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Quantum mechanics and glasses

Claudio Chamon1

1 Physics Department, Boston University, Boston, MA 02215, USA

This 3-lecture mini-course contains case studies of true quantum mechanical glasses, systems with
only local interactions (and here in these cases not even disorder) that fail to reach their ground
states even when assisted by the contact with a zero temperature bath.
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INTRODUCTION TO THE PROBLEM OF QUANTUM GLASSES IN NON-DISORDERED SYSTEMS

Quantum mechanical systems in contact with a reservoir are characterized by mixed ensembles of states that are
best described using von Neumann’s density matrix formalism [1]. At equilibrium, the density operator is given by

ρ̂ = e−βĤ/Z in the canonical ensemble, where Ĥ is the system Hamiltonian, β = 1/kBT the inverse temperature of

the reservoir (and of the system of interest, at equilibrium), and Z = tr(e−βĤ) the canonical partition function. The

expectation value of any operator Ô in this mixed ensemble is given by tr(ρ̂ Ô). Therefore, the characterization of
the properties of a quantum system at equilibrium is essentially a spectral problem. Describing the low temperature
properties of a system, for example, requires the understanding of the ground state, its symmetries (or lack thereof)
and its quantum orders [2], and its low lying excitations. In particular, at zero temperature, the system goes to its

ground state. In the case of a quantum many-body system, if parameters in the Hamiltonian Ĥ are tuned, the ground
state can change its symmetries or its quantum orders through quantum phase transitions.
Obviously, the above picture breaks down if the quantum system resists equilibration with its environment, heat

bath, or reservoir of contact. The problem of the approach to equilibrium is a formidable one. More precisely, the
problem is not to prove that systems do equilibrate, because some simply do not in any experimentally accessible
times, as in the case of classical glasses. In this case, the issue is how to understand and describe systems when they
encounter dynamical obstructions in their path to thermal equilibration. A great deal of effort has been directed
at this question by both physicists and chemists alike. In spite of much research, however, a complete theoretical
description of the classical glass transition remains an open problem.
Such non-equilibrium behavior may be expected in disordered and frustrated quantum systems (like for instance

quantum spin glasses [3], long-range Josephson junction arrays in a frustrating magnetic field [4], or self-generated
mean-field glasses [5]). Are quantum systems that contain no quenched disorder and only local interactions protected



2

from encountering obstructions to equilibration similar to those of classical structural glass formers? The answer
is NO: there are non-disordered systems that do not find their ground states at zero temperature, or that are not
described by the equilibrium density matrix at low temperatures even though they are in contact with a heat bath [6].
These lectures are intended to introduce some of the generic problems related to non-disordered quantum glasses

and a few tools that allow progress to be made in these problems.

LECTURE 1: EXAMPLES OF QUANTUM SYSTEMS WITH SIMPLE SPECTRA BUT DIFFICULTY IN
EQUILIBRATING

Here we present concrete examples of quantum glasses, which are interesting because the systems, besides having
local Hamiltonians with no quenched disorder, have exactly solvable spectra and topological ordered quantum ground
states.
Topological order and quantum number fractionalization are some of the most remarkable properties of systems of

strongly interacting particles. Some phases of matter, in contrast to common examples like crystals and magnets, are
not characterized by a local order parameter and broken symmetries. Instead, as shown by Wen [7, 8], some quantum
phases are characterized by their topological order, such as the degeneracy of the ground state when the system is
defined on a torus or other surface of higher genus. These topological degeneracies cannot be lifted by any local
perturbation. Topological order and quantum number fractionalization are intimately related, and much effort has
recently been directed at these exotic properties, for they may be playing a role in the mechanism for high-temperature
superconductivity. Also, the robustness of the topological degeneracy against local noise due to the environment is at
the core of the idea behind topological quantum computation, as proposed by Kitaev [9].
Interestingly enough, strong correlations that can lead to these exotic quantum spectral properties can also impose

kinetic constraints similar to those studied in the context of kinetically constrained classical glasses [10, 11, 12,
13, 14]. In quantum systems, however, tunneling is a mechanism that provides paths for a system’s dynamical
evolution that are not accessible to the classical kinetically constrained models. Nonetheless, in the examples that are
constructed below, quantum tunneling is practically frozen out, because the size of the objects that must tunnel grow
exponentially fast with inverse temperature. Hence, in these examples, not only do the classical thermal barriers grow
with temperature, but also do the widths of the quantum tunneling barriers, in such a way that quantum processes are
even more severely suppressed than classical ones at low temperatures, a rather different and unexpected situation.
The origin of this behavior is the fact that any bath that couples locally to the physical degrees of freedom of the
system can only flip large objects through virtual processes of large order in the system-bath coupling. For these
quantum systems, no physical bath can provide a mechanism for relaxation that is not dynamically arrested at low
temperatures.
Below I construct three such examples. The first is a two-dimensional (2D) quantum system with strong glass-like

relaxation times when in contact with a restricted class of thermal baths; this example is used just to clarify the issue
of how a given Hamiltonian requires a minimum number of degrees of freedom that the bath must locally control
for the system to be able to equilibrate. The second example is a three-dimensional quantum system with strong
glass-like relaxation times for any class of baths that couple locally to physical degrees of freedom of the system. The
third example is a three-dimensional quantum system with fragile glass-like relaxation times.

Warmup: 2D example

The first model is constructed on a two-dimensional (2D) square lattice, shown in Fig. 1. Each site can be labeled by

i, j ∈ Z that index a site in the Bravais lattice spanned by the primitive vectors a1 =
(

1√
2
, 1√

2

)
and a2 =

(
− 1√

2
, 1√

2

)
.

To shorten the notation, define a superindex I ≡ (i, j). At every lattice site I one defines quantum spin S = 1/2
operators σx

I , σ
y
I , and σ

z
I . The square lattice is bipartite: it contains two sets of sites, which we label A and B, and

which are shown in red and blue color in Fig. 1.
Now let us define the quantum Hamiltonian in terms of the spins σI . Here we follow an approach similar to that

of Kitaev, who constructed in a beautiful paper model quantum Hamiltonians that are exactly solvable [9]. In those
models, the spins resided on links in planar lattices, but it is possible to carry out similar constructions with spins
defined on vertices [15], as it is done here. Later on we show how the construction with spins on vertices can be
generalized to 3D lattices.
Define a diamond cell PI as the set of four lattice sites in an elementary plaquette with site I at its top. The

four vertices are indexed by Jn(I), for n = 1, . . . , 4, with one of the vertices J1(I) = I. The four labels are assigned
in such as way that the pairs {J1, J3}, {J2, J4} are diagonally opposite sites from one another. Explicitly, J1(I) =
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FIG. 1: Square lattice, with spin operators defined on the sites. The square lattice is bipartite, and the two sets of points
A,B are shown in red and blue. A diamond contains 4 vertices in an elementary plaquette, and the diamonds can also be
divided into two sets (forming a red/blue checkerboard) according to which sublattice its topmost vertex belongs to. Four-spin
operators are defined on each plaquette using the σ

x and σ
y components of the spin operators, as described in the text. The

green dots correspond to “defects” that are generated by applying a σ
z to the site encircled and marked with an ×.

I ≡ (i, j),J2(I) ≡ (i − 1, j),J3(I) ≡ (i − 1, j − 1), and J4(I) ≡ (i, j − 1). It is simple to see that the total number
of diamonds equals the number of spins: each lattice site I is the top vertex of a single diamond. The one-to-one
relation between a site I and the diamond PI allows us also to partition diamonds into two sets A and B (and color
the corresponding diamonds red and blue, as shown in Fig. 1).
Now define the operators OI as

OI = σy
J1(I) σ

x
J2(I) σ

y
J3(I) σ

x
J4(I) . (1)

These operators commute, [OI ,OI′ ] = 0 for all pairs I, I ′. It is simple to see how: two diamonds PI and PI′ can
share 0,1, or, at most, 2 spins. If they share 0 spins, they trivially commute. If they share 1 spin, the component (x,y
or z) of σ for that shared spin coincides for both OI and OI′ (the two diamonds touch along one of their diagonals).
If they share 2 spins, the components σ used in the definition of OI and OI′ are different for both spins, there is a
minus sign from commuting the x and y components of the spin operators from each of the shared spins, and the two
minus signs cancel each other.
Consider the system Hamiltonian

Ĥ = −h
2

∑
I

OI , (2)

which is trivially written in terms of the OI operators, but complicated in terms of the original spins σI . Because
the OI all commute, the eigenvalues of the Hamiltonian can be labeled by the list of eigenvalues {OI} of all the OI .
Notice that O2

I = 11, and so each OI = ±1. In particular, the ground state corresponds to OI = 1 for all I.
Because the number of spins equals the number N of sites, one may naively expect that the list {OI = ±1} exhausts

the 2N states in the Hilbert space, spanned by {σz
I = ±1}. However, there are constraints that the OI satisfy when

the system is subject to periodic boundary conditions (compactified to a torus). One can show that∏
I∈A

OI =
∏
I∈B

OI = 11 . (3)

There are two constraints; therefore there are only 2N−2 independent {OI = ±1}. This implies, in particular, that
there is a ground state degeneracy of 22 = 4. (Notice that the ground state degeneracy is not associated with a
symmetry. In particular, it is easy to show that 〈σx,y,z

I 〉 = 0.) This is a topological degeneracy, and the eigenvalues
of a set of two non-local (winding or topological) operators T1,2 are needed to distinguish between the 4 degenerate
ground states.
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The operators T1,2 can be constructed as follows. Let Pl = {I|i+ j = l} be a set of points along a horizontal line.
Notice that sites on a line belong either all to sublattice A or all to sublattice B, for example P1 ⊂ A and P2 ⊂ B.
Define

T1 =
∏

I∈P1

σy
I (4a)

T2 =
∏

I∈P2

σy
I . (4b)

It is simple to check that [T1,2,OI ] = 0 for all I, and the two operators T1,2 trivially commutte. Hence the two
eigenvalues T1,2 = ±1 of T1,2 can distinguish the 4 degenerate ground states.
The spectrum of the Hamiltonian Eq. (2) is that of a trivial set of N − 2 free spins, determined by the list of

eigenvalues {OI = ±1} of all the OI , subject to the condition Eq. (3): E{OI} = −h
2

∑
I OI . Excitations above the

ground state (OI = 1 for all I) are “defects” where OI = −1 in certain sites I. Because of the constraints Eq. (3),
the defects appear only in pairs. These defects have non-trivial quantum statistics: they are Abelian anyons with
statistical angle different from fermions or bosons [9].
The equilibrium partition function (within a topological sector) is given by Z =

∑
{OI=±1} e

βh
P

I
OI . At thermal

equilibrium at temperature T , the thermal average 〈OI〉 = tanh h
T , and the concentration or density of OI = −1 defects

is c = 1
2

(
1− tanh h

T

)
. Notice that we have encountered an analogous situation to that in the classical spin facilitated

models [10]), in particular the plaquette models displaying glassy dynamics [11, 12, 13, 14]: the thermodynamics is
trivial in terms of non-interacting defect variables. But what about the dynamics of our quantum model?
Although the spectrum of the model we are discussing is the same as that of free spins in a uniform magnetic

field h, the variables OI for different diamonds I cannot be independently changed, as opposed to spin variables in a
free spin model in a field h. The reason why is that the operators OI involve four spins; these spins are shared by
neighboring operators OI′ , and thus one cannot change the eigenvalue of OI without changing the eigenvalues OI′ of
neighbors by the action of a local operator. What are the allowed, physical local dynamical evolution rules for this
quantum system? Do these dynamical rules lead to equilibration?
In order to endow the system with some physical dynamics, we couple the original physical spins to individual

baths at temperature T . Here I do not consider “Turkish” baths of multiple spins; but still, as long as the groups
of spins sharing a bath are locally delimited in space, the results obtained below should be qualitatively unchanged.
Moreover, allowing the bath to communicate information through long-ranged couplings (via phonons, for instance)
will not change the results, as long as it operates on delimited regions of space at both ends that it acts on.
When the original individual spins are coupled to their baths, “flips” of the states of multiple OI sharing a given

spin take place. Therefore, our model has a trivial spectrum but a highly correlated dynamics. It is this correlated
dynamics that gives rise to non-trivial non-equilibrium behaviors.
More concretely, we introduce the bath degrees of freedom as in the Feynman-Vernon influence functional ap-

proach [16] or Caldeira-Leggett dissipative quantum mechanics formulation [17, 18], by letting the Hamiltonian of the
system plus bath be

Ĥ = Ĥ + Ĥbath + Ĥspin+bath

where Ĥ is defined in Eq. (2), and

Ĥbath =
∑
I,α

∫ ∞

0

dx [Πα
I (t, x)]

2 + [∂xΦ
α
I (t, x)]

2, (5a)

Ĥspin/bath =
∑
I,α

gα σ
α
I Πα

I (t, 0) , (5b)

and where the three components (α = 1, 2, 3) of the conjugate vector fields ΦI and ΠI obey the equal-time commu-
tation relation

[Φα
I (t, x),Π

α′

J (t, x′)] = i δIJ δαα′ δ(x − x′) .

Notice that, for each site I, the bath-spin system can be viewed as an extended bosonic string that couples to a
spin at the boundary x = 0. The coupling amplitudes are the gα. One can in general chose anisotropic couplings, but
the most general bath should contain all of g1,2,3. In the quantum model, acting on a site I ′ ∈ PI with one of σ

x
I′ , σ

y
I′ ,

or σz
I′ flips or not the eigenvalue OI depending on whether σ

x,y,z
I′ OI = ∓OI σ

x,y,z
I′ , respectively.
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If integrated out, the bath degrees of freedom away from the boundary x = 0 lead to a non-local in time action and
to dissipation effects. Instead of working with the dissipative action, let us follow the time evolution of the system
plus bath, and look at the possible evolution pathways of the quantum mechanical amplitudes of the system plus
bath degrees of freedom. After evolution by time t from some initial state, the system is in some quantum mechanical
superposition

|Ψ〉 =
∑

{OI=±1}
Γ{OI} |{OI}〉 ⊗ |Υ{OI}〉 , (6)

where |Υ{OI}〉 is a state in the bath Hilbert space with norm one. (Here we focus on states in a single topological
sector, although mixing sectors can be done by including the eigenvalues of the topological operators T ; mixing is
exponentially suppressed as the system size increases). The fact that the bath degrees of freedom couple to single
quantum spins σI enters in the problem through the permitted channels for transferring amplitudes among the Γ{OI}.
The processes that transfer amplitude among the Γ{OI} correspond to different orders in perturbation theory on

the gα system-bath coupling. There is also a thermal probability factor coming from the bath, and that depends on
the difference between the initial and final energy E{OI} = −h

2

∑
I OI of the system. One class of paths is a sequential

passage over states connected through order gα processes; this is a “semi-classical” type trajectory.
Within this restricted class of processes, we can make a connection to the classical plaquette models, particularly

the 4-spin square plaquette model whose glassy properties have been studied [13, 19, 20]. That classical model is
simply obtained by defining diamond variables τI in place of the OI as in Eq. (1) but using only, say, the z-component
σz of spin for all four sites of the diamonds. In the classical four Ising spin plaquette interaction model, flipping an
individual spin flips the plaquette defect variables of the four plaquettes that share the spin. This multi-defect type
dynamics makes it difficult for the system to relax to equilibrium. For example, if the temperature is lowered, in
order to decrease the defect density, either four defects must come together and annihilate (4 → 0 decay), or three
defects become one (3→ 1 decay). However, the defects are not free to simply diffuse and come together. To move,
an isolated single defect must first decay into three defects (1→ 3 production) because of the multi-defect dynamics,
then a pair can diffuse freely, and recombine with another defect through a 3 → 1 decay process. Because of the
initial 1 → 3 production process, there is an energy barrier of 2h to be overcome. This activation barrier leads to
recombination/equilibration times

tseq. ∼ exp(2h/T )

that grow as temperature is lowered in an Arrhenius fashion [13].
Because there are all three components of the spin in the quantum model, and σx, σy enter in the Hamiltonian, to

flip the defect variables in four neighboring plaquettes the coupling to the bath must involve only the σz component.
Hence, what follows requires g1 = g2 = 0, strictly. If the coupling with the bath involves σx and σy as well, then
defects can be flipped in pairs and thus are free to move diffusively across the system. This is an important difference
between the classical and quantum versions of the square plaquette models, which we have more to say about later.
What about quantum tunneling? Defect annihilation can occur through virtual processes in which the number

of defects is only larger in the intermediate (virtual) steps. At temperature T , the typical defect separation is
ξ = c−1/2 ∼ eh/2T , and in perturbation theory this process has an amplitude of order (g/h)ξ (notice the energy
denominator h). This amplitude leads to a recombination/equilibration times of

ttun. ∼ exp
[
ln(h/g) eh/2T

]
,

which grows extremely fast as the temperature is lowered. What we learn from this simple estimation is that quantum
tunneling is less effective than classical sequential processes in thermalizing the system. This is counterintuitive to
the notion that at low temperatures quantum tunneling under energy barriers remains an open process while classical
mechanisms are suppressed due to high thermal activation costs. The reason for the particular quantum freezing in
this system is simple: because the equilibration is through defect recombination, as the density of defects decrease at
lower temperatures, the barrier widths increase with temperature, which debilitates quantum tunneling through those
wide barriers. In passing, we note that in a finite system of size L, one must replace ξ by L in the estimation of the
recombination/equilibration times, ttun. ∼ exp [ln(h/g) L]; this time scale is also of the order of that for tunneling
between two topological ground states in a finite system of size L [9].
Let us return to the issue of which component of spin enters in the coupling to the bath. The minimal bath coupling

involves the z-component of spin, for this component does not commute with any of the OI that contain share a given
spin. This minimal bath coupling is the one that leads to the interesting properties above. However, if the bath
couples to the x- and y-components as well, defects now can diffuse freely, eliminating the energy 2h barriers for
1→ 3 defect production processes. Simple defect diffusion would lead to a an equilibration time teq ∼ L2 for a system
of size L (fast – polynomial in L with constant exponent). The dependence on the bath coupling is removed in the
two 3D models we discuss next, one of which has even slower equilibration, as in fragile glasses.
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FIG. 2: Cubic cell of an fcc lattice. The centers of the six faces form an octahedron, with its sites labeled from 1 (topmost)
to 6. In addition to the set of octahedra formed by the face centered sites, there are three more sets of octahedra that can be
assembled from sites both on faces and on corners of the cubic cells, totaling 4 such sets. Six-spin operators are defined on
these octahedra using the σ

x,y,z components of spin on each vertex as described in the text.

3D quantum strong glass

Particle diffusion finds its origin in the fact that the x- or z-components of spin commute with 2 out of the 4
diamonds sharing a given spin. Therefore, the defects can be created in pairs, not quadruplets, and hence there is a
mechanism for single defect diffusion through annihilation of a defect and creation on a neighboring diamond via pair
flip. In the example that follows, six defect cells are shared by a single spin, in such a way that by acting with any
component of the spin operators will flip 4 cells, and defect diffusion is non-existent.
The model displaying strong like glassiness is constructed on a three-dimensional (3D) face-centered cubic (fcc)

Bravais lattice, spanned by the primitive vectors a1 =
(

1√
2
, 1√

2
, 0

)
, a2 =

(
0, 1√

2
, 1√

2

)
, and a3 =

(
1√
2
, 0, 1√

2

)
. Each

site can be indexed by i, j, k ∈ Z, and to shorten the notation, define a superindex I ≡ (i, j, k). At every lattice site
I one defines quantum spin S = 1/2 operators σx

I , σ
y
I , and σ

z
I .

The fcc lattice can house sets of octahedra: the simplest one to visualize is the one assembled from the centers of the
six faces of a cubic cell, and is shown in Fig. 2. In addition to this simple set, there are three more sets of octahedra
that can be assembled from sites both on faces and on corners of the cubic cells, totaling 4 such sets, which we label
by A,B,C and D.
It is simple to see that the total number of octahedra equals the number of spins: each lattice site I is the topmost

vertex of a single octahedron. Define then PI as the set of six lattice points contained by the octahedron with site I
at its top. The six vertices are indexed by Jn(I), for n = 1, . . . , 6, with one of the vertices J1(I) = I. The six labels
are assigned in such as way that the pairs {J1, J4}, {J2, J5}, {J3, J6} are diagonally opposite sites from one another,
and this number labeling is illustrated for a single octahedron in Fig. 2. From the one-to-one relation between a site
I and the octahedra PI , we can also partition the lattice sites into the four sets A,B,C and D of octahedra.
Now define the operators OI as

OI = σz
J1(I) σ

x
J2(I) σ

y
J3(I) σ

z
J4(I) σ

x
J5(I) σ

y
J6(I) . (7)

These operators commute, [OI ,OI′ ] = 0 for all pairs I, I ′. It is simple to see how: two octahedra PI and PI′ can either
share 0,1, or, at most, 2 spins. If they share 0 spins, they trivially commute. If they share 1 spin, the component (x,y
or z) of σ for that shared spin coincides for both OI and OI′ (the two octahedra touch along one of their diagonals).
If they share 2 spins, the components σ used in the definition of OI and OI′ are different for both spins, there is a
minus sign from commuting the spin operators from each of the shared spins, and the two minus signs cancel each
other.
Consider the system Hamiltonian as in Eq. (2), which is trivially written in terms of the OI operators, but com-

plicated in terms of the original spins σI . Because the OI all commute, the eigenvalues of the Hamiltonian can be
labeled by the list of eigenvalues {OI} of all the OI . Notice that O2

I = 11, and so each OI = ±1. In particular, the
ground state corresponds to OI = 1 for all I.
Because the number of spins equals the number N of sites, one may naively expect that the list {OI = ±1} exhausts

the 2N states in the Hilbert space. However, there are constraints that the OI satisfy when the system is subject to
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periodic boundary conditions (compactified). One can show that∏
I∈A

OI =
∏
I∈B

OI =
∏
I∈C

OI =
∏
I∈D

OI = 11 . (8)

There are four constraints; therefore there are only 2N−4 independent {OI = ±1}. This implies, in particular, that
there is a ground state degeneracy of 24 = 16. This is a topological degeneracy, and the eigenvalues of a set of four
non-local (topological) operators T1,2,3,4 are needed to distinguish between the 16 degenerate ground states.
The operators T1,2,3,4 can be constructed as follows. Let Pl = {I|j + k = l} be a set of points along a horizontal

plane. Notice that each plane contains sites in only two of the four sublattices A,B,C,D. For example P1 ⊂ A ∪ B
and P2 ⊂ C ∪D. Define

T1 =
∏

I∈P1∩A

σz
I (9a)

T2 =
∏

I∈P1∩B

σz
I (9b)

T3 =
∏

I∈P2∩C

σz
I (9c)

T4 =
∏

I∈P2∩D

σz
I . (9d)

It is simple to check that [T1,2,3,4,OI ] = 0 for all I, and the T1,2,3,4 trivially commutte among themselves. Hence the
four eigenvalues T1,2,3,4 = ±1 of T1,2,3,4 can distinguish the 16 degenerate ground states.
In this model it is guaranteed that, for whichever component of spin enters in the coupling to the bath, it is

impossible to flip only a pair of defects and thus there is no mechanism for defect diffusion. The reason is that any
site is shared by 6 octahedra, and the operators OI for these cells are such that one can divide the 6 into 3 groups of
2 octahedra that will have in their definitions, respectively, the x,y, and z component of spin operator at the shared
site. Acting with either of the three components of the spin operator on this shared site will flip at least four defects.
Hence, glassiness is protected against any local thermal bath.

3D quantum fragile glass

The model displaying fragile like glassiness is constructed on a three-dimensional (3D) hexagonal close-pack lattice,
shown in Fig. 3. The lattice can be viewed as two interpenetrating simple hexagonal Bravais lattices displaced from

one another by 1
3a1+

1
3a2+

1
2a3, where a1 = (1, 0, 0), a2 =

(
1
2 ,
√

3
2 , 0

)
, and a3 = (0, 0, 1)) are the primitive vectors of

the simple hexagonal lattice. The sites belonging to the two intercalating lattices are shown in red and blue color in
Fig. 3. Each site can be labeled by i, j, k ∈ Z that index a site in the Bravais lattice spanned by a1,2,3, plus a q = 0, 1
that index each of the two sublattices – to shorten the notation, define a superindex I ≡ (i, j, k; q). At every lattice
site I one defines quantum spin S = 1/2 operators σx

I , σ
y
I , and σ

z
I .

Define now a prism cell PI that contains five lattice sites Jn(I), for n = 1, . . . , 5 as follows. For a given lattice site
I, the prism PI contains the site J1(I) = I, which belongs to one sublattice of the hexagonal close-packed lattice, the
three sites that belong to the other sublattice and that form an elementary triangle (sites J2, J3, J4) just below the
site I, and finally the site J5(I) just below that triangle, which belongs to the same sublattice as of site I. [In terms
of the lattice indices, J5(I) ≡ (i, j, k − 1; q) if I ≡ (i, j, k; q).] An example of two prisms is shown in Fig. 3c. Notice
that the two prisms shown share a common edge, and that their tops belong to distinct (red and blue) sublattices. It
is simple to see that the total number of prisms equals the number of spins: each lattice site I is the top vertex of a
single prism.
Now define the operators OI as

OI = σz
J1(I) σ

x
J2(I) σ

x
J3(I) σ

x
J4(I) σ

z
J5(I) . (10)

The operators commute, [OI ,OI′ ] = 0, for all pairs I, I ′. Again, it is simple to see how: if I, I ′ belong to the
same sublattice and the prisms PI , PI′ share a vertex, then they trivially commute as they both involve the same
component (x or z) of the spin operators σ at the shared site. If they belong to distinct sublattices, they either share
0 spins or an edge with 2 spins, as shown in Fig. 3. If they share 2 spins, the minus signs from commuting the x and
z components of spin in each of the shared sites appear an even number of times.
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(a)

(b)

(c)

FIG. 3: Sites of an hcp lattice. (a) The hcp lattice is comprised of two interpenetrating hexagonal lattices, show in red and
blue. Prisms are defined by as sets of five sites, two of which belong to one sublattice (top and bottom of the prism), and
three of which belong to the other and form a triangle that lies in the layer in between the top and bottom sites of the prism.
Five-spin interactions are defined on each prism as explained in the text. (b) Vertical view of the hcp lattice, which show that
the red and blue sublattices form triangular lattice planes. The blue sites stack on top of the red upward pointing triangles,
and the red sites stack on top of the downward pointing blue triangles. (c) Two prisms with topmost sites belonging to different
sublattices can share a common edge, and the five-spin operators defined on the two prisms commutte because minus signs
from commutting the σ

x and σ
z components appear twice, once for each shared site, and cancel.

Consider the system Hamiltonian as in Eq. (2), which is trivially written in terms of the OI operators, but com-
plicated in terms of the original spins σI . Because the OI all commute, the eigenvalues of the Hamiltonian can be
labeled by the list of eigenvalues {OI} of all the OI . Notice that O2

I = 11, and so each OI = ±1. In particular, the
ground state corresponds to OI = 1 for all I.
Because the number of spins equals the number N of sites, one may naively expect that the list {OI = ±1} exhausts

the 2N states in the Hilbert space. However, there are constraints that the OI satisfy when the system is subject
to periodic boundary conditions (compactified). Each of the two sublattices (q = 0, 1) of the hexagonal close-packed
structure can be further subdivided into Aq, Bq or Cq according to the three sublattices of the tripartite triangular
stacks of the simple hexagonal lattice. (So in all one has six sublattices A0,1, B0,1 and C0,1.) One can show that∏

I∈Aq∪Bq

OI =
∏

I∈Bq∪Cq

OI =
∏

I∈Cq∪Aq

OI = 11 . (11)

In all, these are six constraints, but only four are independent, because the product of the three products in Eq. (11) for
the same q is trivially the identity. Therefore there are only 2N−4 independent {OI = ±1}. This implies, in particular,
that there is a ground state degeneracy of 24 = 16. This, again, is a topological degeneracy. The eigenvalues of a set
of four non-local (topological) operators T1,2,3,4 are needed to distinguish between the 16 degenerate ground states.
The operators T1,2,3,4 can be constructed as follows. Let the plane Pk,q be the set containing sites with fixed k and

q. Let

T1 =
∏

I∈P1,0∩(A0∪B0)

σz
I (12a)

T2 =
∏

I∈P1,0∩(B0∪C0)

σz
I (12b)

T3 =
∏

I∈P1,1∩(A1∪B1)

σz
I (12c)

T4 =
∏

I∈P1,1∩(B1∪C1)

σz
I . (12d)
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It is simple to check that [T1,2,3,4,OI ] = 0 for all I, and the T1,2,3,4 trivially commutte among themselves. Hence the
four eigenvalues T1,2,3,4 = ±1 of T1,2,3,4 can distinguish the 16 degenerate ground states.
There are relations between this 3D model and a 2D classical triangular plaquette model which has glassy behav-

ior [11, 12, 14]. The 2D triangular plaquette model has Ising spin variables defined on the sites of a triangular lattice,
and a 3-spin interaction which is the product of the Ising variables on the downward pointing triangular plaquettes
only. Defect Ising variables (the 3-spin products) are defined at the center of the downward triangles, and the energy
is trivial to write in terms of these defect variables: these are free Ising spins. However, the dynamics is rather
non-trivial in terms of the defects, for flipping an original spin correspond to flipping all three defects on the vertices
of upward pointing triangles in the dual lattice.
In our 3D model, each quantum spin σI is shared by 5 prisms: 3 whose centers are on the same plane, and 2 whose

centers are immediately above and below site I. If the system’s coupling to the bath contains the σy spin component,
all 5 prisms are flipped. The σz and σx components flip either the eigenvalues of the 3 prisms on the plane or the 2
prisms on the vertical direction, respectively. Flipping the eigenvalues of 2 prisms in the vertical direction would lead
to defect diffusion in that direction.
To connect our 3D quantum model to the triangular plaquette model, consider a compactified slab (periodic

boundary conditions) in the third dimension (parallel to a3), with M layers. Because of the periodic boundary
condition, the odd-even parity of the defect numbers are conserved along vertically stacked prisms regardless of the
system-bath spin-flip operator, σx, σy, or σz. The defect number parity can be captured by defining the following
operator (recall I ≡ (i, j, k; q)):

τi,j;q =
∏
k

O(i,j,k;q) . (13)

It is also useful to define a similar product over the third dimension for the original spins:

si,j;q =
∏
k

σx
(i,j,k;q) . (14)

These “slab” operators allows us to concentrate on subspaces of the Hilbert space with a given set of τi,j;q instead
of the states with given Oi,j,k;q . The dynamics has process that transfer quantum mechanical amplitudes within and
between these subspaces labeled by τi,j;q ; we can argue that the system is glassy by simply looking at the processes
that transfer amplitude between the subspaces.
The variables τi,j;q and si,j;q can effectively be used to relate our quantum model to two 2D systems (q = 0 or red,

and q = 1 or blue) defined on sites labeled by (i, j; q) of two distinct triangular lattices. The variables si,j;q can be
related to the original spin variables in the models of Refs. [11, 12, 14]. In particular, one can relate the si,j;q and the
τi,j;q using Newton’s binomial coefficients through

si,j;q =
∏
mn

[τn,m;q]
(j−n

i−m) . (15)

Using the Pascal triangle relation
(

j+1−n
i+1−m

)
=

(
j−n
i−m

)
+
(

j−n
i+1−m

)
one can show that indeed the defect variables correspond

to

τi,j;q = si,j;q si+1,j;q si,j+1;q . (16)

We can focus again on two classes of processes, sequential passage over states connected through order gα processes
(“semi-classical” type trajectories), and on quantum tunneling process. The analysis of the sequential process is
similar to that of the classical 2D models [11, 12, 14], and goes as follows. Single flips of s correspond to concomitant
flips of three τ defects. Defects can only be annihilated in triplets. The defects are not free to diffuse and come
together; instead, they move through the production of more defects. For example, a defect can decay into two more
defects, by flipping one s variable. Now, in order to bring three defects separated by a distance ξ together, one has to
go through intermediate steps with a large number of defects that are created. There is an hierarchical organization
for these intermediate processes; equilateral triangles of size ξ = 2� require the creation of 
 extra intermediate defects.
Hence there is an energy barrier of order 
h to be overcome. For a typical equilibrium separation ξ = c−1/2 ∼ eh/2T ,
the barriers to be overcome in the equilibration process are of order h/2 ln2Th. Hence, the equilibration time scales
as

tseq. ∼ exp[(h/T )2/2 ln 2] ,

a much slower relaxation than the Arrhenius one for the 2D quantum model.
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FIG. 4: To annihilate three defects (shown in green) at the corners of an equilateral triangle, one must flip the spins in a
“fractal” membrane (containing sites shown in red) that stretches between the defects. For a triangle of size 2�, there are
3� sites in the membrane. The annihilation of the three defects through quantum tunneling is a virtual process of order the
number of sites that are involved (number of red sites). Hence, the amplitude for the quantum tunneling process vanishes
exponentially with the “volume” of the membrane.

Through quantum tunneling processes, defect annihilation can again occur via virtual processes in which the number
of defects is only larger in the intermediate (virtual) steps. The order in perturbation theory in g grows very fast with
defect separation. An example is shown in Fig. 4; basically, to annihilate three defects at the edges of an equilateral
triangle of size ξ = 2�, one must flip 3� original spins laying on a mold defined by a Sierpinski gasket. (Notice that
here the hierarchy is built staring from the microscopic scale.) So in perturbation theory the quantum recombination

process has an amplitude of order (g/h)3
�

, which leads to recombination/equilibration times

ttun. ∼ exp
[
ln(h/g) e

ln 3

2 ln 2
h/T

]
,

which grows extremely fast as the temperature is lowered. Again, we learn from this simple estimation is that quantum
tunneling is less effective than classical sequential processes in thermalizing the system.

Summary

We have shown that there are local quantum Hamiltonians for which it is possible to show that the system resists
equilibration with a thermal bath. Indeed in the models studied, there is a “protection” against thermal equilibration
with any bath, as long as the physical degrees of freedom of the system only couple to the bath locally.
It is often believed that quantum tunneling provides an escape route against dynamical slowdown caused by height-

ened thermal energy barriers as the temperature is lowered. However, for the systems here presented, classical
sequential processes are more effective than quantum tunneling processes in thermalizing the system. The reason for
the freezing of quantum tunneling is that equilibration is through defect recombination, and as the density of defects
decrease at lower temperatures, the barrier widths increase with temperature.
The widening of the barrier widths is another way to say the following: as the defects grow apart, the size of

the object that has to quantum flip states to annihilate the defects grows. The order in perturbation theory scales
as a power of this object that extends between defects, and hence the amplitude for annihilating the defects via
quantum tunneling grows exponentially with the object size. Of course, the perturbative argument assumes that
the recombination is through processes with intermediate virtual higher energies. For this to happen, simple defect
diffusion must not occur, and this is precisely what happens in the the 3D models we discussed in this lecture.
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LECTURE 2: MAPPING BETWEEN CLASSICAL DYNAMICS AND QUANTUM IMAGINARY TIME
EVOLUTION

In this lecture we shall discuss a useful tool to study certain types of quantum glasses, here in the sense of systems
with many ground states, exploring a mapping between certain types of classical dynamics and quantum Hamiltonians.
More details than what is here presented can be found in two papers: Ref. 21, in collaboration with Claudio Castelnovo,
Christopher Mudry, and Pierre Pujol, and Ref. 22, in collaboration with Giulio Biroli and Francesco Zamponi.
This mapping will allow us to make concrete statements about particular quantum glassy systems backed by

knowledge obtained from the studies of the classical counterparts. For example, we can construct classes of local
quantum Hamiltonians without disorder which we can argue are glassy because the mapped classical systems are
known to be.
The general approach is based on a mapping between quantum Hamiltonians and (classical) Fokker-Planck operators

which allows us to obtain results on ground state properties and time dependent correlation functions from the analysis
of the stochastic dynamics of a classical equilibrium system. This connection, already well-known for a few decades
[23, 24] for particle systems moving in real space, has been generalized recently to discrete systems with localized
degrees of freedom, such as spins and dimers, and much used in the context of the so called Rokshar-Kivelson points
[21, 25, 26]. The connection is far-reaching since it allows one to obtain controlled and highly non-trivial results on
the phase diagram and dynamical properties of a quantum many body problem [21]. Moreover, it has been used to
construct an efficient algorithm for Quantum Monte Carlo at zero temperature [27].

Langevin dynamics: the Fokker-Planck and Schrödinger operators

Here we shall explore this classical-quantum connection for the particular case of bosonic point particles, following
the standard route for mapping classical Langevin dynamics for a many-particle system and its associated Fokker-
Planck operator to a Schrödinger operator [23, 24]. The particular derivation below was originally presented in Ref. 22
and applied to the study of the superglass state of hard spheres.
Consider N particles whose evolution is determined by the following Langevin equations:

γi
dxi

dt
= − ∂

∂xi
UN(x1, . . . ,xN ) + ηi(t) , i = 1, ..., N , (17)

where γi are friction coefficients, ηα
i (t) is a Gaussian white thermal noise with variance 〈ηα

i (t)η
β
j (t

′)〉 =

2T γi δij δαβ δ(t − t′). Furthermore, T is the temperature (with kB = 1) and α and β run from 1 to the spatial
dimension d (henceforth the boldface notation indicates vectors). The potential will eventually be assumed to be the
sum of (symmetric) pair potentials,

UN({x}) ≡ UN (x1, . . . ,xN ) =
1

2

∑
i�=j

Vij(xi − xj) , (18)

with Vij = Vji, and
∂

∂xi
UN ≡ ∇iUN =

∑
j( �=i)∇Vij(xi − xj).

It is well known [23, 24] that the evolution equation for the probability distribution P ({x}) can be written as a
Schrödinger equation in imaginary time:

∂tP = −HFPP (19)

where the Fokker-Planck operator reads:

HFP = −
∑

i

1

γi

∂

∂xi

[
∇iUN + T

∂

∂xi

]
(20)

The Fokker-Planck operator is non-Hermitian and can be proven to have all eigenvalues larger than or equal to
zero [23, 24]. The zero eigenvalue corresponds –as it can be readily checked– to the stationary distribution which is
the equilibrium Gibbs probability measure:

PG({x}) =
1

ZN
e−

1

T
UN ({x}) =

1

ZN
e−

1

2T

P
i�=j

Vij(xi−xj) . (21)
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Setting for simplicity � = 1, the Fokker-Planck operator can be mapped into a Hermitian quantum Hamiltonian by
a similarity transformation

H = e
1

2T
UN HFP e−

1

2T
UN , (22)

that leads to

H =
∑

i

1

γi

[
−T ∂2

∂x2
i

− 1

2
∇2

iUN +
1

4T
(∇iUN )

2

]
=

∑
i

p2
i

2mi
+ VN ({x}) (23)

This expression corresponds to a Hamiltonian for particles with mass mi = γi/(2T ) and an effective potential which
is the sum of a two body and three-body interaction:

VN ({x}) =
∑

i

1

γi

[
−1
2
∇2

iUN +
1

4T
(∇iUN )

2

]

= −1
2

∑
j �=i

1

γi
∇2Vij(xi − xj) +

1

4T

∑
i;j( �=i);j′( �=i)

1

γi
∇Vij(xi − xj) · ∇Vij′ (xi − xj′ ) .

(24)

The eigenfunctions of the quantum Hamiltonian and of the Fokker Planck operator are in a one to one correspondence.
Indeed, by applying the similarity transformation introduced above one finds:

ΨE({x}) ∝ e
UN
2T PE({x}) (25)

where PE indicates the right eigenfunction of the Fokker-Planck operator with eigenvalue E, and ΨE its counterpart
associated to the quantum Hamiltonian. This also implies that all the eigenvalues E corresponding to the Fokker-
Planck operator are identical to the ones of the quantum Hamiltonian.
In particular, this relation, together with Eq. (21), allows one to obtain straightforwardly the ground state wave-

function of the quantum problem, which is of the Jastrow form [28, 29, 30]:

ΨG({x}) =
√
PG({x}) =

1√
ZN

exp

⎡
⎣− 1

4T

∑
i�=j

Vij(xi − xj)

⎤
⎦ . (26)

The logic of the approach we pursue using this mapping is the following: we take as starting point Hamiltonians with
many-body potentials of the form Eq. (24), for which the Jastrow form Eq. (26) is exact. In general, wavefunctions of
this form lead to more than two-body interactions VN ({x}) (note that also He4 has weak higher order interactions).
The important point is that if the two-body potentials Vij(xi − xj) are short-ranged (i.e. local) potentials, then
VN ({x}) is also local, and thus the many-body Hamiltonians on which we focus are local (non-local Hamiltonian may
lead to pathological behaviors).
Because we know exactly the ground state wavefunction, and it is related to a Boltzmann-Gibbs measure for

a classical system, quantum static correlation functions can be computed in terms of classical static correlation
functions [30]. Furthermore, as we shall show and noticed by Henley [26], the mapping generalizes also to dynamical
correlation functions. Hence, we will obtain quantum dynamical correlation functions at zero temperature by analytic
continuation of classical (stochastic) dynamical correlation functions.

Identical bosons

Let us first consider the simplest case of N identical bosons characterized by the Hamiltonian H in Eq. (23) with
γi ≡ γ = 1 and Vij ≡ V . It is important to remark that since the particles are bosons one has to consider only
many-body states that are completely symmetric under permutation of particles, and study only observables that are
invariant under permutation of particles (e.g. the density-density correlator). This is clearly not a difficult constraint
to handle since the Jastrow form (26) with Vij = V is completely symmetric. Furthermore, even in the study of
dynamical correlations this will not be a problem because if one starts from a probability law completely symmetric
under permutation of particles, the symmetrization carries over to all later times. This follows trivially from the
Fokker-Planck evolution Eq. (19), since if the state P and the operator HFP are both symmetric under exchange of
particles, so is the time derivative ∂tP and thus the many-body state thereafter.
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For a given classical isotropic 2-body potential V (x) = V (|x|), the resulting quantum potential energy will have
2-body and 3-body interactions:

VN ({x}) =
∑
i>j

vpair(xi − xj) +
∑

i�=j �=j′ �=i

v3−body(xi − xj ,xi − xj′ )

vpair(x) = −∇2V (x) +
1

2
[∇V (x)]2 = −d− 1

r
V ′(r)− V ′′(r) + 1

2
[V ′(r)]2 (27)

v3−body(x,x′) =
1

4
∇V (x) · ∇V (x′) = 1

4

x

r
· x
′

r′
V ′(r)V ′(r′) ,

where d is the spatial dimension and r ≡ |x|.

From quantum to classical: Hamiltonians which are sums of projectors in terms of classical dynamics

Just above we discussed how one starts form a classical system with Langevin dynamics, or equivalently a the
Fokker-Planck description, and goes to quantum Hamiltonian that shares the excitation spectrum with the Fokker-
Planck operator. The ground state of the quantum system is related to the Boltzmann-Gibbs measure of the classical
system. This construction, carried above for point particles diffusing in the continuum in presence of interactions
(which has been known for long) [23, 24], can be generalized to other systems, starting generically from a Master
equation describing the evolution of classical probabilities, and then constructing an associated quantum Hamiltonian;
this procedure was followed by Henley [26] in constructing Rokhsar-Kivelson type Hamiltonians. One can also make
a connection between quantum and classical coming the other way [21], starting from a generic Rokhsar-Kivelson
type Hamiltonian, i.e. a Hamiltonian that can be written as a sum of projectors sharing a common null vector, and
showing that it can always be related to the stochastic dynamics of a classical system.
Consider the Hilbert space H given by the span of all orthogonal and normalized (orthonormal) states |C〉, labeled

by the index C ∈ S with S a countable set,

〈C|C′〉 = δCC′ , 11 =
∑
C∈S

|C〉〈C|. (28)

Consider a generic (Hermitian) Hamiltonian Ĥ acting on this Hilbert space, and define the subset L ⊂ S × S to be
the set of all the pairs (C, C′) with C �= C′ such that the off-diagonal matrix elements of the |S|× |S| Hermitean matrix

(HCC′) :=
(
〈C|Ĥ |C′〉

)
(29)

are non-vanishing. For simplicity, we will make the two technical assumptions that the Hilbert space is fully connected
under the time-evolution operator, i.e., any two states in H have a non-vanishing matrix element for some power of

Ĥ , and finite-dimensional. These two conditions will be needed when using the Perron-Frobenius theorem to establish
the non-degeneracy of the GS. Of course, dropping these assumptions result in disconnected sectors and many possible
true equilibrium states in the classical equivalent model and many ground states in the quantum system. Notice that
broken connectivity implies broken ergodicity, but not the converse. Basically, ergodicity is a statement on time scales
to connect two sectors, while disconnectivity means the sectors remain trully disconnected no matter how long one
waits.
Consider Hamiltonians

Ĥ =
1

2

∑
(C,C′)∈L

wC,C′ Q̂C,C′ (30a)

where wC,C′ > 0 and

Q̂C,C′ = e−Kε
C,C′

/2|C〉〈C|+ e+Kε
C,C′

/2|C′〉〈C′|
− e−iKφ

C,C′
/2 |C′〉〈C| − e+iKφ

C,C′
/2 |C〉〈C′|

(30b)

are projectors:

(Q̂C,C′)
2 = 2 cosh(KεC,C′/2) Q̂C,C′ , (31)
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with eigenvalues 0 (null state) and 2 cosh(KεC,C′/2). We now require that there exists a simultaneous zero mode for

all the Hermitian operators Q̂C,C′ in Eq. (30b). One verifies that the nodeless wavefunction

|Ψ0〉 :=
∑
C∈S

e−KEC/2|C〉, (32)

is annihilated by Q̂C,C′ , ∀ (C, C′) ∈ L, provided the integrability conditions

εC,C′ = EC′ − EC (33a)

and

φC,C′ = ΦC − ΦC′ (i.e. removable via a pure gauge transformation: |C〉 → e−iKΦC/2 |C〉 ) (33b)

on the real-valued parameters εC,C′ and φC,C′ are satisfied for some real-valued function EC defined on S, and for all
(C, C′) ∈ L. With the assumption that all couplings wC,C′ are positive, we see that all off-diagonal matrix elements

of Ĥ are negative, so by the Perron-Frobenius theorem [32] the ground state wavefunction has positive amplitudes,

which is precisely the case for the eigenstate (32), which is anihilated by all projectors Q̂C,C′ .
The types of Hamiltonians above, which are sums of projectors with positive coefficients, and such that the projectors

annihilate a common state, are the generalizations of the Rokshar-Kivelson Hamiltonians constructed for the quantum
dimer models. We denote these generalized Hamiltonians as of the RK type. For the full correspondence between
quantum Hamiltonians of the RK type and classical statistical systems to be established, we need also to account for
the approach of thermodynamic equilibrium in the classical system as we now explain.

From quantum dynamics to classical stochastics

There exists a correspondence between quantum Hamiltonians Ĥ of the RK type (30) and classical statistical
systems endowed with time stochastics through a Master equation of the matrix type. The correspondence can be
easily seen as follows.
Choose any two C and C′ in S and define the matrix elements

HCC′ := 〈C|Ĥ |C′〉 (34a)

and

WCC′ := −e−K(EC−EC′)/2HCC′ , (34b)

respectively. Hermiticity and time-reversal symmetry of Ĥ imply the condition of symmetry

HCC′ = HC′C (35a)

which, in turn, implies the condition of detailed balance

WCC′e−KEC′ =WC′Ce−KEC (35b)

for any pair C, C′ ∈ S.
We can write the Schrödinger equation

ψ̇C(τ) =
∑
C′∈S

HCC′ ψC′(τ) ∀ C ∈ S, (36)

and defining

pC = Ψ0C × ψC =
1√

Z(K/2)
e−KEC/2 ψC , (37)

where |Ψ0〉 is the ground state of Ĥ , we establish the Master equation

ṗC(τ) :=
C′ �=C∑
C′∈S

[
WCC′pC′(τ)−WC′CpC(τ)

]
, ∀ C ∈ S (38)
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TABLE I: Correspondences between quantum Hamiltonians of the RK type bH and classical systems with stochastic in time
captured by the transition matrix (WCC′). (From Ref. 21.)

Quantum system at RK point Classical system

Hilbert space with basis B labeled by S Configuration space S

Ground state wavefunction Boltzmann distribution

Quantum phase transitions Classical phase transitions

Hamiltonian matrix:
“
〈C| bH|C′〉

”
Transition matrix: (WCC′)

Positive-semidefinite
decomposition conditions

Integrability conditions

9=
;

8><
>:

Positive transition rates

Conservation of probabilities

Energy eigenvalues Relaxation rates

Eigenfunctions Right/Left eigenfunctions

whose properly normalized solution can be interpreted as the instantaneous probability (a number between 0 and 1) for
the classical system to be in configuration C. Equation (38) defines in a natural and unique way the classical stochastics
at the reduced temperature K induced by the quantum Hamiltonian of the RK type (30) on the associated classical
system in thermodynamic equilibrium. On the other hand, the special balance between the kinetic and the potential
terms characteristic of an RK Hamiltonian guarantees that the transition matrix (WCC′) satisfies the conservation of
normalization condition WCC = −

∑C′ �=C
C′∈SWC′C ∀ C ∈ S, as can be verified directly using Eqs. (30a,30b) and (34b).

We thus have established a correspondence between generalized RK Hamiltonians of the form (30) and stochastic
classical systems that can be represented by the Master equation of the matrix type (38). The dictionary between
the RK type Hamiltonians and the classical stochastic systems is summarized in table I (from Ref. 21).
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LECTURE 3: THE CASE STUDY OF THE SUPERGLASS

This lecture presents a “solid” example, constructed with Giulio Biroli and Francesco Zamponi, of a superglass, a
bosonic system without diagonal (density) long range order, but off-diagonal (nonzero condensation) long range order.
The lecture is presented using slides (see appendix), including a discussion of the experimental results of Kim and
Chan on supersolidity, and recent experiments by Davis’s group. A brief summary of the presentation is as follows.

Summary of slides (see attached .pdf file)

We make use of the relationship between the classical and quantum models of lecture 2, and study the zero
temperature phases of the quantum system. We work out the properties of the quantum phases by using the classical
Gibbs measure defined by the square of the Jastrow wavefunction [29, 30, 31]. We focus on a system of N identical
bosons with a particular interaction that corresponds to a Jastrow state with an hard sphere potential. We remark
that this is the hard sphere wavefunction model, not the hard sphere Hamiltonian model. The control parameter is
the particle density ρ = N/V of the particles, or the packing fraction φ = πρ/6. We use known results for the phase
diagram of classical hard spheres [33, 34, 35] to investigate the quantum model. At low density, the system is liquid,
and upon increasing the density it undergoes a first order phase transition to a crystalline state, that is arranged in a
face centered cubic (FCC) lattice. A metastable glassy phase can be obtained in the classical problem if the density is
increased fast enough or in presence of small bi-dispersity (binary mixtures). This glass phase can be compressed until
the random close packing packing (RCP) fraction φ ∼ 0.64. These three classical phases have their corresponding
counterparts in the mapped quantum system. These are superfluid, supercrystal and superglass phases.
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