity of $S(\rho)$
 - 1.5 Triangle inequality
- 2. Klein's inequality and second proof of concavity of $S(\rho)$
- 3. Fundamental Properties of Relative Entropy
- 4. Aside on Information Theory Expressions
- 5. Aside on Monotone and Convex Operator Functions
- 6. Third proof of concavity of $S(\rho)$

Fundamental Properties of Quantum Entropy

Def: $S(R) = -\text{Tr } R \log R$ for $R \ge 0$ pos semi-def $(0 \log 0 \equiv 0)$

• Concave: $x S(R_1) + (1-x)S(R_2) \le S(xR_1 + (1-x)R_2)$

but $\leq x S(R_1) + (1-x)S(R_2) + x \log x + (1-x) \log(1-x)$

• Subadditive: $S(R_{AB}) \leq S(R_A) + S(R_B)$

with $= \Leftrightarrow R_{AB} = R_A \otimes R_B$

• Strongly Subadditive $S(R_B) + S(R_{ABC}) \leq S(R_{AB}) + S(R_{BC})$

All indep of norm. if consistent, e.g., $\operatorname{Tr} R_B = \operatorname{Tr} R_{AB} = \operatorname{Tr} R_{ABC}$

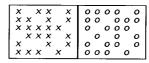
- Also have (a) $S(\mu R) = \mu S(R) \mu \log \mu \text{Tr } R$
 - (b) $R \in M_d$ and $\operatorname{Tr} R = 1 \implies 0 \le S(R) \le \log d$

M. B. Ruskai

Quantum Entropy

Concave: $x S(\rho_1) + (1-x)S(\rho_2) \le S(x\rho_1 + (1-x)\rho_2)$

refers to mixture



Subadditive:

$$S(\rho_{AB}) \leq S(\rho_A) + S(\rho_B)$$

refers to regions or subsystems

SSA: $S(\rho_B) + S(\rho_{ABC}) \le S(\rho_{AB}) + S(\rho_{BC})$

overlapping regions

Subadditive \Rightarrow Concave

Proof # 1 of $S(\rho)$ concave once subadd shown (easy)

$$\rho_{AB} = \begin{pmatrix} x\rho_1 & 0\\ 0 & (1-x)\rho_2 \end{pmatrix}$$

$$\rho_A = x\rho_1 + (1-x)\rho_2, \qquad \rho_B = \begin{pmatrix} x & 0\\ 0 & 1-x \end{pmatrix}$$

$$S(\rho_{AB}) = S(x\rho_1) + S((1-x)\rho_2)$$

= $xS(\rho_1) - x \log x + (1-x)S(\rho_2) - (1-x) \log(1-x)$

$$S(\rho_{AB}) \leq S(\rho_{A}) + S(\rho_{B})$$

$$= S(x\rho_{1} + (1-x)\rho_{2}) - x \log x - (1-x) \log(1-x)$$

$$\Rightarrow xS(\rho_{1}) + (1-x)S(\rho_{2}) \leq S(x\rho_{1} + (1-x)\rho_{2})$$

M. B. Ruskai

Quantum Entropy

Triangle inequality for $S(\rho)$

$$S(\rho_{AB}) \leq S(\rho_A) + S(\rho_B)$$

Given ρ_{AB} can find \mathcal{H}_C and $|\psi_{ABC}\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$

s.t.
$$\operatorname{Tr}_C \rho_{ABC} = \operatorname{Tr}_C |\psi_{ABC}\rangle \langle \psi_{ABC}| = \rho_{AB}$$
 purification $\rho_{AB} = \sum_k \lambda_k |\phi_k\rangle \langle \phi_k| \qquad |\psi_{ABC}\rangle = \sum_k \sqrt{\lambda_k} |\phi_k \otimes e_k\rangle$

$$(\mathcal{H}_{A} \otimes \mathcal{H}_{B}) \otimes \mathcal{H}_{C} S(\rho_{AB}) = S(\rho_{C}) \quad \mathcal{H}_{A}(\otimes \mathcal{H}_{B} \otimes \mathcal{H}_{C}) S(\rho_{A}) = S(\rho_{BC})$$

subs above
$$S(\rho_C) \leq S(\rho_{BC}) + S(\rho_B)$$

$$\Rightarrow S(\rho_C) - S(\rho_B) \leq S(\rho_{BC})$$

Reverse $B \leftrightarrow C$ and combine with subadd to get

$$|S(\rho_A) - S(\rho_B)| \le S(\rho_{AB}) \le S(\rho_A) + S(\rho_B)$$

Klein's inequality:

 $\operatorname{Tr} A \log A - \operatorname{Tr} A \log B \ge \operatorname{Tr} (A - B)$ with $= \inf A = B$

g convex means diff quotients increase

$$\Rightarrow \frac{g(b)-g(a)}{b-a} \le g'(b)$$
 for $a < b$

$$\Rightarrow$$
 $g(b) - g(a) \le (b - a)g'(b)$ for all a, b

$$\operatorname{Tr}\left[g'(B)(B-A)-g(B)+g(A)\right] \qquad |\beta_k\rangle \text{norm e-vec of } B$$

$$= \sum_{k} \left[g'(b_k)\left(b_k-\langle\beta_k,A\beta_k\rangle\right)-g(b_k)+\langle\beta_k,g(A)\beta_k\rangle\right]$$

Jensen
$$g(\langle \beta_k, A \beta_k \rangle) \leq \langle \beta_k, g(A) \beta_k \rangle$$

$$\geq \sum_{k} \left[g'(b_{k}) (b_{k} - \langle \beta_{k}, A\beta_{k} \rangle) - g(b_{k}) + g(\langle \beta_{k}, A\beta_{k} \rangle) \right] \geq 0$$

For
$$g(x) = x \log x$$
, $g'(x) = 1 + \log x$

$$\operatorname{Tr} \left[(B - A)(I + \log B) - B \log B + A \log A \right] \ge 0$$

29

M. B. Ruskai

Quantum Entropy

Entropy concave : Proof # 2

$$A = R_1$$
 and $B = R = xR_1 + (1-x)R_2$ in Klein

$$\operatorname{Tr} A \log A - \operatorname{Tr} A \log B > \operatorname{Tr} (A - B)$$

Get
$$\operatorname{Tr} R_1 \log R_1 - R_1 \log R \ge \operatorname{Tr} (R_1 - R)$$

Repeat for R_2 and Mult by x and 1-x

$$x\operatorname{Tr} R_1 \log R_1 - x R_1 \log R \ge \operatorname{Tr} \left[x R_1 - R \right]$$

 $(1-x)\operatorname{Tr} R_2 \log R_2 - (1-x)R_2 \log R \ge \operatorname{Tr} \left[(1-x)R_2 - R \right]$

add to get

$$-xS(R_1) - (1-x)S(R_2) - [xR_1 + (1-x)R_2] \log R \ge \operatorname{Tr}(R-R) \\ -xS(R_1) - (1-x)S(R_2) + S(R) \ge 0$$

Relative entropy

Def:
$$H(R, Q) = \operatorname{Tr} R \log R - \operatorname{Tr} R \log Q$$

Klein's ineq:
$$H(R, Q) \ge \text{Tr}(R - Q)$$
 ≥ 0 if $\text{Tr} R = \text{Tr} Q$

assume
$$R, Q > 0$$
 strictly pos — well-def if $ker(Q) \subset ker(R)$

Can obtain entropy from rel ent.
$$H(R, \frac{1}{d}I) = -S(R) + \log d$$

Or simply $H(R, I) = -S(R)$

homogenous of degree one
$$H(\lambda R, \lambda Q) = \lambda H(R, Q)$$

Recall
$$\Rightarrow$$
 convexity equiv to simple form $F(A+B) \leq F(A) + F(B)$

M. B. Ruskai

Quantum Entropy

Fundamental Properties of Relative Entropy

Joint Convexity
$$H(R_1 + R_2, Q_1 + Q_2) \le H(R_1, Q_1) + H(R_2, Q_2)$$

Cor: (MPT)
$$H(R_A, Q_A) \leq H(R_{AB}, Q_{AB})$$

Monotone under Partial Trace

Ibinson-Winter: that's all folks!

Special Case of MPT
$$R_{AB} \rightarrow \rho_{ABC}, \ Q_{AB} \rightarrow I_A \otimes \rho_{BC}$$

gives strong subadditivity
$$H(\rho_{AB}, \rho_B) \leq H(\rho_{ABC}, \rho_{BC})$$

SSA
$$-S(\rho_{AB}) + S(\rho_{B}) \le -S(\rho_{ABC}) + S(\rho_{BC})$$

Will prove JC and then show \Rightarrow MPT

Aside: Information Theory Expressions

Mutual Information: (always positive)

$$S(A:B) = S(\rho_A) + S(\rho_B) - S(\rho_{AB}) = H(\rho_{AB}, \rho_A \otimes \rho_B) \ge 0$$

Conditional Information: (always positive for classical systems)

$$S(A|B) = S(\rho_{AB}) - S(\rho_B) = -H(\rho_{AB}, \rho_B)$$

= $-H(\rho_{AB}, \frac{1}{d}I_A \otimes \rho_B) + \log d$

Max entangled state $S(\rho_{AB}) - S(\rho_B) = -\log d < 0$ $\rho_{AB} = |\psi_{AB}\rangle\langle\psi_{AB}| \quad \psi_{AB} = \sum_k \frac{1}{d} |\phi_k \otimes \phi_k\rangle$

Conditional Info $S(\rho_{AB}) - S(\rho_B)$ concave surprising since diff of concave functions – equiv. to SSA

M. B. Ruskai

Quantum Entropy

Weak monotonicity of conditional Information

Classical $S(\rho_{AB}) - S(\rho_B) \ge 0$

Quantum given any ρ_{ABC}

Purify $\rho_{ABC} = \sum_k \lambda_k |\phi_k\rangle \langle \phi_k|$ to ρ_{ABCD} s.t. $\text{Tr}_B \, \rho_{ABCD} = \rho_{ABC}$ $\rho_{ABCD} = |\psi\rangle \langle \psi| \qquad |\psi_{ABCD}\rangle = \sum_k \sqrt{\lambda_k} \, |\phi_I \otimes f_k\rangle$ where $|f_k\rangle$ O.N. in space iso to $(\ker \rho_{ABC})^\perp \subseteq \mathcal{H}_{ABC}$.

SSA:
$$S(\rho_{ABC}) + S(\rho_B) \leq S(\rho_{AB}) + S(\rho_{BC})$$

 $S(\rho_D) + S(\rho_B) \leq S(\rho_{CD}) + S(\rho_{BC})$
 $S(\rho_{CD}) - S(\rho_D) + S(\rho_{BC}) - S(\rho_B) \geq 0$

two cond entropies with common subsystem can't both be negative

Negative Conditional Information

QIT uses EPR states $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ to transmit

- a) classical information by process called "dense coding"
- b) unknown quantum states by process called "teleportation"

HOW (M. Horodecki, J. Oppenheim, A. Winter) interpretation:

Nature 436, 673–676 (2005); CMP 269, (2007). quant-ph/0512247.

Cond info measures # of bits Alice needs to transmit message to Bob when he has partial info – same interp class, and quant info

When negative, gives # of EPR pairs A and B have left for future

M. B. I

Quantum Entropy

Aside: Operator-Monotone and -Convex Functions

$$A > B > 0 \Rightarrow \sqrt{A} > \sqrt{B} > 0$$
 but $\Rightarrow A^2 > B^2$

Def: $f:(a,b)\mapsto \mathbf{R}$ is operator-monotone if (a.k.a. Pick or Herglotz) $A>B>0 \Rightarrow f(A)>f(B)$.

Thm: Let $f:(0,\infty)\mapsto \mathbf{R}$. TFAE the following are equivalent

- a) f is operator monotone
- b) f can be anal cont into UHP and maps UHP into UHP

c)
$$f(x) = ax + \int_0^\infty \frac{xu-1}{x+u} \nu(u) du$$
 with $\nu(u) \ge 0$

$$= a'x - \int_0^\infty \frac{1}{x+u} (1+u^2) \nu(u) du \text{ if } \int u \nu(u) du < \infty$$

where UHP = z : Imz > 0

(b) ⇔ (c) Nevanlinna's Thm.

Operator-Monotone and -Convex Functions continued

$$A > B > 0 \implies X = B^{-1/2}AB^{-1/2} > I \implies \text{e-vals of } X > 1$$

e-vals of $X^{-1} < 1 \implies B^{1/2}A^{-1}B^{1/2} < I \implies 0 < A^{-1} < B^{-1}$
So $f(x) = -(x+u)^{-1}$ is op-mon which gives (c) \implies (a).

Def:
$$g:(0,\infty)\mapsto \mathbf{R}$$
 operator-convex if
$$g(xA_1+(1-x)A_2)\leq xg(A_1)+(1-x)g(A_2)$$

Roughly g is op-convex iff suitable diff quot is op-mon.

$$g: [0, \infty) \mapsto \mathbf{R}$$
 and $g(0) = 0$ is op-convex iff
$$\frac{g(x) - g(0)}{x - 0} = \frac{g(x)}{x}$$
 op-mon

Theory due to Löwner

Ando 197? notes

M. B. Ruskai

Quantum Entropy

Entropy concave : Proof # 3

$$g:[0,\infty)\mapsto \mathbf{R}$$
 and $g(0)=0$ is op-convex iff $\frac{g(x)}{x}$ op-mon Apply to $g(x)=x\log x$

$$\frac{g(x)}{x} = \log x : \mathsf{UHP} \mapsto \{z : \mathrm{Im}z \in (0, 2\pi)\} \subset \mathsf{UHP}$$

Find: $g(x) = x \log x$ op-convex $g(x) = -x \log x$ op concave \Rightarrow and stronger than $S(R) = -R \log R$ concave C. Davi

 $f(x) = x^p$ neither op-convex nor op-mon for p > 2.

III: Simple Proof of Joint Convexity of Relative Entropy

- 1. Background and WYD
- 2. Unified proof of joint conv. of $\operatorname{Tr} K^* R^p K Q^{1-p}$ and H(R,Q)
 - 2.1 Pedestian modular operator via left and right mult.
 - 2.2 Integral representations
 - 2.3 Convexity of $J_p(K, A, B)$
- 3. Comments on Schwarz inequalities
- 4. $q \neq 1 p$
- 5. Monotonicity under partial traces
- 6. More history?
- 7. Lieb's golden corollary
- 8. Equality conditions

M. B. Ruskai

Quantum Entropy

Background to proofs

Original proof of SSA based on Lieb's result below

WYD skew entropy
$$\frac{1}{2} \text{Tr} [K, \gamma^p] [K, \gamma^{1-p}]$$

for
$$K = K^*$$
 and γ a density matrix

Wigner-Yanase introduced for $p = \frac{1}{2}$ and proved concave in γ .

Dyson suggested $p \in (0,1)$ – led to conjecture

Conj:
$$\gamma \mapsto \operatorname{Tr} K \gamma^p K \gamma^{1-p} - \operatorname{Tr} K \gamma K$$
 concave

Lieb dropped linear term and proved generalization

$$(A,B) \mapsto \operatorname{Tr} K^* A^p K B^{1-p}$$
 concave for $p \in (0,1)$

Claim: But advantage to retaining linear term !!

Retaining the linear term

$$J_p(K,A,B) = \frac{1}{p(1-p)} \left[\operatorname{Tr} K^*AK - \operatorname{Tr} K^*A^pKB^{1-p} \right]$$

Note: well-def for p > 0 and factor (1 - p) changes sign at p = 1

Thm: $(A, B) \mapsto J_p(K, A, B)$ is convex for $p \in (0, 2)$

- \Rightarrow Tr $K^*A^pKB^{1-p}$ concave for $p \in (0,1)$
- \Rightarrow Tr $A(\log A \log B)$ convex p = 1 extend by cont K = I
- \Rightarrow Tr $K^*A^pKB^{1-p}$ convex for $p \in (1,2]$ and $p \in [-1,0)$

will give proof, which is elementary, short, and sweet

 $\operatorname{Tr} A = \operatorname{Tr} B \quad \Rightarrow \quad J_p(I,A,B) \geq 0 \quad \text{with equality} \quad \Leftrightarrow \quad A = B$ pseudo-metric in same sense as relative entropy H(A,B) gen Klein

11

M. B. Ruskai

Quantum Entropy

Pedestrian modular operator

 $d \times d$ matrices form Hilbert space with $\langle A, B \rangle = \operatorname{Tr} A^* B$

Def. Left and Right mult as linear operators on this vector space

$$L_A(X) = AX$$
 and $R_B(X) = XB$

- a) L_A and R_B commute $L_A[R_B(X)] = AXB = R_B[L_A(X)]$
- b) $A = A^* \Rightarrow L_A, R_A$ self-adjoint wrt H-S inner prod

For A, B > 0 positive definite

- c) L_A , R_A pos def $\langle X, R_A(X) \rangle = \text{Tr } X^*XA = \text{Tr } XAX^* \geq 0$
- d) $(L_A)^{-1} = L_{A^{-1}}, (R_B)^{-1} = R_{B^{-1}}$
- e) $f(L_A) = L_{f(A)}$ $f(R_B) = R_{f(B)}$, e.g., $L_A^p = L_{A^p}$, $R_A^p = R_{A^p}$

simple form of deep idea: Araki $\Delta_{AB}=L_AR_B^{-1}$ relative modular op

Back to $J_p(K.A.B)$

$$g_p(x) = egin{cases} rac{1}{p(1-p)}(x-x^p) & p
eq 1 \\ x \log x & p = 1 \end{cases}.$$

well-defined for x > 0 and $p \neq 0$, but $p \in [\frac{1}{2}, 2]$ would suffice

$$J_p(K, A, B) \equiv \operatorname{Tr} \sqrt{B} K^* g_p(L_A R_B^{-1})(K \sqrt{B})$$

$$= \begin{cases} \frac{1}{p(1-p)} \left(\operatorname{Tr} K^* A K - \operatorname{Tr} K^* A^p K B^{1-p} \right) & p \in (0,1) \cup (1,2) \\ \operatorname{Tr} K K^* A \log A - \operatorname{Tr} K^* A K \log B \right) & p = 1 \\ -\frac{1}{2} \left(\operatorname{Tr} K^* A K - \operatorname{Tr} A K B^{-1} K^* A \right) & p = 2 \end{cases}$$

$$J_1(I,A,B) = \operatorname{Tr} A(\log A - \log B) = H(A,B)$$

M.B.R

Quantum Entropy

Aside: extend to [-1.0]

not quite symmetric around $p = \frac{1}{2}$ $p \leftrightarrow 1 - p$

$$\widetilde{g}_{p}(x) = w \, g_{1-p}(w^{-1}) = \begin{cases} \frac{1}{p(1-p)}(1-w^{p}) & p \neq 0 \\ -\log w & p = 0 \end{cases} \qquad p \in [-1,1]$$

$$J_{\rho}(K,B,A) = \widetilde{J}_{1-\rho}(K^*,A,B)$$

$$\widetilde{J}_p(K,A,B)$$
 jointly convex for $p \in [-1,1)$

$$\widetilde{J}_0(I,A,B) = \operatorname{Tr} B(\log B - \log A) = H(B,A)$$

Integral representations

$$\frac{g_p(x)}{x} = \begin{cases} \frac{1}{p(1-p)}(1-x^{p-1}) & p \neq 1\\ \log x & p = 1 \end{cases}$$

well-def for $x \in (0, \infty)$ and operator monotone for $p \in (0, 2]$, or, anal cont to upper half of complex plane and UHP \mapsto UHP

 $\Rightarrow g_p(x)$ has integral rep of form

$$g_{p}(x) = ax^{2} + \int_{0}^{\infty} \frac{x^{2}t - x}{x + t} \nu(t) dt$$
$$= ax^{2} + \int_{0}^{\infty} \left[\frac{x^{2}}{x + t} - \frac{1}{t} + \frac{1}{x + t} \right] t \nu(t) dt$$

with $\nu(t) \geq 0$

M. B. Ru

Quantum Entropy

Specific integrals – elementary

$$\int_0^\infty \frac{x^{p-1}}{x+1} = \frac{\pi}{\sin p\pi} \qquad 0$$

allows us to give the following explicit representations

$$g(x) = \begin{cases} \frac{1}{p(1-p)} \left[x + c_p \int_0^\infty \left(\frac{t}{x+t} - 1 \right) t^{p-1} dt \right] & p \in (0,1) \\ \int_0^\infty \left(\frac{x^2}{x+t} - 1 + \frac{t}{x+t} \right) \frac{1}{1+t} dt & p = 1 \\ \frac{1}{p(1-p)} \left[x - c_{p-1} \int_0^\infty \frac{x^2}{x+t} t^{p-2} dt \right] & p \in (1,2) \\ \frac{1}{2} (-x + x^2) & p = 2 \end{cases}$$

Important: For $p \in (0,2)$ integrand supported on $(0,\infty)$.

Recall
$$J_p(K, A, B) = \operatorname{Tr} \sqrt{B} K^* g_p(L_A R_B^{-1})(K \sqrt{B})$$

 $g_p(x) = ax + \int_0^\infty \left[\frac{x^2}{x+t} - \frac{1}{t} + \frac{1}{x+t}\right] t\nu(t) dt$

$$\operatorname{Tr} \sqrt{B} K^* \frac{1}{L_A R_B^{-1} + tI} (K \sqrt{B}) = \operatorname{Tr} \sqrt{B} K^* \frac{R_B}{L_A + tR_B} (K \sqrt{B})$$
$$= \operatorname{Tr} B K^* \frac{1}{L_A + tR_B} (KB)$$

$$J_{\rho}(K,A,B) = \operatorname{Tr} K^*AK - \operatorname{Tr} KBK^* \int_0^{\infty} \nu(t) dt$$
$$+ \int_0^{\infty} \left[\operatorname{Tr} K^*A \frac{1}{L_A + tR_B} (AK) + \operatorname{Tr} BK^* \frac{1}{L_A + tR_B} (KB) \right] t \, \nu(t) \, dt$$

Suffices to show $(A, B, X) \mapsto \operatorname{Tr} X^* \frac{1}{L_B + tR_A}(X)$ jointly convex

Quantum Entropy

Proof:

Note:
$$\operatorname{Tr}(\lambda X)^* \frac{1}{L_{\lambda B} + tR_{\lambda A}}(\lambda X) = \lambda \operatorname{Tr} X^* \frac{1}{L_B + tR_A}(X)$$

Homo of degree $1 \Rightarrow$ suffices to prove "subadditivity" (omit x_k)

Let:
$$M = ()^{-1/2}(X) - ()^{1/2}(\Lambda)$$

$$\operatorname{Tr} M^* M = \langle M, M \rangle$$

$$= \langle \left[()^{-1/2} (X) - ()^{1/2} (\Lambda) \right], \left[()^{-1/2} (X) - ()^{1/2} (\Lambda) \right] \rangle$$

$$= \langle X, ()^{-1} (X) \rangle - \langle X, \Lambda \rangle - \langle \Lambda, X \rangle + \langle \Lambda, () (\Lambda) \rangle$$

Choose
$$M = (L_A + tR_B)^{-1/2}(X) - (L_A + tR_B)^{1/2}(\Lambda)$$

$$\operatorname{Tr} M^*M = \operatorname{Tr} X^*(L_A + tR_B)^{-1}(X) - \operatorname{Tr} X^*\Lambda - \operatorname{Tr} \Lambda^*X + \operatorname{Tr} \Lambda^*(L_A + tR_B)(\Lambda)$$

Let
$$M_j = (L_{A_i} + tR_{B_i})^{-1/2}(X_j) - (L_{A_i} + tR_{B_i})^{1/2}(\Lambda)$$
. Then

$$0 \leq \sum_{j} \operatorname{Tr} M_{j}^{*} M_{j} = \sum_{j} \operatorname{Tr} X_{j}^{*} (L_{A_{j}} + tR_{B_{j}})^{-1} (X_{j})$$

$$- \operatorname{Tr} \left(\sum_{j} X_{j}^{*} \right) \Lambda - \operatorname{Tr} \Lambda^{*} \left(\sum_{j} X_{j} \right) + \operatorname{Tr} \Lambda^{*} \sum_{j} (L_{A_{j}} + tR_{B_{j}}) \Lambda$$

$$= \sum_{j} \operatorname{Tr} X_{j}^{*} \frac{1}{(L_{A_{j}} + tR_{B_{j}})} (X_{j}) - \operatorname{Tr} X^{*} \Lambda - \operatorname{Tr} \Lambda^{*} X + \operatorname{Tr} \Lambda^{*} (L_{A} + tR_{B}) \Lambda$$

Choose
$$\Lambda = \frac{1}{L_A + tR_B}(X)$$
 $X = \sum_j X_j, \ \sum_j L_{A_j} = L_{\sum_j A_j} = L_A$

$$\operatorname{Tr} \Lambda^* \sum_j (L_{A_j} + t R_{B_j}) \Lambda = \operatorname{Tr} X^* \frac{1}{L_A + t R_B} X = \operatorname{Tr} X \Lambda = \operatorname{Tr} \Lambda^* X$$

$$0 \leq \sum_{j} \operatorname{Tr} X_{j}^{*} \frac{1}{L_{A_{j}} + tR_{B_{j}}}(X_{j}) - \operatorname{Tr} X^{*} \frac{1}{L_{A} + tR_{B}}(X)$$

Quantum Entropy

compare elementary C-S ineq:

$$\left|\sum_{k} \overline{v}_{k} w_{k}\right|^{2} \leq \sum_{k} |v_{k}|^{2} \sum_{k} |w_{k}|^{2}$$

For $a_k > 0$ let $v_k = a_k^{1/2}$, $w_k = a_k^{-1/2} x_k$

$$\left|\sum_{k} x_{k}\right|^{2} \leq \sum_{k} a_{k} \sum_{k} \overline{x}_{k} \frac{1}{a_{k}} x_{k}$$

Rewrite
$$\left(\sum_{k} \overline{x}_{k}\right) \frac{1}{\sum_{k} a_{k}} \left(\sum_{k} x_{k}\right) \leq \sum_{k} \overline{x}_{k} \frac{1}{a_{k}} x_{k}$$

Lieb and Ruskai (1973) proved operator version

$$\left(\sum_{k}X_{k}^{*}\right)\frac{1}{\sum_{k}A_{k}}\left(\sum_{k}X_{k}\right) \leq \sum_{k}X_{k}^{*}\frac{1}{A_{k}}X_{k}$$

Not suff. for SSA — need Araki rel mod op hidden in L_A and R_B . Compare proof: $\left|\sum_{k} v_{k} + t w_{k}\right|^{2} \geq 0 \ \forall \ t$ choose t to minimize

Remarks on $q \neq 1 - p$

p, q > 0, p + q < 1 Tr $K^*A^pKB^{1-p}$ concave

Write
$$\text{Tr } K^* A^p K B^q = \text{Tr } K^* A^p K (B^s)^{1-p} \qquad 0 < s = \frac{1}{1-p} < 1$$

 B^s is op monotone and op concave for $s \in (0,1)$

$$(\lambda B_1 + (1-\lambda)B_2)^s > \lambda B_1^s + (1-\lambda)B_2^s$$

$$\operatorname{Tr} K^{*} A^{p} K B^{q} = \operatorname{Tr} K^{*} A^{p} K \left[\left(\lambda B_{1} + (1 - \lambda) B_{2} \right)^{s} \right]^{1-p}$$

$$> \operatorname{Tr} K^{*} A^{p} K \left(\lambda B_{1}^{s} + (1 - \lambda) B_{2}^{s} \right)^{1-p}$$

$$\geq \lambda \operatorname{Tr} K^{*} A_{1}^{p} K (B_{1}^{s})^{1-p} + (1 - \lambda) \operatorname{Tr} K^{*} A_{2}^{p} K (B_{2}^{s})^{1-p}$$

$$= \lambda \operatorname{Tr} K^{*} A_{1}^{p} K B_{1}^{q} + (1 - \lambda) \operatorname{Tr} K^{*} A_{2}^{p} K B_{2}^{q}$$

Note: f(x) strictly concave and op concave \Rightarrow strict op ineq get equal only for trivial cases, $B_1 = B_2$ or $\lambda = 0, 1$.

Monotonicity under partial traces

Define generalized Pauli (Weyl-heisenberg) operators.

$$Z|e_n\rangle = e^{2\pi i n/d}|e_n\rangle$$
 $X|e_n\rangle = |e_{n+1}\rangle$

$$\sum_{j} Z^{j} A Z^{-j} = d A_{\text{diag}} \qquad \sum_{j} X^{j} A_{\text{diag}} X^{-j} = (\operatorname{Tr} A) I$$

$$\frac{1}{d}\sum_{j}\sum_{k}X^{j}Z^{k}A(X^{j}Z^{k})^{*}=(\operatorname{Tr}A)I=\frac{1}{d}\sum_{n}W_{n}AW_{n}^{*}$$

 $W_n = X^j Z^k$ in some ordering $n = 1, 2, ...d^2$, e.g., n = i + d(k-1)

$$\frac{1}{d_2} \sum_{n} (I_1 \otimes W_n) A_{12} (I_1 \otimes W_n)^* = A_1 \otimes I_2$$

Discrete version of Uhlmann's observation that partial trace can be obtained by integrating over SU(n) using Haar measure.

$$J_{p}(K_{2}, A_{2}, B_{2}) = J_{p}(I_{1} \otimes K_{2}, \frac{1}{d_{1}}I_{1} \otimes A_{2}, \frac{1}{d_{1}}I_{1} \otimes B_{2})$$

$$= \frac{1}{d_{1}^{2}}J_{p}\left(K_{12}, \sum_{n}(W_{n} \otimes I_{2})A_{12}(W_{n} \otimes I_{2})^{*}, \sum_{n}(W_{n} \otimes I_{2})B_{12}(W_{n} \otimes I_{2})^{*}\right)$$

$$\leq \frac{1}{d_{1}^{2}}\sum_{n}J_{p}(I_{1} \otimes K_{2}, (W_{n} \otimes I_{2})A_{12}(W_{n} \otimes I_{2})^{*}, (W_{n} \otimes I_{2})B_{12}(W_{n} \otimes I_{2})^{*})$$

$$= \frac{1}{d_{1}^{2}}\sum_{n}J_{p}(I_{1} \otimes K_{2}, A_{12}, B_{12}) = J_{p}(I_{1} \otimes K_{2}, A_{12}, B_{12})$$

used
$$J_p(I_1 \otimes K_2, A_{12}, B_{12})$$
 wrote $K_{12} = I_1 \otimes K_2$
 $= J_p(I_1 \otimes K_2, (W_n \otimes I_2)A_{12}(W_n \otimes I_2)^*, (W_n \otimes I_2)B_{12}(W_n \otimes I_2)^*)$
 $J_1(I, A_2, B_2) \leq J_1(I, A_{12}, B_{12})$ gives $H(A_2, B_2) \leq H(A_{12}, B_{12})$
Cor: SSA $H(A_{23}, A_2) \leq H(A_{123}, A_{13})$

"no transparent proof of SSA is known"

Quantum Entropy

p. 645 of *Quantum Computation and Quantum Information*Michael A. Nielsen and Isaac L. Chuang (Cambridge Press, 2000)

based on B. Simon's version adapted from Uhlmann (1977) of
"elementary" proof of $(A,B) \mapsto \operatorname{Tr} K^*A^pKB^{1-p}$ concave
similar argument in Wehrl *Rev. Mod. Phys* (1978).

- MBR, "Lieb's simple proof of concavity ..." quant-ph/0404126
 Int. J. Quant Info. 3, 579–590 (2005)
 Schwarz + max mod
- Ando's argument described in Carlen's Tucson notes
- Petz uses Δ_{AB} in book; elem version in quant-ph/0408130
- Proof here based on Schwarz ineq. using L_A , R_B really elem. based on Lesniewski and Ruskai, JMP; and MBR quant-ph/0604206

Aside: Equality conditions in $J_p(K, A, X)$ convex

$$\int_{0}^{\infty} \operatorname{Tr} K^{*} A \frac{1}{L_{A} + tR_{B}} (AK) \nu(t) dt \leq \int_{0}^{\infty} \sum_{j} \operatorname{Tr} (A_{j}K)^{*} \frac{1}{L_{A_{j}} + tR_{B_{j}}} (A_{j}K) \nu(t)$$

$$= \sum_{j} \int_{0}^{\infty} \operatorname{Tr} (A_{j}K)^{*} \frac{1}{L_{A_{j}} + tR_{B_{j}}} (A_{j}K) \nu(t) dt$$

Equal \Leftrightarrow equal for each term in integ , i.e., $M_j = 0 \quad \forall j, \ \forall t$

$$(L_{A_j}+tR_{B_j})^{-1}(X_j)=(L_A+tR_B)^{-1}(X) \ orall \ j, \ orall \ t$$
 equality conditions independent of $p\in(0,2)$

$$X = AK (I + t\Delta_{A_{j}B_{j}}^{-1})^{-1}(K) = (I + t\Delta_{AB}^{-1})^{-1}(K) \forall j, \ \forall t$$

$$X = BK (\Delta_{A_{i}B_{i}} + tI)^{-1}(K) = (\Delta_{AB} + tI)^{-1}(K) \forall j, \ \forall t$$

M. B. Ruskai Quantum Entro

Recall $\Delta_{AB} = L_A R_B^{-1} > 0$ prod of commuting pos def ops

$$(\Delta_{A_iB_i}+tI)^{-1}(K)=(\Delta_{AB}+tI)^{-1}(K) \qquad \forall \ j, \ \forall \ t$$

$$\Delta_{AB} > 0 \quad \Rightarrow \quad (\Delta_{AB} + tI)^{-1} \quad \text{ anal cont to } \mathbf{C} \setminus (-\infty, 0]$$

can apply Cauchy integral Thm. to get

$$\Rightarrow$$
 $G(\Delta_{A_jB_j})(K) = G(\Delta_{AB})(K) \quad \forall j \quad G \text{ anal on } \mathbb{C} \setminus (-\infty, 0]$ allows several useful formulations

$$\Rightarrow$$
 $(\Delta_{AB} + tI)$ and $(I + \Delta_{AB}^{-1}t)$ forms equiv.

Equivalent equality conditions

Thm: For fixed K, and $A = \sum_i A_i$, $B = \sum_i B_i$ TFAE

- a) $J_p(K, A, B) = \sum_i J_p(K, A_i, B_i)$ for all $p \in (0, 2)$.
- b) $J_p(K, A, B) = \sum_i J_p(K, A_i, B_i)$ for some $p \in (0, 2)$.
- c) $(\Delta_{A_iB_i} + tI)^{-1}(K) = (\Delta_{AB} + tI)^{-1}(K) \quad \forall j \text{ and } \forall t > 0.$
- d) $A_i^{it}KB_i^{-it} = A^{it}KB^{-it} \quad \forall j \text{ and } \forall t > 0.$
- e) $(\log A \log A_i)K = K(\log B \log B_i) \quad \forall j$.

In addition when K = I, equiv to

f) There are $D_j > 0$ such that $[A_j, D_j] = [B_j, D_j] = 0$, and $A_j = AD^{-1}D_j$, $B_j = BD^{-1}D_j$ with $D = \sum_i D_i$

neccessity of (f) uses sufficient subalgebra – developed by Petz formulation here from Jenčová and Petz, CMP, **263**, 259–276 (2006).

57

M. B. Ruskai

Quantum Entropy

Equality conditions for SSA

use form $\log A_{123} - \log A_{12} - \log A_{23} + \log A_2 = 0$

Easy to see $A_{123} = A_1 \otimes A_{23}$ or $A_{12} \otimes A_3$ will suffice

If $\mathcal{H}_2 = \mathcal{H}_{2_L} \otimes \mathcal{H}_{2_R}$ then $A_{123} = A_{12_L} \otimes A_{2_R3}$ will suffice

Thm: Equality holds in SSA if and only if

$$\mathcal{H}_2 = \bigoplus_n \mathcal{H}_n^L \otimes \mathcal{H}_n^R$$
 and $A_{123} = \bigoplus_n A_n^L \otimes A_n^R$

with $A_n^L \in \mathcal{B}(\mathcal{H}_1 \otimes \mathcal{H}_n^L), \quad A_n^R \in \mathcal{B}(\mathcal{H}_n^R \otimes \mathcal{H}_3)$

Cor: Equality in $\operatorname{Tr} A_{23}^p A_2^{1-p} \le \operatorname{Tr} A_{123}^p A_{12}^{1-p}$ iff same cond $p \in (0,1) \le p \in (1,2) \ge$

Other approaches to JC of $Tr K^*A^pKB^{1-p}$

Lieb; based on maximum modulus principle – basic result rel easy in finite dim.

Epstein; based on op-monotone or Herglotz functions deep and not easy – paper must be read backwards!

Uhlmann - Simon elementary, but long and not insightful gave bad rep - see Nielsen-Chuang quote

Ando; used iso between $\mathcal{B}(\mathcal{H}_B,\mathcal{H}_A)\simeq\mathcal{H}_A\otimes\mathcal{H}_B$ to observe $\operatorname{Tr} K^*A^pKB^{1-p}=\langle K,A^p\otimes B^{1-p}K\rangle$ where K interp as vec in $\mathcal{H}_A\otimes\mathcal{H}_B$ to give linear algebra proof — first with no complex anal.

59

M. B. Ruska

Quantum Entropy

Differentiatie $\log A$ for matrix

$$\log(R+xQ) - \log R = \int_0^\infty \left(\frac{1}{R+uI} - \frac{1}{R+xQ+uI}\right) du$$

$$= \int_0^\infty \frac{1}{R+uI} \left[(R+xQ+uI) - (R+uI) \right] \frac{1}{R+xQ+uI} du$$

$$= \int_0^\infty \frac{1}{R+uI} xQ \frac{1}{R+xQ+uI} du$$

Can take $\lim_{x\to 0} \frac{1}{x} (\log(R+xQ) - \log R)$ and find

$$\log(R+xQ) = \log R + x \int_0^\infty \frac{1}{R+uI} Q \frac{1}{R+uI} du + O(x^2)$$