

2046-3

Summer College on Nonequilibrium Physics from Classical to Quantum Low Dimensional Systems

6 - 24 July 2009

Electron Cooling in Normal Metal-Superconductor Tunnel Junctions

Frank Hekking Laboratoire de Physique et Modélisation

des Milieux Condensés

Maison des Magistères Jean Perrin

Electron Cooling in Normal Metal -Superconductor Tunnel Junctions

Frank Hekking

Université Joseph Fourier

Laboratoire de Physique et Modélisation des Milieux Condensés Maison des Magistères Jean Perrin CNRS-Grenoble, France

Nonequilibrium Physics from Classical to Quantum Low dimensional Systems ICTP Summer College, Trieste Italy, 06.7.2009 - 24.7.2009

Collaborators

A. Vasenko LPMMC, Grenoble, France

H. Courtois, B. Pannetier, L. Pascal, S. Rajauria Néel Institute, Grenoble, France

J. Pekola Low Temperature Laboratory, TKK Helsinki, Finland

NANOSciERA consortium « NANOFRIDGE »

Outline

1. Introduction & motivation

- Electronic refrigeration with NIS junctions

2. Effects of Andreev reflection

- Enhanced Joule heat production due to coherence

3. Quasiparticle relaxation in S

- A note on the interest of quasiparticle traps

4. Towards a Brownian refrigerator

- Cooling out of noise?

Conclusions

1. Introduction & motivation

Electronic refrigeration with NIS junctions

Physics of tunnel junctions

Golden Rule: tunnel rate

Hamiltonian

 $\hat{H} = \hat{H}_1 + \hat{H}_2 + \hat{H}_T$

 $H_T = \sum_{kq\sigma} T_{kq} c_{q\sigma}^{\dagger} c_{k\sigma} + \text{H.c.}$

Nature of metal: dimensionless density of states

Normal metalSuperconducting metal|E| $n_N(E) = 1$ $n_S(E) = -\frac{|E|}{\sqrt{E^2 - \Delta^2}}$ $|E| > \Delta$ 0otherwise

Thermo-electric transport in normal tunnel junctions

Voltage bias:

$$\mu_1 - \mu_2 = eV$$

Charge current out of electrode 1 $I_{1}(V) = e[\Gamma_{1 \to 2}(V) - \Gamma_{2 \to 1}]$ $= \frac{1}{eR_{T}} \int dE[f(E) - f(E + eV)]$ $= V/R_{T}$ $= -I_{2}(V)$ Fermi distribution $f(E) = [e^{\beta E} + 1]^{-1}$

Electric current is conserved: $I_1 + I_2 = 0$

Thermo-electric transport in normal tunnel junctions

Voltage bias:

$$\mu_1 - \mu_2 = eV$$

Thermodynamics:

$$dQ = TdS = dU - \mu dN \longrightarrow E_k = \epsilon_k - \mu \quad \text{per particle}$$
Heat (entropy) current out of electrode 1
$$\dot{Q}_1(V) = \frac{1}{e^2 R_T} \int dEE[f(E) - f(E + eV)]$$

$$= -V^2/2R_T$$

$$= \dot{Q}_2(V)$$

Total entropy production: Joule heat

$$Q_1 + Q_2 = -V^2/R_T = -IV < 0$$

(regardless of polarity: even function of V)

Thermo-electric transport in superconducting junctions

Voltage bias:

$$\mu_1 - \mu_2 = eV$$

Charge current out of normal electrode

Thermo-electric transport in superconducting junctions

Voltage bias:

$$\mu_1 - \mu_2 = eV$$

Heat (entropy) current out of normal electrode

$$\dot{Q}_{N}(V) = \frac{1}{e^{2}R_{T}} \int dEn_{S}(E + eV)E[f(E) - f(E + eV)]$$

$$= -IV - \dot{Q}_{S}(V)$$

$$\neq \dot{Q}_{S}(V)$$
(Nahum, Eiles and Martinis, APL 94
Giazotto et al. RMP 06)
$$\neq \dot{Q}_{S}(V)$$
(a) $(At optimum: Display in the second displa$

Density of states effect

Experiments on superconducting junctions

(Leivo et al. APL 96, Pekola et al., PRL 04)

2. Effects of Andreev reflection

Enhanced Joule heat production due to coherence

Zero-bias anomaly in NIS coolers

(Rajauria et al. PRL 08)

Single-particle & Andreev currents

Ballistic junctions: Bogolubov-de Gennes theory (1)

(Blonder, Tinkham & Klapwijk, PRB 82) $I_{NS} = \frac{e}{\pi\hbar} \int dE [f(E) - f(E + eV)] [1 - B(E) + A(E)].$ e e S h S ..**←**0-B(E) A(E)clean interface *clean interface* 1 1 1 *tunnel junction* tunnel junction <u>-</u> Ε/Δ <u>-</u> Ε/Δ 1.5 0.5 1 0.5 1.5 1

1

1

Ballistic junctions: Bogolubov-de Gennes theory (2)

Current-voltage characteristic

No anomaly...

... cf. experiment.

Thermo-electric subgap transport in ballistic tunnel junctions

Heat current out of electrode N

Total entropy production fully efficient: Joule heat entirely deposited in N! Subgap current

 $I = V/R_A$

Subgap resistance

$$R_A = G_Q R_T^2(k_F^2 S) \gg R_T$$

Subgap current in diffusive tunnel junctions (1)

Electron-hole dephase

 $\delta \phi_{eh} \propto \epsilon t$

Relative phase lost after distance

$$\xi_{\epsilon} = \sqrt{\hbar D/\epsilon}$$

Amplitudes to be summed coherently over length ξ !

(Hekking & Nazarov, PRL 93; PRB 94)

Subgap current in diffusive tunnel junctions (2)

Spectral current

$$I(\epsilon) = \frac{\hbar}{8e^{3}\nu_{0}} \int_{barrier} d^{2}r_{1}d^{2}r_{2}\cos\left[\phi(\vec{r}_{1}) - \phi(\vec{r}_{2})\right]g_{T}(\vec{r}_{1})g_{T}(\vec{r}_{2}) \times [P_{\epsilon}(\vec{r}_{1} - \vec{r}_{2}) + P_{-\epsilon}(\vec{r}_{1}, \vec{r}_{2})].$$

Subgap current

$$I_{NIS} = 2e\Gamma_{NIS} = \int d\epsilon I(\epsilon) [f(\epsilon/2 - eV) - f(\epsilon/2 + eV)]$$
(Hekking & Nazarov, PRL 93; PRB 94)

Beyond perturbation theory: Keldysh-Usadel theory

 $\begin{bmatrix} \sigma_z E, \check{G} \end{bmatrix} = i \mathcal{D} \partial_x \check{J}, \quad \check{J} = \check{G} \partial_x \check{G}, \quad \check{G}^2 = 1$

(Vasenko et al., unpublished)

Beyond perturbation theory: Keldysh-Usadel theory *dI/dV vs. bias*

Cooling power vs. bias

Cooling power vs. transparency

(Vasenko et al., unpublished)

Andreev reflection effects in SINIS coolers

(Rajauria et al. PRL 08)

3. Quasiparticle relaxation in S

A note on the interest of quasiparticle traps

Nonequilibrium quasiparticle effects

$\begin{bmatrix} \check{\sigma}_z E + \check{\Delta}, \ \check{G} \end{bmatrix} = i \mathcal{D} \partial \check{J}, \quad \check{J} = \check{G} \partial \check{G}, \quad \check{G}^2 = \check{1}$

+ inelastic scattering in relaxation time approach

(Vasenko & Hekking, JLTP 08)

Nonequilibrium quasiparticle effects

4. Towards a Brownian refrigerator

Cooling out of noise?

What is the effect of a time-dependent voltage?

DC bias refrigerates regardless of polarity...

AC drive – *refrigerates N if frequency and amplitude are not too high*

Stochastic drive – *refrigerates N if spectrum is "suitable"*

Cooling with a hot resistor?

Fluctuations in NIS junction

Hamiltonian $\hat{H} = \hat{H}_N + \hat{H}_S + \hat{H}_T + \hat{H}_R$

Tunnelling in the presence of fluctuations

$$H_T = \sum_{kq\sigma} T_{kq} c_{q\sigma}^{\dagger} c_{k\sigma} e^{-i\varphi} + \text{H.c.}$$
phase related to voltage $\varphi(t) = eVt/\hbar$

(Ingold and Nazarov, Les Houches 92)

Voltage fluctuations induce phase fluctuations: fluctuation-dissipation theorem

$$\begin{split} \langle \varphi(t)\varphi(0)\rangle_{R} &= 2\int_{-\infty}^{+\infty} \frac{\mathrm{d}\omega}{\omega} \frac{\mathrm{Re}Z_{t}(\omega)}{R_{K}} \frac{e^{-i\omega t}}{1 - e^{-\beta\hbar\omega}} \\ \hline \mathbf{Real \ part \ of \ resistance}} \\ \frac{\mathrm{Real \ part \ of \ resistance}}{R_{K}} &= \frac{1}{R_{K}} \mathrm{Re}\left[\frac{1}{i\omega C + 1/R}\right] = \frac{1}{g} \frac{1}{1 + (\omega/\omega_{R})^{2}} \\ \frac{1}{g} \frac{1}{1 + (\omega/\omega_{R})^{2}} \\ \hline \mathbf{Charging \ energy} \\ \mathrm{dimensionless \ conductance} \quad g = \frac{R_{K}}{R} \\ \hline \mathbf{E}_{c} &= e^{2}/2C \end{split}$$

Heat current in NIS junction with fluctuations

Tunnelling in the presence of fluctuations yields photon exchange with probability

$$P(E) = \frac{1}{2\pi\hbar} \int_{-\infty}^{+\infty} dt \exp\left[J(t) + \frac{i}{\hbar}Et\right]$$
$$J(t) = \langle [\varphi(t) - \varphi(0)]\varphi(0) \rangle$$

(Ingold and Nazarov, Les Houches 92)

Heat current in the presence of photon exchange:

$$\dot{Q}_{N \to S} = \frac{1}{e^2 R_T} \int dE dE' E' f(E') [1 - f(E)] n_S(E) P(E' - E)$$
in N in S probability to
exchange photon
(Pekola & Hekking, PRL 07)
$$\omega = E' - E$$

Cooling out of noise: case $g \ll 1$

Cooling out of noise: general case

(Pekola & Hekking, PRL 07)

Is the Brownian fridge a Maxwell demon?

The demon allows hot particles to pass from left to right and cold ones from right to left...

... and decreases the entropy of the system.

NIS junction: where is the demon?

Entropy production in the Brownian refrigerator

*R*_T, *T*_{N,S} *Rate for entropy production*

Sum of heat currents is zero

$$\dot{S} = -\dot{Q}_N/T_N - \dot{Q}_S/T_S - \dot{Q}_R/T_R$$

 $\dot{Q}_N + \dot{Q}_S + \dot{Q}_R = 0$

0

Quantity to analyze

$$\dot{S}/k_{B} = (\beta_{R} - \beta_{N})\dot{Q}_{N} + (\beta_{R} - \beta_{S})\dot{Q}_{S}$$
Special cases:

$$\beta_{R} < \beta_{N} < \beta_{S}$$
analytically

$$\dot{S}ALWAYS \ge$$

Other cases: numerically

Conclusions

- DC-biased NIS junctions can be used for electronic cooling

- Refrigeration performance decreased by Andreev reflection process and lack of qp relaxation

- NIS junction as a rectifier: cooling out of noise, but leaving thermodynamics intact

