

2046-14

Summer College on Nonequilibrium Physics from Classical to Quantum Low Dimensional Systems

6 - 24 July 2009

Does a bad metal become good superinsulator?

LERNER Igor V.

University of Birmingham School of Physics and Astronomy Edgbaston Birmingham B15 2TT UNITED KINGDOM

Does a bad metal become good "superinsulator"?

Giant jumps in *I-V* characteristics in 2D films (near a superconductor-insulator transition)

Boris Altshuler, Vladimir Kravtsov, I.L., Igor Aleiner

PRL, 102, 176803 (2009)

(also Ovadia, Sacepe, Shahar, ibid, 176802)

Superconductor-Insulator Transition

Goldman et al; Kapitulnik et al; Paalanen et al., Hsu et al, Ovidiyahu et al, ..., 1989-till now

Subject of the talk:

Highly unusual
nonlinear electronic transport
on the insulating side of SIT in
disordered thin films of
InO and TiN,
and also in other materials

Giant jumps in I-V characteristics

Baturina, Mironov, Vinokur, Baklanov, Strunk,'07

Sambandamurthy, Engel, Johansson, Peled, Shahar, '05

Giant jumps in resistance from $k\Omega$ to $G\Omega$ regime

in systems tantalizingly close to superconductors

From a superconductor to a super-insulator?

PRL 94, 017003 (2005)

PHYSICAL REVIEW LETTERS

week ending 14 JANUARY 2005

Experimental Evidence for a Collective Insulating State in Two-Dimensional Superconductors

G. Sambandamurthy, L. W. Engel, A. Johansson, E. Peled, and D. Shahar

PRL 99, 257003 (2007)

PHYSICAL REVIEW LETTERS

week ending 21 DECEMBER 2007

Localized Superconductivity in the Quantum-Critical Region of the Disorder-Driven Superconductor-Insulator Transition in TiN Thin Films

T. I. Baturina, 1,2 A. Yu. Mironov, 1,2 V. M. Vinokur, 3 M. R. Baklanov, 4 and C. Strunk²

Vol 452 3 April 2008 doi:10.1038/nature06837

nature

LETTERS

Superinsulator and quantum synchronization

 $\mbox{Valerii M. Vinokur}^1, \mbox{Tatyana I. Baturina}^{1,2,3}, \mbox{Mikhail V. Fistul}^4, \mbox{Aleksey Yu. Mironov}^{2,3}, \mbox{Mikhail R. Baklanov}^5 \mbox{\& Christoph Strunk}^3$

PRL 100, 086805 (2008)

PHYSICAL REVIEW LETTERS

week ending 29 FEBRUARY 2008

Collective Cooper-Pair Transport in the Insulating State of Josephson-Junction Arrays

M. V. Fistul, V. M. Vinokur, and T. I. Baturina^{3,2}

Is this resistance so super large?

Linear regime: Arrhenius law at low *T* was observed in numerous experiments in InO amorphous films and elsewhere but is also **rather strange**

$$R(T) = R_0 e^{(\Delta/T)^{\gamma}}$$
$$\gamma \approx 1, \Delta \sim 1 \div 10K$$

One expects Mott's VRH, $\gamma=1/(d+1)$, or Efros-Shklovskii $\gamma=1/2$

This was always considered as a puzzle and still doesn't have a fully satisfactory theoretical explanation

If we extrapolate this down to $T\sim100\text{mK}$, then $R\sim R_{\rm q} {\rm e}^{10}\sim10^8~\Omega$: one should wonder why SMALL values of R were also observed in this range of T.

Is the closeness to superconducting transition so important?

PHYSICAL REVIEW B VOLUME 53, NUMBER 3 15 JANUARY 1996-I

Depinning transition in Mott-Anderson insulators

F. Ladieu, M. Sanquer, and J. P. Bouchaud

A few orders in magnitude current jumps increasing with lowering temperature not in the vicinity of the SIT transition

Something else?

LETTERS

Electrically driven phase transition in magnetite nanostructures

SUNGBAE LEE¹, ALEXANDRA FURSINA², JOHN T. MAYO², CAFER T. YAVUZ², VICKI L. COLVIN², R. G. SUMESH SOFIN³, IGOR V. SHVETS³ AND DOUGLAS NATELSON^{1,4*}

nature materials | VOL 7 | FEBRUARY 2008 |-

Magnetite (Fe₃O₄) nanostructures

Common features

- □ Strong disorder: $R_0 \sim R_q \equiv \frac{2h}{e^2} \sim 50\kappa\Omega$ in low-R state
- □ Arrhenius law for linear $(V \rightarrow 0)$ resistance at low T pseudo-gap

$$R(T) = R_0 e^{\Delta/T}$$

□ VRH $(\gamma \le \frac{1}{2})$ is not observed at low T – no electron-phonon thermalization?

lacktriangle Voltage threshold eV (at which jumps occurs) increases with increasing Δ much faster than Δ itself

Phenomenological explanation?

No single microscopic approach can possibly explain so similar behaviour in so different systems...

Our main idea: bi-stability due to (over)heating is the main cause of giant resistance jumps

Not normally expected for hopping conductivity in the insulating regime – in contrast to the metallic one...

Stepping Stones

- ❖ Electron-electron interaction is strong enough: electrons are mutually thermalized with Tel
- * Cooling is mainly due to electron-phonon interaction which is, however, inefficient: electrons can be joule –heated to temperature $T_{\rm el} > T_{\rm bath} \equiv T_{\rm ph}$
- * Linear (Ohmic) R(T) has steep (Arrhenius-like) T dependence which remains valid at a finite voltage with $T \to T_{\rm el}$
- \star $T_{\rm el}$ should be found from the balance of Joule heating (by electric field) and phonon cooling

Bi-stability in a nutshell

Heat balance:
$$rac{V^2}{R(T_{
m el})} = rac{\mathcal{E}(T_{
m el})}{ au_{
m e-ph}(T_{
m el})} - rac{\mathcal{E}(T_{
m ph})}{ au_{
m e-ph}(T_{
m ph})} \propto T_{
m el}^{eta} - T_{
m ph}^{eta}$$

For each voltage there is a unique $T_{\rm el}$ provided that $T_{\rm ph} < T^{\rm cr} \cong 0.1\Delta$

Bi-stability in a nutshell

Heat balance:
$$rac{V^2}{R(T_{
m el})} = rac{\mathcal{E}(T_{
m el})}{ au_{
m e-ph}(T_{
m el})} - rac{\mathcal{E}(T_{
m ph})}{ au_{
m e-ph}(T_{
m ph})} \propto T_{
m el}^{eta} - T_{
m ph}^{eta}$$

Suppression of cooling by disorder

$$egin{aligned} rac{\hbar}{ au_{ ext{e-ph}}} &= rac{T^3}{T_D^2} \ rac{\hbar}{ au_{ ext{e-ph}}} &= n^* rac{T^3}{T_D^2} \end{aligned}$$

electron-phonon scattering rate in a clean metal:

 $T_{\rm D}$ – Debye temperature;

 $\frac{\hbar}{\tau_{\text{e-ph}}} = n^* \frac{T^3}{T_D^2} \qquad \text{in a clean semiconductor with } p_F \ll \hbar/a \\ n^* = \# \text{ of electrons per unit at }$

Energy relaxation (cooling) from the kinetic equation:

$$\frac{\dot{\mathcal{E}}}{\mathcal{V}} = \nu_0 \int \varepsilon \dot{f}(\varepsilon, T_{\rm el}) d\varepsilon \sim \frac{T_{\rm el}^2}{\tau_{\rm e-ph}(T_{\rm el})} - \frac{T_{\rm ph}^2}{\tau_{\rm e-ph}(T_{\rm ph})} \propto T_{\rm el}^5 - T_{\rm ph}^5$$

$$\frac{\hbar}{\tau_{\text{e-ph}}} \sim n^* \frac{q_T \ell}{\hbar} \frac{T^3}{T_D^2} \propto T^4$$
 Dirty-metal (or low T) limit:
$$q_T \ell/\hbar \ll 1 \quad \Leftrightarrow \quad T \ell \ll \hbar v_{\text{S}}$$

$$\ell - \text{electron mean free path}$$

$$v_{\text{S}} - \text{transverse sound velocity}$$

$$v_{\text{T}} - \text{thermal phonon momentum}$$

$$q_T \ell/\hbar \ll 1 \quad \Leftrightarrow \quad T \ell \ll \hbar v_{\rm s}$$

Disorder-independent heat balance

Substituting the exact solution of the kinetic equation in the model results in the disorder-independent equation for heat balance in proper dimensionless variables:

$$\frac{V^2}{R} = \frac{\mathrm{d}\mathcal{E}}{\mathrm{d}t} \qquad \mapsto \qquad v^2 \mathrm{e}^{-1/t_{\rm el}} = t_{\rm el}^6 - t_{\rm ph}^6 \,,$$

$$t \equiv \frac{T}{\Delta}, \quad v \equiv \frac{V}{V_0},$$

$$\frac{eV_0}{L} \equiv \frac{\alpha k_F \Delta^3}{\Delta_0^2}, \quad \Delta_0 \equiv (\rho v_s^5 \hbar^3)^{1/4}, \quad \alpha \equiv \frac{2\pi^2}{\sqrt{315}} \approx 1.1$$

Heat balance depends ONLY on electron density ($k_{\rm F}$), the Arrhenius pseudo-gap Δ and the 'material' energy Δ_0

Critical temperature and voltage

Minimal temperature of the hot (LR) state is 0.14 Δ

Maximal temperature of the cold (HR) state is close to the bath temperature

Critical bath temperature T_{ph} depends only on Δ

Threshold voltage of the cold (HR) state is strongly *T*-dependent

Threshold voltage for the hot (LR) state is almost independent of T_{bath}

Compare to the newest data

Nonlinear I-V characteristics

- Current jumps of several orders of magnitude
- Wide range of almost exp behavior in the HR state

Bistability temperature

Minimal temperature of the hot (LR) state is 0.14 Δ

Maximal temperature of the cold (HR) state is close to the bath temperature

Experimental bistability diagram (Ovadia, Sasepe, Shahar, 2009)

FIG. 3 (color online). $T_{\rm el}$ versus $T_{\rm ph}$, showing the excluded region of temperatures which appears below $T_{\rm ph}=0.1$ K, and the accompanying hysteresis. Blue (dark gray) circles correspond to data measured while increasing |V| and red (gray) crosses represent data taken while decreasing |V|. Inset:

Quantitative comparison

$$\frac{eV_{\rm hot}^{\rm cr}}{L} \equiv \frac{0.1k_{\rm F}\Delta^3}{\Delta_0^2} \,, \quad T_{\rm ph}^{\rm cr} = 0.1\Delta \,, \quad \Delta_0 \equiv (\rho v_{\rm s}^5 \hbar^3)^{1/4}$$

Theoretical estimates:

 $V=0.8 \text{ mV & T}_{ph}^{cr}=190 \text{mK}$

for Δ =1.9K

Reasonable agreement in

a wider range of Δ for TiN

0.6 (c) 10 0.4 0.3 0 0.5 1.0 B (T)

Experimental data: V=1.0 mV & $T_{\rm ph}^{\rm cr}$ =120mK for Δ =1.9K

Baturina et al, 2007

Beyond Arrhenius and $au_{\text{e-ph}}$

$$R(T) = R_0 \exp\left[\left(\Delta/T\right)^{\gamma}\right], \quad \frac{V^2}{R(T_{\rm el})} \propto T_{\rm el}^{\beta} - T_{\rm ph}^{\beta}$$

Critical phonon temperature $t_{\rm ph}^{\rm cr}=T_{\rm ph}^{\rm cr}/\Delta$

$$t_{\rm ph}^{\rm cr} = (1 + \beta/\gamma)^{-\frac{\beta+\gamma}{\gamma\beta}} = \begin{cases} 0.1 & \gamma = 1, \beta = 6\\ 0.004 & \gamma = \frac{1}{2}, \beta = 6\\ 1.5 \cdot 10^{-6} & \gamma = \frac{1}{4}, \beta = 6 \end{cases}$$

Scaling of the threshold voltage:

$$V_{\rm LH}/\Delta^{\beta} = f(T_{\rm ph}/\Delta)$$
.

Not all experimental features captured

What is not quantitatively good: I_{max}/I_{min} <e in the HR state;

Experimentally this ratio is $10 \div 20$; cannot be cured by any γ or β

$$\ln \frac{I}{I_0} = \frac{V}{V_0}, \quad \frac{V_0}{I_0} \approx 2R_0$$

Kapitza resistance?

□ *A priori,* it is possible that a disordered film is overheated with respect to a substrate due to *Kapitza resistance* caused by acoustic or diffusive mismatch of phonons in the film and in the bulk

$$\frac{V^2}{R(T_{\rm el})} = \frac{\Omega(T_{\rm el}) - \Omega(T_{\rm ph})}{\tau_{\rm K}}, \quad \Omega \simeq \frac{\mathcal{V}T^3}{\hbar^3 v_s^3} \times \max\left(T, \frac{\hbar v_s}{d}\right), \quad \tau_K = \frac{d}{v_s D}$$

□ However, this would give wrong (compared to experiment) T-dependence, no dependence on magnetic field, and requires the boundary transparency D to be unrealistically low: D<10⁻⁵, whereas

$$D = \frac{4Z_1Z_2}{(Z_1 + Z_2)^2} > 10^{-2} \quad \text{even for artificially mismatched solids}$$

($Z=v_s\rho$ is the acoustic impedance)

Is e-ph overheating too mundane?

- \square Not usually happens on the insulating side, i.e. at R \ll h/e²
- Never was looked after as it is in contradiction to the picture of phonon-assisted hopping
- "Checked for" and vigorously denied in YSi and magnetite
- $lue{}$ Signals new physics and requires a new approach to electronassisted hopping at low T

Summary

- Electrons overheating due to inefficient cooling and the resulting current bistability leads to giant current jumps
- Good qualitative agreement with experiment without fitting parameters
- A microscopic description of hopping electron transport in the absence of thermalization with phonons is wanted
- •Good super-insulator? this particular hypothesis is not required for explaining experimental data...

