

2047-19

Workshop Towards Neutrino Technologies

13 - 17 July 2009

Th and U in the Earth

William McDONOUGH University of Maryland Department of Geology College Park, MD 20742, U.S.A.

Th/U in the Earth & heat production Crust-Lithosphere Asthenosphere Core-mantle boundary Mantle Liquid iron outer core Solid iron inner core Geoneutrinos reveal Earth's inner secrets **Collaborators:** -Steve Dye: Hawaii Pacific University VERSIT -John Learned : University of Hawaii and -Ricardo Arevalo: Univ of Maryland

5 Big Questions:

- What are earth's K/U & Th/U ratios?
- Radiogenic contribution to heat flow?
- Distribution of reservoirs in mantle?
- Radiogenic elements in the core??
- Nature of the Core-Mantle Boundary?

Examples of Plate Boundaries

(b)

Seismic Tomography of subducting plates

Chondrite: mix of chondrules, matrix, and CAI

Heterogeneous mixtures of components with different formation temperatures and conditions

Planet: mix of metal, silicate, volatiles

"Standard" Planetary Model

- Chondrites, primitive meteorites, are key
- So too, the composition of the solar photosphere
- Refractory elements (**RE**) in chondritic proportions
- Absolute abundances of **RE** model dependent
- Mg, Fe & Si are non-refractory elements
- Non-refractory elements model dependent
- <u>U & Th</u> are **RE**, whereas <u>K</u> is moderately volatile

Two types of crust: Oceanic & Continental

Oceanic crust: single stage melting of the mantle Continental crust: multi-stage melting processes

Compositionally distinct

Oceanic crust <200 million years old

Continents up to 3500 million years old

Geoneutrino flux model for the Earth

Using crust & mantle composition with PREM & crustal-thickness

Heat Flow

Earth's Total Heat Flow

 Conductive heat flow measured from bore-hole temperature gradient and conductivity

Total heat flow <u>Conventional view</u> 46±3 TW <u>Challenged recently</u> 31±1 TW

Earth's surface heat flow (total 46 ±3)

radioactive heat production

Urey ratio =

heat loss

- Mantle convection models typically assume: mantle Urey ratio: 0.4 to 1.0, generally ~0.7
- Geochemical models predict mantle Urey ratio 0.3 to 0.5

Parameterized Convection Models

Thermal evolution of the mantle

 $Q \propto Ra^{\beta}$,

Q: heat flux, Ra: Rayleigh number,

 β : an amplifer - balance between viscosity and heat dissipation

Models with Ur ≥ 0.65

Schubert et al '80; Davies '80; Turcotte et al '01

Models with Ur ≤ 0.5
Jaupart et al '08; Korenaga '06; Grigne et al '05,'07

Mantle is depleted in some elements (e.g., Th & U) that are enriched in the continents.

-- models of mantle convection and element distribution

K Concentration (µg/g)

QuickTime™ and a decompressor are needed to see this pictur

mid-ocean ridge basalts "MORB"

Direct samples of the present-day mantle

Composition relates to time-integrated

- U/Pb
- Th/Pb

Th/U and Pb isotopes

- Th/U and ²⁰⁸Pb/²⁰⁶Pb composition of MORBs
- At secular equilibrium (activity of ²³⁰Th ~ ²³⁸U) and (²³²Th/²³⁰Th) activity is Th/U ratio of the source:

$$\frac{Th}{U} \approx \frac{232}{238} \frac{Th}{U} = \frac{\lambda_{238}}{\lambda_{232}} \frac{\binom{232}{Th}}{\binom{238}{U}} \xrightarrow{se} \frac{\lambda_{238}}{\lambda_{232}} \frac{\binom{232}{Th}}{\binom{238}{U}} \equiv \kappa_{Th}$$

- For MORB Th/Usource = Th/Ulava
 - Mid-Atlantic Ridge
 - East Pacific Rise
 - Hawaii and Iceland

- $\kappa_{Th} = 2.5 \pm 0.1$ $\kappa_{Th} = 2.5 \pm 0.2$
- $\kappa_{Th} = 3.0 \pm 0.2$

Th/U and Pb isotopes

• Time integrated Th/U mantle as determined from the Pb isotopes (where *T* is the age of the Earth):

$$\frac{Th}{U} \approx \frac{232}{238} \frac{Th}{U} = \frac{208}{206} \frac{Pb}{Pb} * \frac{e^{\lambda_{238}T} - 1}{e^{\lambda_{232}T} - 1} \equiv \kappa_{Pb}$$

- Data:
 - Mid-Atlantic Ridge
 - East Pacific Rise
 - Indian Ridges
 - Hawaii and Iceland

 κ_{Pb} = 3.8±0.1 κ_{Pb} = 3.7±0.1 κ_{Pb} = 3.9±0.1 κ_{Pb} = 3.8±0.1

Th/U in the Earth

Th/U_{chonrites} 3.9±0.4

U in the Earth:

~13 ng/g U in the Earth

"Differentiation"

Metallic sphere (core) <<<1 ng/g U

Silicate sphere 20 ng/g U

Continental Crust 1000 ng/g U

Mantle 10 ng/g U

Chromatographic separation Mantle melting & crust formation

Earth's budget of heat producing elements

Conclusions

- 1) K/U 13,800 + 2,600 (2σ)
- 2) Ur for mantle convection ~0.34
- 3) Cooling rate 70-120 kGyr⁻¹
- 4) There is a fundamental need for constraints from geodynamics

Paramount Request

Detecting Potassium (K) \overline{v}_{e}

(1) Significant for the Planetary budget of volatile element -- What did we inherit from our accretion disk?

(2) Fundamental to unraveling Mantle structure -- 40 K controls mantle Ar inventory 40 K \rightarrow 40 Ar (EC)

(3) Geophysics want K in core to power the Geodynamo?-- We don't understand the energy source...

naturenews

Published online 15 May 2008 | Nature | doi:10.1038/news.2008.822

News

Are there nuclear reactors at Earth's core?

Fission reactors may have been burning for billions of years.

Based on: R. de Meijer & W. van Westrenen South African Journal of Science (2008)

Could this be home to buried nuclear infernos?

hmmmmmm

- ¹⁴²Nd is the daughter of ¹⁴⁶Sm, an extinct parent.
- ¹⁴²Nd in the accessible Earth is 20 ppm higher than in chondrites.

Only two simple choices:

- the earth is not chondritic.
- there is a hidden terrestrial low Sm/Nd reservoir we've not yet seen.

All consequences are drastic!

So is the chondritic model for the Earth wrong? Maybe!

A Deep Ocean $\overline{\nu}_e$ Electron Anti-Neutrino Observatory

Predicted Geoneutrino Flux

Reactor Flux - irreducible background

Geoneutrino flux determinations

-continental (KamLAND, Borexino, SNO+) -oceanic (Hanohano)

Continental Heat Flow : example from Canadian Shield

mW m⁻²