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“Quantum time evolution is trivial”*
D. Huse

* taken out of context
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Outline

Quantum versus classical description of dynamics. Determinism 
and uncertainty. Coherent states, duality of particle and wave 
classical limits.

Phase space representation of quantum mechanics through the 
Wigner function. Weyl ordering of operators, Moyal product. 

Quantum Liouville equation for the density matrix in the Wigner 
representation. Semiclassical limit (truncated Wigner 
approximation).

Path integral representation of the evolution. Connection to 
Keldysh techniques. Causality of semiclassical description.

Beyond semiclassical approximation: quantum jumps and quantum 
noise.

Examples.
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From single particle physics to many particle physics.

Classical mechanics: Need to solve Newton’s equation (fully 
deterministic given initial conditions)
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Instead of one differential equation need to solve n differential 
equations, not a big deal!? The only uncertainty comes from 
potentially unknown initial conditions. Chaos impedes our ability to 
make long time accurate deterministic predictions. 



Quantum mechanics: Need to solve Schrödinger equation.
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Exponentially large Hilbert space. M

n
Use specific numbers: 
M=200, n=100.
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Bosons:

QM gives fundamentally probabilistic description of evolution. In complex 
systems we deal with combination of quantum-mechanical and 
probabilistic uncertainty. 



Expansion of quantum dynamics around classical limit.Expansion of quantum dynamics around classical limit.

Classical (saddle point) limit: Classical (saddle point) limit: 

(i) Newtonian equations for particles, (i) Newtonian equations for particles, 

(ii) Gross(ii) Gross--PitaevskiiPitaevskii equations for matter waves, equations for matter waves, 

(iii) Maxwell equations for classical (iii) Maxwell equations for classical e/me/m waves and charged particles, waves and charged particles, 

(iv) Bloch equations for classical rotators, etc.(iv) Bloch equations for classical rotators, etc.

Questions:Questions:

What shall we do with equations of motion?What shall we do with equations of motion?

What shall we do with initial conditions?What shall we do with initial conditions?

What shall we do with observables?What shall we do with observables?

Challenge : Challenge : 
How to reconcile exponential complexity of quantum many body How to reconcile exponential complexity of quantum many body 
systems and power law complexity of classical systems?systems and power law complexity of classical systems?



Coherent states. Dual classical corpuscular and wave limits.







Bose-Hubbard Hamiltonian,  and classical (Gross-Pitaevskii) 
equations of motion.







Hamiltonian dynamics.

Particle limit Wave limit
Phase space operators px, +ψψ ,

Canonical 
commutation relations
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Particle-wave duality in Bose-Einstein distribution



Superfluid-Insulator transition as an example of particle-wave 
duality. (M. Greiner et. al., 2002 ).(M. Greiner et. al., 2002 ).

Classical phase in 
terms of waves.

Classical phase in 
terms of particles.

Quantum phase transition



Classically the ground state has a uniform density and Classically the ground state has a uniform density and 
a uniform phase.a uniform phase.

However, number and phase are conjugate variables.

They do not commute: [ ],          1N i Nϕ δ δϕ= → ≥

There is a competition between the interaction leading to There is a competition between the interaction leading to 
localization and tunneling leading to phase coherence.localization and tunneling leading to phase coherence.
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How can we connect classical and quantum description?

Wigner function and Weyl ordering.

/)2/()2/(*),( ξξψξψξ ipexxdpxW ∫ +−=

G.S. of a harmonic G.S. of a harmonic 
oscillator:oscillator:

Wigner function can be interpreted as a quasi probability distribution.



Wigner function is analogous to the 
probability distribution.

is not positive-definite – quasi-probability dsitribution.

At finite temperatures Wigner function 
becomes Bolzmann’s function –
smooth connection of quantum 
mechanics and statistical physics. 



Example: Harmonic oscillator:
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Expectation value of product of operators, Moyal product.











Bopp operators for coherent states



Summary of phase space methods

Wigner-Weyl quantization:
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Moyal product (basic multiplication rule)
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Phase space methods and quantum dynamicsPhase space methods and quantum dynamics

Von Neumann equation for the density matrix

























Sketch of the path integral derivation of the time evolution. 
(Very similar to Keldysh formalism)

Insert resolution of identity 



Exact Feynman path-integral representation of the evolution



Wigner function and Weyl oredring emerg automatically from the 
boundary terms at τ = 0 and τ=t. No special assumptions are 
needed. For details of the derivation see: A.P. arXiv:0905.3384, 
Phys. Rev. A, vol. 68 (5), 053604 (2003).



Coherent state representation:

Same idea but now insert coherent states

ψ Is the classical Gross-Pitaevskii field, η is the quantum field.



Recover semiclassical approximation by expanding action to 
the linear order in quantum fields:

Then functional integration is trivial: we are getting δ-function 
constraints enforcing classical equations of motion:



Once again semiclassical – truncated Wigner – approximation

The same story happens in the coherent state basis: integrating 
over the quantum field in the leading order enforces Gross-
Pitaevskii equations on the classical fileds:



Non-equal time correlations functions (sketch)
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Recover Bopp operators (also automatically). Same for coherent states.



Beyond truncated Wigner approximation (TWA)

Expand action to the third order in quantum fields (no corrections to 
TWA in harmonic theories)  



Note that α plays the role of the correction to the conjugate momentum = 
quantum jump 

More generally



Quantum corrections emerge as a nonlinear response to 
infinitesimal jumps in classical phase space variables.

Each jump carries a factor of 2.

Jumps do not affect short time behavior, i.e. TWA is 
asymptotically exact at short times.

Equivalent representation through stochastic quantum jumps



Proof of equivalence

Integrating over ξ gives desired non-linear response.

Possible choices of F:



Many-particle generalization



Coherent states. Same story

Bose Hubbard model



Examples

Classical equations of motion





More complicated example: sine-Gordon (Frenkel-Kontorova) model

Assume initially V=0 and the system is in the ground state



Semiclassical approximation (TWA) need to solve

First quantum correction – have a quantum jump proportional to

So the parameter β plays the role of 

Take                                        so that we can compare with 
linear response (usual perturbation theory). Note that for β2≤8π
the cosine potential is relevant (non-perturbative).
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Illustration: SineIllustration: Sine--GrodonGrodon model, model, ββ plays the role of plays the role of 

V(tV(t) ) = 0.1 = 0.1 tanhtanh (0.2 (0.2 t)t)
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Coherent states

Initial coherent state

Expand the initial coherent state in the Fock basis, trivially evolve each term in time 
and re-sum

Collapse at t~2π/UN, revival at t~2π/U 

Corresponds to the experiments by M. Greiner et.al. (2002)



M. Greiner, O. Mandel, T. W. Hänsch and I. Bloch, Nature 419, 51-54



Semiclassical picture (classical limit, N→∞, U→0, UN=const)



N=4

Semiclassical expansion reproduces expansion of exact 
quantum result in series in 1/N: ψ0 up to 1/N2, ψ1 up to 1/N4

Semiclassics accurately reproduces collapse but not revival.



Turning on interactions in a system of interacting bosons

Choose N=1 (per site), J=1, U0=1. Follow energy in the system.



Eight sites



2D lattice 32x32 sites



Dicke model (many-level Landau-Zener problem)

Consider λ(t)=-δt. Start in the with spin pointing up and no bosons.

Classical limit: have exact solution b(t)=0, Sz(t)=S, Sx(t)=Sy(t)=0. 
Quantum mechanically expect that at δ→0 – adiabatically follow the 
ground state: 



The problem can be solved analytically using adiabatic invariants:
A. Altland, V. Gurarie, T. Kriecherbauer, AP, PRA 79, 042703 (2009) , A.P. Itin, P. Törmä, arXiv:0901.4778.

Almost perfect agreement with the exact result in the whole range of δ



Key points of this lecture. 1) Hamiltonian dynamics.

Particle limit Wave limit
Phase space operators px, +ψψ ,

Canonical 
commutation relations
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2) Phase space representation of QM (naturally emerges 
from Feynman path interal)

Wigner-Weyl quantization:
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Bopp operators: 
generate Weyl symbol. 
Provide natural interpretation 
of commutation relations  
through jumps in the classical 
phase space ψ
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Quantum corrections: nonlinear response or stochastic quantum 
jumps with non-positive probability.

These methods are very useful to analyze various quantum 
(coherent) dynamical problems with initial conditions. Many 
applications to cold atoms. Open new possibilities.

3) Representation of quantum dynamics. Semiclassical approximation:




