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Does a bad metal become

good “superinsulator”?

Giant jumps in I-V characteristics in 2D films

(near a superconductor-insulator transition)
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Superconductor-insulator Transition
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Subject of the talk:

Highly unusual
nonlinear electronic transport
on the insulating side of SIT In
disordered thin films of
InO and TiN,
and also in other materials
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Giant jumps in |-V

characteristics
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Baturina, Mironov, Vinokur, Sambandamurthy, Engel, Johansson,
Baklanov, Strunk,07 Peled, Shahar, ‘05
Giant jumps in resistance in systems tantalizingly
from kQ to GQ regime close to superconductors
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From a superconductor to a super-insulator?

: 7 . week endin
PRL 94, 017003 (2005) PHYSICAL REVIEW LETTERS 14 JANUARY 2005

Experimental Evidence for a Collective Insulating State in Two-Dimensional Superconductors
G. Sambandamurthy,' L. W. Engel,” A. Johansson,' E. Peled,' and D. Shahar'

' r i ek endi
PRL 99, 257003 (2007) PHYSICAL REVIEW LETTERS 21 DECEMBER 2007

Localized Superconductivity in the Quantum-Critical Region of the Disorder-Driven
Superconductor-Insulator Transition in TiN Thin Films

T. 1. Baturina. ' A. Yu. Mironov."> V. M. Vinokur.” M. R. Baklanov.* and C. Strunk”

ol 4522 April 2008 | doi: 10.103 8/ nature06837 nature

LETTERS

Superinsulator and quantum synchronization

Valerii M. Vinokur], Tatyana I Eaturinal'2'3, Mikhail V. Fistul", Aleksey Yu. Mironovz'j, Mikhail R. Baklanow®
& Christoph Strunk’®

¥ : : week endi
PRL 100, 086805 (2008) PHYSICAL REVIEW LETTERS 29 FEBRUARY 2008

Collective Cooper-Pair Transport in the Insulating State of Josephson-Junction Arrays

M. V. Fistul.' V. M. Vinokur.® and T.1. Baturina™
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Is this resistance so super large?

Linear regime: Arrhenius law at low T

was observed in numerous experiments 10f

in INO amorphous films and elsewhere
but is also rather strange

R(T) = Rye®/T)
v l,A~1+ 10K

One expects Mott’s VRH,
vy=1/(d+1), or Efros-Shklovskii y="2

This was always considered
as a puzzle and still doesn’t
have a fully satisfactory
theoretical explanation
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If we extrapolate this down to 7~100mK,
then R~R e'°~10% L2: one should
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wonder why SMALL values of R were

also observed in this range of 7.
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Is the closeness to superconducting
transition so important?

PHYSICAL EEVIEW B WVOLUME 53, NUMEER 3 15 JANUAEY 1996-1

Depinning transition in Mott-Anderson insulators

F. Ladieu. M. Sanquer, and I. P. Bouchaud
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Something else?
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Common features

2h
)

Q Strong disorder: Ry ~ R, = — ~ 502 in low-R state

Q Arrhenius law for linear (V—0) R(T)=R A/T
resistance at low T - pseudo-gap L

Q VRH (y<'%) is not observed at low T — R( 5
no electron-phonon thermalization?

Q Voltage threshold el (at which jumps
occurs) increases with increasing A
much faster than A itself
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Phenomenological explanation?

No single microscopic approach can possibly explain so
similar behaviour in so different systems...

Our main idea: bi-stability due to
(over)heating is the main cause of
giant resistance jumps

Not normally expected for hopping conductivity in the
insulating regime — in contrast to the metallic one...
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Stepping Stones

< Electron-electron interaction is strong enough:
electrons are mutually thermalized with Tel

< Cooling is mainly due to electron-phonon interaction
which is, however, inefficient: electrons can be joule
—heated to temperature 7 ,>T,, =1,

< Linear (Ohmic) R(7) has steep (Arrhenius-like) T -
dependence which remains valid at a finite voltage
with 7 — T

< T, should be found from the balance of Joule
heating (by electric field) and phonon cooling
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Bi-stability in a nutshell

)
V _ E(Ty) B S(Tph) . ij 3 Tﬁh
R(T4) Teph(Te1)  Te-ph(Tpn) v

Heat balance:

- 6_mb6 |_ 172 For each
RIS -T5|=av |
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Bi-stability in a nutshell
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Heat balance: — i
R(T4) Te-ph(Te1) Te—ph(Tph)
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Two stable
electron
T temperatures
| el at the same
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Suppression of cooling by disorder

h T3 electron-phonon scattering rate in a clean metal:
7_— — ﬁ T, — Debye temperature;
e-ph D assumed that p,~%/a (dense metal)
3
h — I in a clean semiconductor with p. <#/a
Teph TIQD n*= # of electrons per unit cell
Energy relaxation (cooling) from the kinetic equation:
£ / ' Tzl Tgh 5 5
— =1y | ef(e,Ty)de ~ < — >« T - T
V ’ Te—ph(Tel) Te—ph(Tph> 6 o
h n* qrt T° ~ T Dirty-metal (or low T) limit:
U -
Te-ph hT7 qrl/h <1 & Tl <K hs
- — { —electron mean free path
vy _ v, — transverse sound velocity
~10*in InO and TiN g+ — thermal phonon momentum
Nonequilibrium Physics of Low UNIVERSITYOF
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Disorder-independent heat balance

Substituting the exact solution of the kinetic equation in the
model results in the disorder-independent equation for heat
balance in proper dimensionless variables:

vz o de 2 1/t 6 46
= s e Ma =8 46
R dt ol “ph
ne T Vv
- A? U - “/*07
- = A= (pPRDVA, a= ~ 1.1

Heat balance depends ONLY on electron density (kg), the
Arrhenius pseudo-gap A and the ‘'material’ energy A,
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Critical temperature and voltage

Minimal temperature of the Threshold voltage of the cold (HR)

hot (LR) state is 0.14 A state is strongly 7-dependent
Electroh temperature \ LR 03 [ Threshyld voltage

0.16

. 0.25}
0.12 unstable A 0.2l
P
0.08 ol 0 15!
0.04 il 0.1} A
tenzgzl::tiznre cr 0 0 5 f ; _____Phonon temperature
002 0.04 0/66 0.08 o.fph 0.06 0.08 0.1

Maximal temperature of the cold (HR)
state is close to the bath temperature Threshold voltage for the hot (LR)

state is almost independent of T, _,;,

Critical bath temperature T,
depends only on A
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Threshold
voltage for
the hot (LR)
state is
almost
independent
Of Tpath

M.Ovadia, B.Sacepe,

D.Shahair,

Compare to the newest data

InO film (PRL,’09)

| = Iy Texp(V/Vo)-1]
V,=150 E-6 V

—==T=12mK
T=50mK
———T=75mK
———T=90mK
T=100mK
T=113mK
T=120mK
—=—T=135mK

Threshold voltage of
the cold (HR) state is

strongly 7-dependent

Higher R are
unmeasurable
due to noise

Non-zero almost exponential conductance:
the insulator is not ideal
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Nonlinear |-V characteristics
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+¢* Current jumps of several
orders of magnitude

** Wide range of almost exp
behavior in the HR state
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Bistability temperature

Minimal temperature of the

hot (LR) state is 0.14 A

Experimental bistability diagram
(Ovadia, Sasepe, Shahar, 2009)
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FIG. 3 (color online). T, versus Tp,, showing the excluded
region of temperatures which appears below Ty, = 0.1 K, and
the accompanying hysteresis. Blue (dark gray) circles corre-
spond to data measured while increasing |V| and red (gray)
crosses represent data taken while decreasing |V|. Inset:
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Quantitative comparison

eV 0.1kpA3
Ll = d h=0.1A, A= (pvPR3)H4

L AZ
Theoretical estimates: Experimental data:
V=0.8 mV & T,,=190mK V=1.0 mV & 7,,=120mK
for A=1.9K A for A=1.9K
o.e-. T m —
0.5-*}3‘? =% 10
. 16 ™
Reasonable agreement in 049 ¢ '_.-* .,_:-- [
a wider range of A for TiN 0_3_'§ ‘,"' '--.:'5 Baturina et al, 2007
0.2-£..-.-.-.-.-.-.-.-.-.-.-.-'-0
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Beyond Arrhenius and t
V2
R(Ty)
Critical phonon temperature tph = Tcr/A

e-ph
o Y

R(T) = Roexp [(A/T)],

By (0.1 7:1,,826
= (1+B8/y) T =004 ~=18=6
| 15-10%y=14, 6=6

Scaling of the Vin/A = f(Ton/A).

threshold voltage:
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Not all experimental features captured

What is not quantitatively good: I_../I . <e in the HR state;
Experimentally this ratio is 10 +20; cannot be cured by any y or 3

max’ *min

1014 T T T T T |

4 LR 1013
- - Inh T 15

—16 - H R State
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Kapitza resistance?

Q A priori, it is possible that a disordered film is overheated with respect to
a substrate due to Kapitza resistance caused by acoustic or diffusive
mismatch of phonons in the film and in the bulk

9 B 3
V2 Q(Ty) — UTw) VT (T, in)’ o

— ()~ —
R(Ty) TX ’ Av3 i d v D

0 However, this would give wrong (compared to experiment) T-dependence,
no dependence on magnetic field, and requires the boundary
transparency D to be unrealistically low: D<10->, whereas

IYAVL,

= > 1072 even for artificially mismatched solids
(Z1+ Z3)? !

(Z=vp is the acoustic impedance)
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Is e-ph overheating too mundane?

0 Not usually happens on the insulating side, i.e. at R<h/e?

0 Never was looked after as it is in contradiction to the picture of
phonon-assisted hopping

0 “Checked for” and vigorously denied in YSi and magnetite

0 Signals new physics and requires a new approach to electron-
assisted hopping at low T

UNIVERSITYOF
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Summary

*Electrons overheating due to inefficient cooling
and the resulting current bistability leads to giant
current jJumps

* Good qualitative agreement with experiment
without fitting parameters

* A microscopic description of hopping electron
transport in the absence of thermalization with
phonons is wanted

* Good super-insulator? — this particular hypothesis
IS not required for explaining experimental data...
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