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Remarks: Concerning the versions: these notes are a work in progress and
early versions will at some points be merely outlines; later versions are in-
tended to fill in the details.
Concerning the exercises: these may be helpful in grasping concepts and
techniques that might be new to some; the exercises in some cases introduce
auxiliary material; if there is interest we may discuss solutions to some of the
exercises during the problem/tutorial sessions. The exercises vary widely in
difficulty, from the routine to some that are considerably more challenging
(meaning I don’t know good solutions myself).
Concerning prerequisites: I try to make the lectures accessible to those fa-
miliar with the following parts of a standard undergraduate math program:
linear algebra and matrices, metric spaces and multivariate analysis, plus a
little Fourier analysis and complex function theory.

1. The setting

We work in a complex Hilbert space H, which we may usually take to
be finite–dimensional, and so represented as the n × 1 column space Cn.
The inner product (x, y) =

∑n
1 xkyk = y∗x as a matrix product. For

M ∈ Mn,m = n×m complex matrices, M∗ is the conjugate transpose:

M∗ = M t = [mji] where M = [mij].

Key property: for a square matrix M (ie M ∈ Mn = Mn,n) we have

(Mx, y) = (x,M∗y).
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Exercise: Verify this property.

Remark: We tend to use the notations most familiar to mathematicians. In
physics and QIT the notation varies: eg inner products are often conjugate
linear in the first variable (< x, y >= x∗y) and M∗ is replaced by M †.

The Euclidian norm onH is given by ‖x‖ =
√

(x, x) and the operator norm of
a matrix M is given by max{‖Mu‖ : ‖u‖ = 1}, so that ‖M‖ is the Lipschitz
constant of M as a mapping on (H, ‖ · ‖).

2. Numerical range and radius (classical)

For M ∈ Mn we define the numerical range of M as

W (M) = {(Mu, u) : ‖u‖ = 1}.
Clearly W (M) is a compact subset of the complex plane C (for an operator
T on an infinite–dimensional H, however, W (T ) might not be closed).

Examples:

If M ∈ M2, then W (M) is a (filled–in) ellipse (related, as we’ll see, to the
qubit and Bloch sphere in QIT).

If M ∈ M3, then W (M) may have a greater variety of shapes, typically
three–lobed.

Figure: typical W (M) for M in M2 and M3 ...

Proposition: If M ∈ Mn is a normal matrix (ie MM∗ = M∗M), then

W (M) = conv{λj : j = 1, 2, . . . , n},
the convex hull of the eigenvalues λj of M .
Proof: The spectral theorem for normal M tells us that we may choose an
orthonormal basis of eigenvectors uj: Muj = λjuj and (uj, uk) = δjk (ie
= 1 if j = k, = 0 otherwise). Thus ‖u‖ = 1 implies that u =

∑
zjuj with∑ |zj|2 = 1 and

(Mu, u) = (
∑

zjλjuj,
∑

zkuk) =
∑

|zj|2λj
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(cross–terms are 0 by orthogonality of the eigenvectors), and this is a convex
combination of the λj. QED

Remark: For any M , normal or otherwise, each eigenvalue λ lies in W (M)
(consider a unit eigenvector u corresponding to λ).

Examples:

If M is Hermitian, ie M∗ = M , the eigenvalues λj are real and we may
assume that λ1 ≤ λ2 ≤ · · · ≤ λn. Thus W (M) = conv{λj : j = 1, 2, . . . , n} =
[λ1, λn], an interval in the real line R.

If M is unitary, ie M∗ = M−1, the eigenvalues λj lie on the unit circle (ie
|λj| = 1) and W (M) is a (filled-in) polygon inscribed in the unit circle.

Figure: typical W (M) for a 5× 5 unitary M ...

Exercise: Sketch W (M) where M is the permutation matrix




0 0 0 0 0 0 1
0 0 0 0 0 1 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0




.

Exercise: Show that W (·) is “weakly unitarily invariant”, ie for any unitary
U we have W (UMU∗) = W (M).

Exercise: Show that if M is block–diagonal with M = M1⊕M2 then W (M) =
conv{W (M1) ∪W (M2)}.

The numerical radius w(M) is defined as max{|(Mu, u)| : ‖u‖ = 1}.

Figure: relationship between W (M) and w(M) ...

Proposition: The numerical radius w(·) is a norm on Mn, equivalent to the
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operator norm as follows:

w(M) ≤ ‖M‖ ≤ 2w(M).

Remark: Here the fact that we work in complex H is essential; for example,

if on R2 the matrix M represents rotation by 90 degrees, ie M =

[
0 −1
1 0

]
,

then (Mu, u) = 0 for all u, so that W (M) = {0} and w(M) = 0, whereas
‖M‖ = 1.

Proof: It is easy to see that w(·) is a seminorm, ie that w(X + Y ) ≤ w(X) +
w(Y ) and w(zX) = |z|w(X). If ‖u‖ = 1 the Cauchy–Schwarz inequality tells
us that |(Mu, u)| ≤ ‖Mu‖ ‖u‖ ≤ ‖M‖ ‖u‖2 = ‖M‖. Hence W (M) lies inside
the ball of radius ‖M‖ centred at 0 in C; clearly then w(M) ≤ ‖M‖.

On the other hand, ‖M‖ = max{|(Mu, w)| : ‖u‖ = ‖w‖ = 1} and we can
use a “polarization” identity such as

|(Mu,w)| = | 1

2π

∫ 2π

0

(M(u + eiθw), (u + eiθw))eiθ dθ|;

here we rely simply on the orthogonality of the complex harmonics:

1

2π

∫ 2π

0

ei(j−k)θ dθ = δjk.

It follows that |(Mu,w)| is no greater than

1

2π

∫ 2π

0

|(M(u+eiθw), (u+eiθw))eiθ| dθ ≤ 1

2π

∫ 2π

0

w(M)((u+eiθw), (u+eiθw)) dθ

= w(M)((u, u) + (w,w)) = 2w(M).

QED

3. Some historical highlights

19th century: the range of the “Rayleigh quotient” (Mv, v)/(v, v) was used
in the Stürm–Liouville theory of 2nd order PDEs. In effect, W (M) played a
role, but usually in a context where M was Hermitian.
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c. 1918: Toeplitz and Hausdorff considered W (M) for arbitrary M ∈ Mn

and proved that it is always a convex subset of C (see the Toeplitz–Hausdorff
Theorem, below).

c. 1960: Lax and Wendroff studied iterative methods for the numerical
solution of certain PDEs. These were modeled by computing powers of a
matrix M ∈ Mn and stability of the method depended on the power–bounded
property of M : supk ‖Mk‖ < ∞. Lax and Wendroff noted that w(M) ≤ 1 is
a sufficient condition for power–boundedness and established that

w(M) ≤ 1 ⇒ sup
k
‖Mk‖ ≤ an

for all M ∈ Mn, where the an are constants depending on n and tending to
infinity as n increases. For more details, consult the book of Gustafson and
Rao [G–R1997], pp 98 and following.

c. 1965 Halmos proposed that such inequalities should be independent of the
size n of the matrix, and Berger responded by proving that w(Mk) ≤ wk(M).
Thus

w(M) ≤ 1 ⇒ ‖Mk‖ ≤ 2w(Mk) ≤ 2wk(M) ≤ 2(!)

(see Berger’s power inequality, below).

c. 2006: Choi, Kribs, and Życzkowski introduced the higher-rank numerical
ranges of matrices related to the noise operators for a quantum channel and
to the problem of finding correctable codes for such a channel.

c. 2007: Woerdeman proved the convexity of the higher–rank numerical
ranges (a striking extension of the Toeplitz–Hausdorff Theorem) by apply-
ing the theory of the algebraic Riccati equation to earlier results of Choi,
Giesinger, Holbrook, Kribs, and Życzkowski.

c. 2008: Li and Sze revealed important aspects of the higher–rank numerical
range structure by representing it as an intersection of directly computable
half–planes.

Let’s put some flesh on these bones ...

4. Toeplitz–Hausdorff and the Bloch sphere of quantum mechanics
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Our Hilbert space H = Cn may represent the state space of a quantum sys-
tem, where the “pure states” of the system are identified with unit vectors
u ∈ Cn. Since u and eiθu represent the same state, it is convenient to iden-
tify the state with the matrix uu∗ (eiθ “drops out”). As a mapping uu∗ is a
rank–one projection: (uu∗)v = u(u∗v) = (v, u)u, the orthogonal projection
of v onto the one–dimensional subspace span{u}.

With this point of view, we can see the numerical range W (M) as the image
of the set of pure states via a certain linear functional ϕM :

W (M) = {(Mu, u) : ‖u‖ = 1} = {u∗Mu : ‖u‖ = 1} = {trace(u∗Mu) : ‖u‖ = 1},
where trace(X) is the trace of the square matrix X ∈ Mn: trace(X) =∑n

1 xkk.

Recall the “commutativity of the trace”:

Proposition: If A is n×m and B is m× n then trace(AB) = trace(BA).
Exercise: Verify this proposition.

Here u∗(Mu) is 1× 1 whereas (Mu)u∗ is n× n:

(Mu, u) = trace(u∗Mu) = trace(Mu)u∗ = traceM(uu∗),

so that W (M) = ϕM({uu∗ : ‖u‖ = 1}) = ϕM(pure states), where ϕM is the
linear functional defined on Mn by ϕM(X) = trace(MX).

When n = 2 the quantum system is known as the qubit, the most elementary
form of quantum information. The pure states correspond to unit u ∈ C2 and
these are (in various ways) represented by the “Bloch sphere”, a geometrically

faithful copy of the ordinary sphere S2 in R3. For example, if u =

[
a

b + ci

]

is a unit vector in C2 with a, b, c ∈ R (since eiθu and u are identified this can
represent any qubit pure state), then

uu∗ =

[
a2 ab− aci

ab + aci b2 + c2

]

with a2 + b2 + c2 = 1. Thus

uu∗ =
1

2

[
1 0
0 1

]
+

1

2

[
2a2 − 1 2ab− 2aci

2ab + 2aci 2(b2 + c2)− 1

]
.
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Note that 2a2 − 1 = 1− 2(b2 + c2) = x and setting also 2ab = y and 2ac = z
we may write

uu∗ =
1

2

[
1 0
0 1

]
+

1

2
(x

[
1 0
0 −1

]
+ y

[
0 1
1 0

]
+ z

[
0 −i
i 0

]
). (1)

It is easy to verify that x2 + y2 + z2 = 1:

1− x2 = (1− x)(1 + x) = 2(b2 + c2)2a2 = 4(a2b2 + a2c2) = y2 + z2.

Conversely, starting from any (x, y, z) ∈ R3 such that x2 + y2 + z2 = 1 (ie
(x, y, z) ∈ S2) we can reverse the steps above (set a = ±

√
(1 + x)/2, etc).

Thus the pure states of a qubit are identified with (an affine copy of) S2, and
we obtain one form of the Bloch sphere representation of the qubit.

We also see that when n = 2 the numerical range W (M) is the image of S2

in R3 under a linear functional ϕM mapping to C = R2. Such an image must
be a (filled–in) ellipse in C; consequently, W (M) is convex for any M ∈ M2.
The convexity of W (M) for n× n matrices M is only a step away.

Toeplitz–Hausdorff Theorem: For any M ∈ Mn, the numerical range W (M)
is a convex subset of C.
Proof: (Except for our explicit mention of quantum systems and Bloch
spheres, this is the approach of Davis in [D1971].) Consider distinct points
(Mu, u) and (Mw, w) in W (M); here ‖u‖ = ‖w‖ = 1 and u,w are linearly
independent. The pure states uu∗ and ww∗ are part of the qubit repre-
sented by the two–dimensional subspace span{u,w}. Thus W (M) includes
trace(Mvv∗) for every vv∗ in the corresponding Bloch sphere; these consti-
tute a (filled–in) ellipse in C containing (Mu, u) and (Mw, w). QED

Exercise: We have seen that W (M) is an ellipse (filled–in) for every M ∈
M2. The form of (1) makes it clear that the centre of the ellipse must be
trace(M(1/2)I2) = trace(M)/2. Find the foci of M(W ) and the lengths of
the major and minor axes. Hint: By choosing an orthonormal basis u1, u2

where u1 is an eigenvector of M we may put M in upper triangular form[
λ β
0 µ

]
. (This is a very special case of the Schur upper triangular form for

families of commuting matrices.) Note that λ and µ are the eigenvalues of
M .
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Exercise: In our proof of the Toeplitz–Hausdorff Theorem we have viewed
the set of pure states on Cn as a union

⋃
{S2(u1, u2) : u1, u2 orthonormal},

where S2(u1, u2) is the Bloch sphere corresponding to the two–dimensional
subspace span{u1, u2}. Show that the pure states on C3 may be regarded as
the Cartesian product S2 × S5 or, more economically, as S2 × CP 2 where
CP 2 is the complex projective plane.

Exercise: Pauli matrices in (1) (see Petz [P2008] p 6); Frobenius inner prod-
uct; ...

Exercise: W (M) = ϕM(conv{pure states}); conv{pure states} = all positive
semidefinite matrices with trace 1 = mixed states (representing a statistical
distribution of pure states) = density matrices ...

5. Berger’s power inequality

Berger’s original approach used a sort of “unitary dilation” for M such that
w(M) ≤ 1: a unitary operator U on a larger (usually infinite–dimensional)
Hilbert space K containing H such that on H

Mk = 2PHUk

for k = 1, 2, . . . . Here we use a related technique that confines the action to
H itself.

Lemma: For any M ∈ Mn, w(M) < 1 iff for all θ ∈ R and h ∈ H \ {~0}
∞∑

k=1

e−ikθ((M∗)kh, h) + 2‖h‖2 +
∞∑

k=1

eikθ(Mkh, h) > 0. (2)

Proof: Since each eigenvalue λ of M is in W (M), w(M) < 1 implies that
|λk| ≤ wk(M) →k 0 geometrically. Suppose M has n distinct eigenvalues
(the “generic” case); then M = Sdiag(λ1, . . . , λn)S−1 for some nonsingular
S and ‖Mk‖ ≤ ‖S‖ ‖S−1‖wk(M). If the Jordan canonical form of M has
some blocks larger than 1×1, a somewhat more complicated argument shows
that ‖Mk‖ ≤ Const.rk for any r < 1 such that r > w(M) (≥ max |λj|). In
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fact, though, in our applications of this lemma, we may assume M is generic
since any M is arbitrarily close to generic matrices.

In any case, we see that the LHS of (2) makes sense as an absolutely con-
vergent series. Now w(M) < 1 also implies that Re eiθ(Mg, g) < ‖g‖2 for all
g ∈ H \ {~0} and θ ∈ R; thus

Re ((I − eiθM)g, g) > 0.

With h = (I − eiθM)g we have Re (h, (I − eiθM)−1h) > 0 so that

2Re ((I − eiθM)−1h, h) > 0.

Using the “Neumann” series (I − eiθM)−1 =
∑∞

k=0(e
iθM)k, we obtain (2).

These steps may be reversed. QED

Note: Recall that (by virtue of the orthogonality of the complex harmonics
eikϕ) the convolution product

f ∗ g(θ) =
1

2π

∫ 2π

0

f(θ − ϕ)g(ϕ) dϕ =
∞∑

k=−∞
f̂(k)ĝ(k)eikθ,

where f(θ) =
∑∞

−∞ f̂(k)eikθ and g(θ) =
∑∞

−∞ ĝ(k)eikθ; we may assume here

that
∑∞

−∞ |f̂(k)| < ∞ and
∑∞

−∞ |ĝ(k)| < ∞.

To prove Berger’s power inequality w(Mk) ≤ wk(M) (k = 1, 2, . . . ) it is
sufficient to show that w(M) ≤ 1 implies w(Mk) ≤ 1 (because w(·) is homo-
geneous). In fact, we may as well prove a more general result (compare Kato
[K1965], Berger and Stampfli [BS1967]):

Proposition: If w(M) ≤ 1 then w(ϕ(M)) ≤ 1 for any function ϕ analytic on
D (the closed unit disc) such that ϕ : D→ D and ϕ(0) = 0.
Proof: By means of appropriate approximations of M and ϕ we may assume
that w(M) < 1 and that ϕ is a polynomial with ϕ(z) =

∑m
j=1 cjz

j and

‖ϕ‖∞ = max{|ϕ(z)| : z ∈ D} < 1.

It follows (spectral mapping theorem) that for each eigenvalue λ of Q = ϕ(M)
we have |λ| < 1; hence ‖Qk‖ →k 0 geometrically (recall the discussion of this
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point in the proof of the lemma above). We’ll show that w(Q) < 1 using the
lemma, ie by verifying that for all h ∈ H \ {~0} and θ ∈ R

∞∑

k=1

e−ikθ((Q∗)kh, h) + 2‖h‖2 +
∞∑

k=1

eikθ(Qkh, h) > 0.

The LHS above is the convolution product f ∗ g(θ) where

f(θ) =
∞∑

k=1

(eiθϕ(eiθ))k + 1 +
∞∑

k=1

(eiθϕ(eiθ))k

and

g(θ) =
∞∑

k=1

e−ikθ((M∗)kh, h) + 2‖h‖2 +
∞∑

k=1

eikθ(Mkh, h).

The lemma tells us that g(θ) > 0. We also have f(θ) > 0, since f(θ) =
1 + 2Re(w/(1− w)) where w = eiθϕ(eiθ): |w| < 1 and

f(θ) = Re(1 + 2w/(1− w)) = Re(
1 + w

1− w
) =

1− |w|2
|1− w|2 > 0.

It follows that the integral f ∗ g(θ) > 0. QED

6. Multiplicative properties of the numerical radius

Berger’s inequality leads naturally to the question: when do we have w(AB) ≤
w(A)w(B)? The answer is “not usually”, even when A and B commute.
However, Berger’s inequality does tell us what we can expect along these
lines:

Proposition: If AB = BA then

w(AB) ≤ 2w(A)w(B). (3)

Proof: Since w(·) is homogeneous, it is enough to show that w(A), w(B) ≤ 1
implies w(AB) ≤ 2. Since AB = BA we have

AB =
1

4
((A + B)2 − (A−B)2)
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and

w(AB) ≤ 1

4
(w((A + B)2) + w((A−B)2)).

A special case of Berger’s inequality then shows that

w(AB) ≤ 1

4
((w(A + B))2 + (w(A−B))2),

and this is no greater than

1

4
((w(A) + w(B))2 + (w(A) + w(B))2) ≤ 1

4
((1 + 1)2 + (1 + 1)2) = 2.

QED

Exercise: Let J2 denote the 2 × 2 Jordan nilpotent

[
0 1
0 0

]
. Show that

w(J2) = 1/2 and, more generally, that w(X) = ‖X‖/2 whenever X2 = 0n.

Exercise: Show that the inequality (3) is best possible even for (commut-
ing) 4 × 4 matrices by verifying that w(AB) = 1/2 = w(A) = w(B) for
A = I2 ⊗ J2 and B = J2 ⊗ I2. Recall that the tensor product (or Kronecker
product) X ⊗ Y of matrices X and Y is the block matrix [xijY ].

Exercise: Show that w(X ⊗ Y ) = w(Y ⊗ X) ≤ w(X)‖Y ‖. Hint: X ⊗ Y
and Y ⊗X are unitarily similar (via a permutation matrix); we may assume
‖Y ‖ = 1 so that Y = (U + W )/2 where U and W are unitary and for the
inequality we may take Y to be a unitary U ; by a unitary similarity we may
assume U is diagonal so that U ⊗X is block diagonal.

Exercise: Complete the following proof (due to Ando) that XY = Y X im-
plies w(XY ) ≤ √

2w(Y )‖X‖:

(XY u, u)2 = ((XY ⊗XY )u⊗ u, u⊗ u) = ((X ⊗ Y )(Y ⊗X)u⊗ u, u⊗ u);

use (3) and the exercise above.
Remark: Better inequalities are known: if

c = max{w(XY ) : XY = Y X, ‖X‖ = w(Y ) = 1},

it can be shown that 1.06 < c < 1.17.
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In certain rare situations w(·) does turn out to be submultiplicative. For
example:

Proposition: If B/w(B) = ψ(A/w(A)) for some analytic ψ : D → D, then
w(AB) ≤ w(A)w(B).
Proof: We must show that w(Cψ(C)) ≤ 1, where C = A/w(A). Note that
w(C) = 1 so that the eigenvalues of C are in D and ψ(C) is well–defined.
Now Cψ(C) = ϕ(C) where ϕ(x) = zψ(z), and w(ϕ(C)) ≤ 1 by virtue of the
proposition of section 5. QED

Remark: The question of existence of such a mapping ψ is a Pick-Nevanlinna
interpolation problem and depends on whether or not the Pick matrix relating
matching eigenvalues of A/w(A) and B/w(B) is positive semi–definite. In
the following application we essentially use a special case of this procedure.

Proposition: If A and B are commuting 2 × 2 matrices, then w(AB) ≤
w(A)w(B).
Proof: Let A′ = A/w(A) and B′ = B/w(B). By the proposition above it is
sufficient to find analytic ψ : D → D such that ψ(A′) = B′ or ψ(B′) = A′.
We know about the elliptical form of W (X) for 2 × 2 X, allowing us to
assume that the eigenvalues α1, α2, β1, β2 of A′ and B′ are strictly inside D
(otherwise A′ or B′ is diagonal, etc). Number the eigenvalues so that αk, βk

belong to common eigenvectors of A′, B′.

Recall the Möbius functions µα : D → D defined, when |α| < 1, by µα(z) =
(z − α)/(1− αz). These are automorphisms of D, ie analytic injective maps
from D onto D. Let α3 = µα1(α2) and β3 = µβ1(β2). We may assume
|α3| ≥ |β3| (otherwise reverse the roles of A and B), so that β3 = γα3 for
some |γ| ≤ 1. Let ψ(z) = µ−1

β1
(γµα1(z)). Then

ψ(α1) = µ−1
β1

(γ · 0) = µ−1
β1

(0) = β1,

and
ψ(α2) = µ−1

β1
(γα3) = µ−1

β1
(β3) = β2.

Hence ψ(A′) = B′. QED

Exercise: Note that w(A) = ‖A‖ if A is normal. Show also that w(AB) ≤
w(A)w(B) if AB = BA and at least one of A,B is normal. Hint: If A is
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normal then we may assume A is diagonal and B is block–diagonal.

Exercise: If we trace back through the ingredients used in our proof that w(·)
is submultiplicative for commuting 2 × 2 matrices, we see that the proof is
rather elaborate. Since we have a simple description of the numerical ranges
of 2× 2 matrices, it is natural to ask for a more elementary proof. Can you
find one?

Exercise: We have seen that

max{w(AB) : AB = BA, w(A) = w(B) = 1, A, B ∈ Mn} = 2

if n ≥ 4. We have also seen that the corresponding constant is 1 for 2 × 2
matrices. What about 3× 3 matrices? It can be shown that

c3 = max{w(AB) : AB = BA, w(A) = w(B) = 1, A, B ∈ M3}

is strictly between 1 and 2. Can you find a better upper bound? Experiments
reveal that the lower bound is at least 1.1.

7. Quantum channels, correctable codes, and the higher–rank numerical
ranges

Communication within and between quantum systems is modeled by the ac-
tion of a quantum channel E on density matrices. Recall that a density matrix
ρ is a positive semi-definite matrix with trace 1, and it models a statistical
distribution of possible pure states. A quantum channel is determined by
certain matrices Ej, known as noise, error, Kraus, or Choi operators for the
channel; it acts as follows:

E(ρ) =
∑

j

EjρE∗
j ,

where
∑

j E∗
j Ej = I.

Exercise: Show that this last condition is necessary and sufficient for the
channel to be trace–preserving.

Note that such a channel E preserves positivity, ie ρ positive semi-definite
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(psd) implies E(ρ) also psd. In fact such a map E is completely positive; Choi
derived the operator sum format from this abstract condition, with at most
n2 noise operators Ej required for an n–dimensional system (ρ ∈ Mn).

Typically information is lost when ρ passes through such a quantum channel,
but there may be correctable subspaces S ⊆ H, ie S such that another
quantum channel R may be designed so that it recovers ρ from E(ρ) for all
ρ supported on S:

R(E(ρ)) = ρ

provided all eigenvectors of ρ corresponding to positive eigenvalues lie in S.

Exercise: Show that ρ is supported on S iff it has the form ρ1⊕0 with respect
to the orthogonal decomposition H = S ⊕ S⊥.

Bennett, DiVincenzo, Smolin, and Wooters, and independently Knill and
Laflamme discovered (c. 1996) a criterion for correctable subspace: a sub-
space S is correctable for E iff there are λij ∈ C such that, for all i, j,

PE∗
i EjP = λijP, (BDKLSW)

where P = PS, orthogonal projection onto S. We examine the justification
of the criterion (BRKLSW) in the next section.

Exercise: Show that the matrix [λij] occurring in (BDKLSW) must be psd.

Since, for quantum error correction, it is better to have a larger, rather than
smaller, correctable “code space” S, Choi, Kribs, and Życzkowski had the
happy idea (c. 2006) of stratifying the problem of finding correctable S.
They defined the rank–k numerical range of a matrix M as

Λk(M) = {λ ∈ C : for some rank–k projection P , PMP = λP}.

Clearly in applying the BDKLSW criterion we examine Λk(M) where M =
E∗

i Ej so that a key question about higher-rank numerical ranges is: when
are they nonempty? In fact, in (BDKLSW) we are looking for some sort of
“joint” higher–rank numerical range (discussed in a later section) because
the same P must work for all i, j; however, the notion has a rich theory even
for a single M , and this case already has some applications in QIT.
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Remark: The equation PMP = λP is equivalent to (M − λI)S ⊥ S and so
to the existence of orthonormal u1, . . . , uk (any o.n. basis for S) such that
(M − λI)ui ⊥ uj, ie (Mui, uj) = λδij. Clearly then, the classical numerical
range W (M) coincides with Λ1(M), and the terminology “rank–k numerical
range” makes sense.

In fact Λk(M) corresponds to the scalar matrices in the k–th spatial numerical
range of M , a notion that has been studied for some time. However, the
remarkable properties of this scalar part, and the relations with QIT, have
come to light only recently.

8. Verification of the BDKLSW criterion

to be completed ...

9. Elementary geometry of the higher–rank numerical ranges and the CKŻ
conjecture

Consider first a normal matrix M ∈ Mn. Let the eigenvalues of M be λj.
Define

∆k(M) = {λ : there exist k disjoint index sets J1, J2, . . . , Jk ⊆ {1, 2, . . . , n}

such that λ ∈
k⋂

i=1

conv{λj : j ∈ Ji} }.

We use the delta notation as a reminder of the crucial disjointness of the
index sets.

Figure: ∆2(U) for a typical 7× 7 unitary U ...

By an explicit construction we can show that each point λ of ∆k(M) is also
in Λk(M):

Proposition: Let M be a normal matrix as above. Then ∆k(M) ⊆ Λk(M).
Proof: Let uj (j = 1, 2, . . . , n) be an o.n. basis of eigenvectors with Muj =
λjuj. Consider any λ ∈ ∆k(M). For each i we can express λ as a convex
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combination
∑

j∈Ji
tijλj. Let

wi =
∑
j∈Ji

√
tijuj.

It is easy to see that w1, . . . , wk are o.n. Note that Mwi =
∑

j∈Ji

√
tijλjuj so

that
(Mwi, wi) = (

∑
j∈Ji

√
tijλjuj,

∑
j∈Ji

√
tijuj) =

∑
j∈Ji

tijλj = λ.

Disjointness of the index sets ensures also that (Mwi, wj) = 0 if i 6= j.

It follows that PMP = λP where P is orthogonal projection onto S =
span{w1, . . . , wk}. QED

The proposition above gives a simple “lower bound” for Λk(M) in the normal
case. We also have a simple “upper bound” that applies to any M , normal
or not, in terms of classical numerical ranges of “compressions” PLM |L of M
to certain subspaces L.

Proposition: For any M ∈ Mn,

Λk(M) ⊆
⋂
{W (PLM |L) : L is a subspace of dimension ≥ n− k + 1}.

Proof: For λ ∈ Λk(M) we have a k-dimensional subspace S such that
(Mu, u) = λ for any unit vector u ∈ S. If the subspace L has dimension
no less than n− k + 1, then S and L must meet nontrivially. Consider unit
u ∈ S ∩ L:

(PLMu, u) = (Mu, PLu) = (Mu, u) = λ,

so that λ ∈ W (PLM |L). QED

Choi, Kribs, and Życzkowski used similar ideas to identify the higher–rank
numerical ranges of Hermitian matrices. Let M ∈ Mn be Hermitian with
(real) eigenvalues ordered as follows: λ1 ≤ λ2 ≤ · · · ≤ λn.

Proposition: Let M be a Hermitian matrix as above. Then Λk(M) =
[λk, λn−k+1] when k ≤ (n + 1)/2 and otherwise Λk(M) is empty.
Proof: If k ≤ (n + 1)/2, the disjoint index sets

J1 = {1, n}, J2 = {2, n− 1}, . . . , Jk = {k, n− k + 1}
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show that

∆k(M) ⊇
k⋂

i=1

[λi, λn−i+1] = [λk, λn−k+1].

Hence Λk(M) ⊇ [λk, λn−k+1]. On the other hand, if uj are o.n. eigenvalues
with Muj = λjuj and L = span{uk, . . . , un} we have W (PLM |L) = [λk, λn]
while with L′ = span{u1, . . . , un−k+1} we have W (PL′M |L′) = [λ1, λn−k+1].
The last proposition shows that

Λk(M) ⊆ [λk, λn] ∩ [λ1, λn−k+1] = [λk, λn−k+1].

The relation above also shows that Λk(M) = ∅ if k > (n + 1)/2. QED

More generally, for any normal M ∈ Mn with eigenvalues λj and correspond-
ing o.n. eigenvectors uj we see that, if J is any index set and L = span{uj :
j ∈ J}, then W (PLM |L) = conv{λj : j ∈ J}. Hence Λk(M) ⊆ Ωk(M) where

Ωk(M) =
⋂
{conv{λj : j ∈ J} : #(J) = n− k + 1}.

Choi, Kribs, and Życzkowski made the conjecture that we actually have
equality: Λk(M) = Ωk(M) for every normal M . A related conjecture would
be that for any M ∈ Mn, normal or not, we have

Λk(M) =
⋂
{W (PLM |L) : L is a subspace of dimension n− k + 1}.

As we’ll see in later sections, both these conjectures are now theorems.

If, for normal M , we have ∆k(M) = Ωk(M) (as in the case of Hermitian
M), we obtain an easy proof of the CKŻ conjecture for that M . Before the
work on convexity and/or the Li–Sze half–spaces was available, it had been
noted that, for example, this method suffices to prove the CKŻ conjecture
for normal M when n ≥ 3k.

Exercise: Verify that ∆k(M) = Ωk(M) when M is a 7×7 unitary and k = 2,
but that this is not usually the case when M is a 5× 5 unitary (and k = 2).

10. Convexity via Riccati equations

Although convexity of the higher–rank numerical ranges Λk(M) is just one
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consequence of the Li–Sze representation as the intersection of half–planes
(discussed in a later section), it is instructive to see how convexity may be
obtained from the theory of the algebraic Riccati equation. Thus our goal in
this section is to follow one approach to the following striking extension of
the Toeplitz–Hausdorff Theorem:

Proposition: For any M ∈ Mn each of the higher–rank numerical ranges
Λk(M) is convex (although some may be empty).

First note that to show Λk(M) convex it’s enough to consider the case where
n = 2k: if λ1 and λ2 are distinct points in Λk(M) there are k–dimensional
subspaces L1 and L2 such that

(M − λ1)L1 ⊥ L1 and (M − λ2)L2 ⊥ L2,

with L1 ∩ L2 = {~0}. Let S = span{L1 ∪ L2}, a subspace of dimension 2k.
To show that (λ1 + λ2)/2 ∈ Λk(M) it is enough to know that (λ1 + λ2)/2 ∈
Λk(PSM |S), and PSM |S may be represented by a matrix in M2k.

Note also that Λk(·) respects affine transformations:

Λk(αM + βI) = αΛk(M) + β

for all complex α, β.

Exercise: Verify this property.

By the appropriate affine transformation we may replace λ1, λ2 by ±1 and
we reduce our problem to showing that ±1 ∈ Λk(M) implies 0 ∈ Λk(M). Let
S± have dimension k be such that

(M ∓ I)S± ⊥ S±.

Let V be isometric on each of S±, and let V also “straighten” the subspaces:
V S+ ⊥ V S−. Then

((V −1)∗MV −1 ∓ I)V S± ⊥ V S±,

so that with respect to V S+⊕V S− we have (V −1)∗MV −1 represented by the
matrix [

Ik X
Y −Ik

]
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for some X, Y ∈ Mk.

Note also that the property 0 ∈ Λk(M) is indifferent to conjugation:

Lemma: If Q is nonsingular then 0 ∈ Λk(M) iff 0 ∈ Λk(Q
∗MQ).

Proof: If 0 ∈ Λk(Q
∗MQ) then there is a k–dimensional subspace S such that

Q∗MQS ⊥ S. It follows that M(QS) ⊥ QS, and QS is also k–dimensional.
QED

Thus it suffices to show that 0 ∈ Λk(

[
I X
Y −I

]
). To this end we seek Z ∈ Mk

such that [
I Z∗]

[
I X
Y −I

] [
I
Z

]
= 0k; (4)

the column space S of

[
I
Z

]
is k–dimensional and shows that 0 ∈ Λk(

[
I X
Y −I

]
).

Now (4) is equivalent to

I + XZ + Z∗Y − Z∗Z = 0k,

so it’s enough to show this equation has a solution Z ∈ Mk for any given
X, Y ∈ Mk. We manipulate the equation into a more convenient form by
observing that we’d have XZ + Z∗Y = Z∗Z − I Hermitian, ie

XZ + Z∗Y = Z∗X∗ + Y ∗Z,

so that H = (X−Y ∗)Z = Z∗(X∗−Y ) is Hermitian. Then Z = (X−Y ∗)−1H
puts the equation in the form

I + AH + HB −HRH = 0k,

where A = X(X−Y ∗)−1, B = (X∗−Y )−1Y , and R = (X∗−Y )−1(X−Y ∗)−1;
note that R is positive definite, which we write R > 0. It is easy to check
that A = B∗ + I, so that with Q = B + (1/2)I the equation to be solved
becomes

HRH −HQ−Q∗H − I = 0k and H Hermitian. (5)
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After earlier work by Choi, Giesinger, Holbrook, Kribs, and Życzkowski had
reached this point, Woerdeman (c. 2007) made the key step by recognizing
(5) as a type of Riccati equation that does always have a (Hermitian) solution.
This is by no means obvious, but follows from techniques well–known in the
CARE community: CARE=continuous algebraic Riccati equation.

In the interests of completeness we present one approach to this result on the
solutions of (certain) matrix quadratic equations. We’ll show a little more:
given R, C > 0 and arbitrary Q ∈ Mk there exists H ≥ 0 (ie psd H) such
that

HRH −HQ−Q∗H − C = 0k (6)

(in our case C = Ik). We construct H as the limit of a decreasing sequence
Xν of psd matrices.

Choose X0 ≥ 0k such that Q − RX0 is “stable”, ie all of its eigenvalues lie
in the LHP ◦ (the open left half–plane); this ensures that e(Q−RX0)t decays
exponentially as t → ∞. A natural choice is X0 = rR−1 for large r: then
Q−RX0 = Q− rI and large r shifts the eigenvalues of Q into LHP ◦.

Define inductively Hermitian X1, X2, . . . by:

Xν+1(Q−RXν) + (Q−RXν)
∗Xν+1 = −XνRXν − C. (7)

We’ll see that X1 ≥ X2 ≥ X3 ≥ · · · ≥ 0 so that H = limν Xν ≥ 0 and (7) in
the limit says

H(Q−RH) + (Q∗ −HR)H = −HRH − C,

ie 0 = HRH −HQ−Q∗H − C, as required.

Helpful fact: if S is stable and W ≥ 0 then

X =

∫ ∞

0

eS∗tWeSt dt (≥ 0) (8)

is the unique solution of XS + S∗X = −W (the Lyapunov equation). Thus
(7) is a good definition of Xν+1 (and Xν+1 ≥ 0), provided we know that at
each step of the induction Q−RXν remains stable.
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First we check that (8) does give a solution to the Lyapunov equation: we
need ∫ ∞

0

(S∗eS∗tWeSt + eS∗tWeStS) dt = −W ;

the integrand is d/dt(eS∗tWeSt) (“product rule”) so that the integral is

eS∗∞Wes∞ − e0We0 = −W.

Next we check uniqueness of the solution: one instructive method is to con-
sider the linear maps RS and LS∗ defined on Mk by

RS(X) = XS, LS∗(X) = S∗X.

We need to know that RS + LS∗ is invertible. It’s easy to check that RS

and S have the same spectrum: σ(RS) = σ(S) (although the eigenvalues will
have different multiplicities), so that σ(RS) ⊆ LHP ◦. similarly,

σ(LS∗) = σ(S∗) = σ(S) ⊆ LHP ◦.

Moreover, RS and LS∗ commute so that

σ(RS + LS∗) ⊆ σ(RS) + σ(LS∗) ⊆ LHP ◦ + LHP ◦ = LHP ◦.

In particular, 0 6∈ σ(RS + LS∗).

To see that Q−RXν+1 remains stable, note that (7) may be written as

Xν+1(Q−RXν+1) + (Q−RXν+1)
∗Xν+1 = (9)

−C −Xν+1RXν+1 − (Xν+1 −Xν)R(Xν+1 −Xν) (< 0).

Thus Xν+1T + T ∗Xν+1 < 0 with T = Q − RXν+1. To show T is stable
consider λ ∈ σ(T ) and corresponding eigenvector x. Then

0 > ((Xν+1T + T ∗Xν+1)x, x) = (λ + λ)(Xν+1x, x)

and since (Xν+1x, x) ≥ 0 we must have Reλ < 0.
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Finally, consider (9) with ν (≥ 1) replaced by ν − 1 and subtract (7): we
obtain

(Xν −Xν+1)(Q−RXν) + (Q− TXν)
∗(Xν −Xν+1) = (10)

−(Xν −Xν+1)R(xν −Xν+1) = −W

with W ≥ 0. We know this has a unique solution Xν −Xν+1 ≥ 0 so indeed

X1 ≥ X2 ≥ X3 ≥ . . . (≥ 0)

and H = limν→∞ Xν exists.

Exercise: In an earlier exercise we saw that for a typical 5 × 5 unitary M ,
Ω2(M) is a filled–in pentagon while ∆2(M) is the boundary of that pentagon.
In particular the extreme points (vertices of the pentagon) are in Λ2(M).
Now that we know Λ2(M) is convex we can conclude that Λ2(M) = Ω2(M),
ie that the CKŻ conjecture holds for such M . Can you find a general proof
of the CKŻ conjecture on the same basis, ie by showing that for any normal
M the extreme points of Ωk(M) are included in ∆k(M) (therefore in Λk(M))
and applying convexity?

11. Converse to Cauchy interlacing theorem

One ingredient in the Li-Sze representation of Λk(M) is a beautiful applica-
tion of the Cauchy interlacing theorem, or rather of its converse. We therefore
include this section as preparation.

Cauchy’s interlacing theorem along with its converse (see for example Fan
and Pall [F–P1957]) says that for real sequences

a1 ≤ a2 ≤ · · · ≤ an

and
b1 ≤ b2 ≤ · · · ≤ bm

we have
ak ≤ bk ≤ ak+(n−m) (k = 1, 2, . . . , m)

⇐⇒
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the ak’s are eigenvalues of a Hermitian n×n matrix A and the bk’s are eigen-
values of an m×m principal submatrix of A.

There are many proofs of ⇐= (Cauchy’s interlacing theorem), including
Cauchy’s own(?); for example, one can use the Courant–Fischer–Weyl min-
max principle. Here is an approach based simply on the Intermediate Value
Theorem, taken more–or–less from Hwang [H2004]. I like it also because it
leads naturally into a proof of =⇒.

By a straightforward induction we need only consider the case where m =
n− 1.

Exercise: Check out that “straightforward induction”.

Thus (permuting the basis if necessary) our Hermitian A has the form

[
a y∗

y B

]
,

where B is an (n− 1)× (n− 1) matrix, y is an (n− 1)–dimensional column
vector, and a is a real scalar.

Since B is also Hermitian, the spectral theorem finds a unitary U such that
U∗BU = diag(b1, . . . , bn−1) = D where the bk are the eigenvalues of B. Hence

(1⊕ U)∗A(1⊕ U) =

[
a z∗

z D

]
.

From this form one easily computes the characteristic polynomial p(λ) of A:

p(λ) = (λ− a)
n−1∏

k=1

(λ− bk)−
n−1∑

k=1

|zk|2
∏

j 6=k

(λ− bj).

Thus p(bi) has only the single term

−|zi|2
∏

j 6=i

(bi − bj).

By jiggling (small perturbations) we may assume the bj are distinct and
each zj 6= 0. Thus, in view of the ordering of the bj, the sign of p(bi) is
(−1)(−1)n−1−i = (−1)n−i. The alternation of these signs plus the IVT (Inter-
mediate Value Theorem) ensure the existence of zeros ak of p (ie eigenvalues
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of A) such that

a1 < b1 < a2 < b2 < · · · < bn−1 < an,

as claimed. For example, p(bn−1) has sign −1, ie p(bn−1) < 0 and since p(λ)
has leading term λn it is eventually positive so that the IVT finds an > bn−1

with p(an) = 0.

The history of =⇒ (the converse of Cauchy’s interlacing theorem) seems
obscure; [F-P1957] and Mirsky [M1958] are the earliest references I have
found explicitly but there are reports of earlier work, even 19th century
work, along these lines ... there is even the suggestion that Cauchy himself
may have been aware of the converse. Here we provide a proof using simply
the form of p(λ) noted above.

Given
a1 ≤ b1 ≤ a2 ≤ b2 ≤ · · · ≤ bn−1 ≤ an,

we first jiggle the values so as to deal with the more convenient

a1 < b1 < a2 < b2 < · · · < bn−1 < an

with all bk 6= 0. We construct A in the form

[
a z∗

z D

]
with D = diag(b1, . . . , bn−1)

and a(∈ R), z to be chosen so that the eigenvalues of A are a1, . . . , an. Again
the characteristic polynomial of A is

p(λ) = (λ− a)
∏

k

(λ− bk)−
∑

k

|zk|2
∏

j 6=k

(λ− bj)

and we need this to coincide with

q(λ) =
n∏

k=1

(λ− ak).

Since both p and q have λn as leading term, we need only ensure that p = q
at n distinct points; let’s use b1, . . . , bn−1 and 0. Now

p(bi) = −|zi|2
∏

j 6=i

(bi − bj)
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while
q(bi) =

∏

k

(bi − ak),

so we choose zi so that

|zi|2 = −
∏

k

(bi − ak)/
∏

j 6=i

(bi − bj);

the given ordering of the ak and bk ensures that this expression is positive;
count the negative factors:

1 + (n− i) + (n− 1− i) = 2(n− i).

Finally, p(0) = q(0) requires

−a
∏

k

(−bk)−
∑

k

|zk|2
∏

j 6=k

(−bj) =
∏

k

(−ak),

and since the bk are nonzero this equation has a (real) solution a. QED

12. The Li–Sze half-planes

The Li–Sze half–planes subtly extend (to higher–rank numerical ranges) the
following construction for the classical numerical ranges W (M). Given M ∈
Mn and θ ∈ R define Re(e−iθM) as (e−iθM +eiθM∗)/2. Note that Re(e−iθM)
is Hermitian, so that

max{(Re(e−iθM)u, u) : ‖u‖ = 1} = λ1(θ),

the largest eigenvalue of Re(e−iθM). Consider the half–plane

H1(M, θ) = eiθ{z ∈ C : Re z ≤ λ1(θ)}.

For all θ, W (M) ⊆ H1(M, θ): let ‖u‖ = 1; then (Mu, u) = eiθ(e−iθMu, u)
and z = (e−iθMu, u) satisfies

Re z = ((e−iθMu, u) + (u, e−iθMu))/2 = (Re(e−iθM)u, u) ≤ λ1(θ).

Let u1(θ) be a unit eigenvector of Re(e−iθM) corresponding to λ1(θ). Then
of course (Mu1(θ), u1(θ)) ∈ W (M), but note also that w = (Mu1(θ), u1(θ))
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Figure 1: Typical relation between W (M) and H1(M, θ) = H1(θ), showing
also (Mu1(θ), u1(θ)) ∈ W (M) ∩ ∂H1(M, θ)

lies in the boundary of H1(M, θ), namely the line eiθ{z : Re z = λ1(θ)}:
z = e−iθw = (e−iθMu1(θ), u1(θ)) and

Re z = (Re(e−iθM)u1(θ), u1(θ)) = (λ1(θ)u1(θ), u1(θ)) = λ1(θ).

Thus each H1(M, θ) is a supporting half–plane for W (M) and the convexity
of W (M) (Toeplitz–Hausdorff Theorem) implies that

W (M) (= Λ1(M)) =
⋂

θ∈R
H1(M, θ).

Moreover, plotting the curve {(Mu1(θ), u1(θ)) : 0 ≤ θ ≤ 2π} is a well–known
method for sketching (the boundary of) W (M). See Figure 1.

Let λk(θ) denote the k–th largest eigenvalue of Re(e−iθM). Li and Sze found
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a remarkable extension of the phenomena described above for W (M): for all
M and k

Λk(M) =
⋂

θ∈R
Hk(M, θ), (11)

where Hk(M, θ) is the half–plane eiθ{z ∈ C : Re z ≤ λk(θ)}.

Li and Sze first proved (11) for normal M and it is the purpose of this section
to explain their argument for normal M , showing how it relates to the Cauchy
interlacing theorem (converse) discussed in section 11.

Note first that (11) for normal M ∈ Mn implies the CKŻ conjecture that

Λk(M) = Ωk(M) =
⋂
{conv{λj : j ∈ J} : #(J) = n− k + 1},

where λj are the eigenvalues of (normal) M . We have seen that Λk(M) ⊆
Ωk(M) on general grounds (recall section 9). On the other hand, (11) tells
us that for any λ 6∈ ΛK(M) there is some θ such that λ 6∈ Hk(M, θ). Since
M is normal each of the eigenvalues

λk(θ), λk+1(θ), . . . , λn(θ)

of Re(e−iθM) is Re(e−iθλj) for some eigenvalue λj of M . Hence there is a set
J of n− k + 1 indices such that for each j ∈ J we have Re(e−iθλj) ≤ λk(θ),
ie λj ∈ Hk(M, θ). Thus conv{λj : j ∈ J} ⊆ Hk(M, θ) and

λ 6∈ conv{λj : j ∈ J} ⊇ Ωk(M).

Exercise: In the discussion above we have used the common interpretation of
Re X as the Hermitian (X + X∗)/2. Another possible interpretation would
be “elementwise”, as [Re xij] (not usually Hermitian). When do these two
interpretations agree?

We have seen that “easy” proofs of the CKŻ conjecture fail when ∆k(M) 6=
Ωk(M). Perhaps the simplest “hard” case of the CKŻ conjecture: M is a
5× 5 unitary U and k = 2; here

Ω2(U) =
⋂

#(J)=4

conv{λj : j ∈ J}
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is a filled–in pentagon, while ∆2(U) is just its boundary. We have

∆2(U) ⊆ Λ2(U) ⊆ Ω2(U)

but in order to show Λ2(U) = Ω2(U) (the CKŻ conjecture for this case) we
must find interior points in Λ2(U).

There are at least three quite different ways to achieve this; none of them is
straightforward.
1. [CHKŻ] gave a topological argument (involving winding numbers etc)
filling the pentagon with certain specially contrived elements of Λ2(U) (seems
hard to generalize, although it suffices for other cases where n = 5k/2).
2. [CGHK] + [Woerdeman] proved convexity for all Λk(M) (see section 10).
Given this, for situations like the pentagon we only need to capture the
boundary – or even just vertices of Λk (as suggested in an earlier exercise, it
is likely that this approach could be extended to cover all normal M).
3. Li and Sze half–planes, illustrated below, provide a very general approach
(ultimately extending to all M).

We illustrate the Li–Sze approach for the pentagon Ω2(U). It will be rather
clear that it extends to all normal M . Using other powerful ideas (congruence
canonical forms, etc) Li and Sze obtain the corresponding result also for non–
normal M (see sections 13 and 14).

Note that it is clear for any M ∈ Mn that Λk(M) ⊆ Hk(M, θ) for each θ,
since W (PLM |L) ⊆ Hk(M, θ) where L is the n− k +1–dimensional subspace
spanned by eigenvectors of Re(e−iθM) corresponding to λk(θ), . . . , λn(θ) and
we may invoke the second proposition of section 9.

To show that λ ∈ ⋂
θ H2(U) implies λ ∈ Λ2(U), note that by considering

N = U − λI5 in place of U we may assume λ = 0 and although the λj will
have shifted we still have at least two λj in every open half–plane determined
by a line through 0: otherwise 0 6∈ H2(N, θ) for a θ perpendicular to the line.
See Figure 2. Rotate so that 3 eigenvalues are in the right half–plane and
two in the left. With N in diagonal form let diagonal R have eigenvalues
rk > 0 such that Q = RNR has eigenvalues 1+ iaj and −1+ i(−bj) as shown
in Figure 3; eg

r1 =

√√
1 + a2

1

|λ1| .
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Figure 2: Typical line through 0 in the pentacle determined by the eigenval-
ues of N
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Figure 3: Eigenvalues (circles) for a typical 5× 5 normal N versus those for
the modified Q = RNR

Note that a1 < a2 < a3 and b1 < b2. By virtue of the lemma of section 10
we need only show that 0 ∈ Λ2(Q). Now Q = (I3 + iA) ⊕ (−I2 + i(−B))
where A,B are Hermitian with eigenvalues a1 < a2 < a3 and b1 < b2. We
claim that the interlacing condition

a1 ≤ b1 ≤ a2 ≤ b2 ≤ a3

is satisfied.

Suppose for example that b2 < a2: Figure 4 illustrates the resulting contra-
diction.

What if b2 > a3? Figure 5 illustrates the contradiction that would ensue.
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Figure 4: Only 1 + ia1 (and therefore λ1) is below the dotted line: contra-
diction
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Figure 5: Only −1 + i(−b1) (and therefore λ4) is above the dotted line:
contradiction
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Thus the converse to Cauchy’s interlacing theorem finds a unitary U (forgive

the change in notation) such that U∗AU =

[
a y
y∗ B

]
, so that

(U ⊕ I2)
∗Q(U ⊕ I2) =

[
1 + ia y

y∗ 1 + iB

]
⊕ (−I2 + i(−B))

has 4 × 4 submatrix T =

[
C 0
0 −C

]
where C = I + iB is normal with

eigenvalues γ1, γ2. Finally, 0 ∈ Λ2(T ) because 0 ∈ ∆2(T ):

0 ∈ conv{γ1,−γ1} ∩ {γ2,−γ2},

and these index sets are disjoint. QED
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sections to be completed:

13. Canonical forms

14. The Li-Sze representation of higher–rank numerical ranges

15. When are the ranges nonempty?

16. Joint numerical ranges

17. Normal compressions
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