

2047-10

Workshop Towards Neutrino Technologies

13 - 17 July 2009

Prospects and status of LENA

Lothar OBERAUER Technical University of Munich Department of Physics James-Franck-Strasse, 1 D-85747 Garching, GERMANY

Prospects and Status of LENA (Low Energy Neutrino Astronomy)

Lothar Oberauer, TUM

Nutech, Trieste, July 14, 2009

Physics Goals of LENA

- Proton Decay
- Diffuse Supernova Neutrino Background
- Galactic Supernova Burst
- Solar Neutrinos
- Geo neutrinos
- Reactor neutrinos
- Beta-beam neutrinos
- Atmospheric neutrinos
- Dark Matter indirect search

Liquid Scintillator Detectors

Poltergeist; first neutrino detection (inverse beta decay)

Several neutrino oscillation experiments at low energies (e.g. Gösgen, Bugey, Karmen...)

LVD, MACRO, BAKSAN

BOREXINO at Gran Sasso; 300 t active mass

KamLAND (Japan); 1kt scintillator

SNO+; 1kt

LENA and proton decay

Proton Decay

- Non supersymmetric Grand Unified Theories Dominant decay mode: $p \rightarrow e^+ \pi^0 \qquad \tau \sim 10^{36}$ y
- Supersymmetry (SUSY) Dominant decay mode: $p \rightarrow K^+ \overline{\nu}$ $\tau \sim 10^{34}$ y
- Superkamiokande current limits: τ(p → e⁺π⁰) ≥ 5.4 · 10³³ y (90% C.L.) τ(p → K⁺ν) ≥ 2.3 · 10³³ y (90 % C.L.)

LENA and proton decay

 High efficiency and very good background rejection for p -> K⁺ v

K and μ, π from successive K decay K -> μ v (68 %) K -> 3 π (31 %) (12 nsec)

• Proton decay efficiency: 68%

Background rejection 10⁻⁴

Ρ -> Κ⁺ ν Sensitivity to proton decay Spectrum3 stino3 Entries 10000 Energy spectrum (180 pe/MeV) Number of o Two peaks: • Kaon + Muon: $\sim 257 \text{ MeV}$ • Kaon + Pions: $\sim 459 \text{ MeV}$

Liquid scintillator developments

- Efficiency: $\varepsilon_E = 0.995$
- Included: protons from ¹²C

Potential of LENA (10 y measuring time)

100

110

90

Number of photoelectrons (pe)

- For Superkamiokande current limit: $\tau = 2.3 \cdot 10^{33}$ y
 - 40 events in LENA and \leq 1 background
- No signal in LENA: $\tau > 4 \cdot 10^{34}$ y 90% (C.L)

Phys. Rev. D72 075014 (2005) and hep-ph/0511230

10

30

20

40

50

60

80

70

Status

LENA and proton decay

- High sensitivity to p -> K v (eff. ~ 68% instead 6% in SK τ ~ 4 x 10³⁴ y)
- Sensitive to a variety of decay channels "invisible" modes, e.g. n -> v v v
- For e.g. p -> e⁺ π⁰ we expect ~ 10³³ y (work in progress)

Search for the Diffuse Supernova Neutrino Background in LENA

Phys.Rev.D 75 (2007) 023007

M. Wurm, F. v. Feilitzsch, M. Göger-Neff, T. Marrodán Undagoitia, L. Oberauer, W. Potzel, J. Winter Technische Universität München *mwurm@ph.tum.de* <u>http://www.e15.physik.tu-muenchen.de/research/lena.html</u>

DSNB Detection via inverse beta decay

Free protons as target

• Threshold 1.8 MeV

Prompt signal

- $\mathbf{E}_{v} \sim \mathbf{E}_{e} \mathbf{Q}$ (*v* spectroscopy)
- suppress background via *delayed coincidence method*

 $n + p \rightarrow D + \gamma$ (2.2 MeV)

position reconstruction => fiducial volume (suppress external background)

TU München

Diffuse Supernova Neutrino Background Detection

Excellent background rejection
 Energy window 10 to 30 MeV.
 High efficiency (100% with 50 kt target)
 High discovery potential in LENA
 2 to 20 events per year are expected (model dependent)

Galactic Supernova neutrino burst in LENA

• 8 M_{\odot} (3 · 10⁵³ erg) at D = 10 kpc (center of our galaxy)

In LENA detector: \sim 15000 events

Possible reactions in liquid scintillator

•
$$\overline{\nu}_{e} + p \rightarrow n + e^{+}$$
; $n + p \rightarrow d + \gamma$ ~7000 - 13800
• $\overline{\nu}_{e} + {}^{12}C \rightarrow {}^{12}B + e^{+}$; ${}^{12}B \rightarrow {}^{12}C + e^{-} + \overline{\nu}_{e}$ ~150 - 610
• $\nu_{e} + {}^{12}C \rightarrow e^{-} + {}^{12}N$; ${}^{12}N \rightarrow {}^{12}C + e^{+} + \nu_{e}$ ~200 - 690
• $\nu_{\chi} + {}^{12}C \rightarrow {}^{12}C^{*} + \nu_{\chi}$; ${}^{12}C^{*} \rightarrow {}^{12}C + \gamma$ ~680 - 2070
• $\nu_{\chi} + e^{-} \rightarrow \nu_{\chi} + e^{-}$ (elastic scattering) ~700
• $\nu_{\chi} + p \rightarrow \nu_{\chi} + p$ (elastic scattering) ~1500 - 5700
Diploma thesis by J.M.A. Winter (TU München)

Separation of SN models ?

 Possible *independent* from oscillation model due to *neutral current reactions in LENA*

	TBP	KRJ	LL
12-C:	700	950	2100
Nu-p:	1500	2150	5700

for 8 solar mass progenitor and 10 kpc distance

Supernova neutrinos with LENA

- Antielectron v spectrum with high precision
- Electron v flux with ~ 10 % precision
- Total flux via neutral current reactions
- Separation of SN models
- Spectroscopy of all v flavors
- Time evolution of neutrino burst
- Details of SN gravitational collapse
- Chance to separate low/high Θ_{13} and mass hierarchy (normal/inverted)
- Coincidence with gravitational wave detectors

Solar Neutrino Detection in LENA

Solar Neutrinos and LENA

 $v + e \rightarrow v + e$ and ${}^{13}C + v_e \rightarrow {}^{13}N + e$

Spectrum deformation due to the MSW effect

Rates of solar neutrino events In the LENA fiducial volume:

18 · 10³ m³

- 7 Be u's: \sim 5400 d $^{-1}$
 - Small time fluctuations
- pep u's: \sim 150 d $^{-1}$
 - Information about the pp-flux \rightarrow Solar luminosity in ν 's
- CNO u's: \sim 210 d $^{-1}$
 - Important for heavy stars
- ⁸B ν 's: CC on ¹³C: \sim 360 y⁻¹

Solar Neutrinos and LENA

- High statistics in 7-Be
- Search for time fluctuations
- \blacksquare CNO and pep ν
- Test of MSW effect
- CC and NC measurements of 8-B
- Search for spectrum deformation
- Search for non-standard v interactions
- Search for solar $v_e \rightarrow v_e$ transitions

LENA and neutrinos from the Earth

1st detection of Geo-neutrinos in KamLAND in 2005 (1kt liquid scintillator detector)

Expected event rates

BOREXINO

around ~ 10 per year

LENA

between ~ 3×10^2 and ~ 3×10^3 per year (in Pyhäsalmi, Finland, continental crust) this is extrapolated from KamLAND result

K. Hochmuth et al., Astropart. Phys. 27 (2007) 21-29

Backgrounds in LENA

- ~ 240 per year in [1.8 MeV 3.2 MeV] from reactor neutrinos
- Solution of a statistically assumed)
 Solution of a statistical statistical subtracted
 Solution of a statistical subtracted
- ~ 1 per year due to cosmogenic background

(⁹Li - beta-neutron cascade)

LENA and Geo-neutrinos

- In LENA we expect between 300 to 3000 events per year ("best bet" ~ 1500 / year)
- Good signal / background ratio most significant contribution can be subtracted statistically
- Separation of geological models

LENA and Reactor neutrinos

- At Frejus ~ 17,000 events per year
- High precision on solar oscillation parameter:
- ∆**m²₁₂** ~ 1%
- $\Theta_{12} \sim 10\%$

S.T. Petcov, T. Schwetz, Phys. Lett. B 642, (2006), 487 J. Kopp et al., JHEP 01 (2007), 053

Atmospheric and beta beams

- Separation between e- and μ -like events
- Pulse shape discrimination (risetime, width)
- Muon decay $\mu \rightarrow e \nu \nu$
- Work in progress

Figure 10.3: Scatter plots for electrons (red) and muons (blue) with energies of 1.2 GeV, 1.0 GeV, 0.6 GeV and 0.4 GeV, respectively. On the x axis the risetime of the pulses is plotted and on the y the half width at half maximum (HWHM). At higher energies (> 1 GeV), a pulse shape analysis gives good muon-electron separation.

Dark Matter search

- Light Wimp mass between 10 and 100 MeV
- Annihilation under neutrino emission in the Sun
- Monoenergetic electron-antineutrino detection in LENA

S. Palomares-Ruiz, S. Pascoli, Phys. Rev. D 77, 025025 (2008)

Technology studies for LENA

Liquid Scintillator Technology

- High light output
- Low energy threshold (sub MeV)
- Good energy, timing, and position resolution
- Variety of neutrino detection channels
- Inverse beta decay detection basically background free

Fluorescence decay constants:

- Single photon counting method
- Exponential time constants
 - Dependence on solvent (PXE/LAB/Dodecan)
 - Dependence on wavelength shifter type and concentration (PPO/bisMSB/PMP)

- UV-radiation: Deuterium lamp
- Spectroscopy of the emitted light

- ~10 keV electron beam
- Evacuated small accelerator (10-15 kV)
- Window for the electrons: thin (300 nm) silicon nitrate membrane

- Scattering length $\lambda_s \sim 20 \text{ m}$
 - Angle dependence of the scattered light
 - Study of polarized and unpolarized light
- Attenuation length λ > 10 m
 - Effects of absorption and scattering in the propagation

 $\frac{1}{\lambda} = \frac{1}{\lambda_s} + \frac{1}{\lambda_a}$

⇒Absorption length > 20 m Scattering length ~ 20 m (@ 430 nm)

Results optical properties

- PXE, LAB as candidates for the solvent
- C14, Dodecane as additives
- PPO, PMP, bis-MSB as wavelengthshifters
- L ~ 180 pe/MeV
 - λ_{abs} > 20 m, λ_{sca} ~ 20 m
 - $\tau_{sci} \sim 3$ nsec (PXE)
- Suitable for LENA => Towards a full optical model for LENA

Teresa Marrodan, Michael Wurm, Patrick Pfahler, Jürgen Winter, Andreas Ulrich

Designed and realized at TUM for BOREXINO Light enhancement ~ 2.5 Costs ~ 125 Euro / channel

Underground Lab at TUM

High sensitivity gamma spectroscopy

Neutron activation analysis at FRM II (close by)

•Low Background Technology for

BOREXINO,

CRESST,

DOUBLE-CHOOZ, LENA

Martin Hofmann, Niels Haag

PM encapsulation

Similar design for GERDA, DOUBLE-CHOOZ (Vetos)

Photosensors & Electronics

- PICS (Projet Internationaux de Cooperation Scientific): Collaboration with APC Paris (Memphis)
- Test of high efficient PMs
- Development of HV and read-out electronics
- Cost reduction

LAGUNA

- Feasibility studies for European underground sites (Frejus, Boulby, Pyhäsalmi, Canfranc, Sunlab, Slanic)
- LENA, MEMPHIS, GLACIER
- European Funding (FP 7)
- Report in 2010

Pre-feasibility study for LENA at Pyhäsalmi (TUM and company Rockplan, Finland)

- Depth at 1400 m 1500 m possible
- Geological study completed
- Vertical detector position
- Logistics (Vent, Electricity, etc.) considered
- Construction time of cavern ~ 4 years
- Ist costs estimate for the whole project

One Option:

Conclusions

- LENA has a high discovery potential
- Scintillator optical properties within specification
 - Suitable candidates: LAB, PXE

Various wavelength-shifters

- Pre-feasibility study for LENA at Pyhäsalmi successfully completed (Rockplan)
- Rich R&D program running

LENA related papers

M. Wurm et al., Phys.Rev.D 75 (2007) 023007 K. Hochmuth et al., Astropart.Phys. 27 (2007) 21-29 T. Marrodan et al., Phys. Rev. D 72 (2005) 075014 T. Marrodan et al., Rev. Sci. Instr., (2009)

S.T. Petcov, T. Schwetz, Phys. Lett. B 642, (2006), 487 J. Kopp et al., JHEP 01 (2007), 053

S. Palomares-Ruiz, S. Pascoli, Phys. Rev. D 77, 025025 (2008)