

2047-17

Workshop Towards Neutrino Technologies

13 - 17 July 2009

Nuclear Physics for geo-neutrino studies

Aldo IANNI Istituto Nazionale di Fisica Nucleare

Laboratori Nazionali del Gran Sasso LNGS S.S. 17 Bis - Km. 18.910 67010 Assergi, L'Aquila, ITALY

Nuclear physics for geo-neutrino studies

Aldo Ianni INFN LNGS Towords Neutrino Technologies 2009, ICTP 13-17 July

- This work in collaboration with:
 - G. Fiorentini, M. Lissia, F. Mantovani and O.
 Smirnov
- Data from the Borexino coll.

Determine the GeoNeutrino Signal

- GeoNeutrino signal (via inverse- β decay) from β decays in ^{238}U and ^{232}Th chains

$$S = N_p \cdot t \cdot \sum_i \phi_i \cdot \int_{1.806 MeV}^{E_v^{\text{max}}} dE_v \sigma_{vp}(E_v) \cdot \lambda_i(E_v)$$

- N_p = target protons
- t = data taking time
- Φ_i = incoming flux for i-th β decay source
- λ_i = normalized i-th β spectrum

Uncertainties in the expected signal

• GeoNeutrino predicted signal depends on:

$$s_i = \int_{1.806 MeV}^{E_v^{\text{max}}} dE_v \sigma_{vp}(E_v) \cdot \lambda_i(E_v)$$

- Main uncertainty on s_i due to β decay spectrum
- At present only "universal shape" transitions considered

The β decay spectrum

Universal shape spectrum assumes momentum independent transition nuclear matrix

$$d\Gamma \propto \left|M_{if}\right|^2 F(Z,T_e) p_e^2 (Q_\beta - T_e)^2 dp_e$$

- Allowed transitions have $\log_{10} (ft_{\frac{1}{2}}) = 3.5 \div 7$
- When lepton pair carries orbital angular momentum > 0 we speak about forbidden transitions (ΔJ >1, $\Delta \pi$ >0)
- Forbidden transitions have $\log_{10} (ft_{\frac{1}{2}}) > 6.5$
- Forbidden transitions may be represented by introducing a "shape factor"
- Experimentally Kurie Plots allow to determine the shape factor (in particular at high energy and for single decays)

Forbidden decays of interest in Low Counting Detectors

gnd -> gnd

- ⁸⁵Kr (9/2⁺ -> 5/2⁻)
- ${}^{39}Ar (7/2^{-} -> 3/2^{+})$
- ⁴⁰K (4⁻ -> 0⁺)
- ²¹⁰Bi (1⁻ -> 0⁺)
- 214 Bi (1⁻ -> 0⁺)
- $^{212}Bi(1^{-} \rightarrow 0^{+})$

²¹⁴Bi β decay

- $Q_{\beta\beta}$ =3.272 MeV; J^{π}=1⁻ to J^{π}=0⁺ for ²¹⁴Po
- 82 excited states reported in WWW table of isotopes (Tol)
- log₁₀ (ft_{1/2}) ranges from 6.48 to 10.4

²¹⁴Bi beta β and β + γ spectra

 β spectrum

β+γ spectrum
<E>=2.13 MeV
Blue line: transition to
ground state 18.2% (Tol)

From β to antineutrino spectrum

$$E_v = Q_\beta - T_e$$

Total ²¹⁴Bi Only transition to ground state

Geoneutrino spectrum from ²³⁸U

$$s(^{214}Bi) = p_{3.272} \langle \sigma \rangle_{3.272} + p_{2.663} \langle \sigma \rangle_{2.663} + p_{1.849} \langle \sigma \rangle_{1.849} \approx p_{3.272} \langle \sigma \rangle_{3.272} + p_{2.663} \langle \sigma \rangle_{2.663}$$

Measurement of ²¹⁴Bi β spectrum

- The purpose of our work:
 - Meaure the feeding probability to ground state for
 ²¹⁴Bi
 - In Tol measured by subtraction using excited states data
 - Probe allowed vs not-allowed shape
 - Determine effect on geoneutrino signal
- Method:
 - Make use of the Borexino Counting Test Facility and Rn data

Counting Test Facility at Gran Sasso

Prototype of Borexino detector: 100 PMTs 4tons of LS

²¹⁴Bi-²¹⁴Po tagging

²¹⁴Bi¹³¹₈₃ (β decay; Q_{β}=3.27 MeV) ->²¹⁴Po (α decay; Q_{α}=7.83 MeV; τ = 237.04 μ s)

The sequence ²¹⁴Bi-²¹⁴Po can be tagged to remove event-by-event background with an efficiency larger than 95% in Liquid Scintillators

- 1. Select correlated events in time : $20\mu s < \Delta t < 600\mu s$
- 2. Select α event in well specified energy range considering quenching
- 3. Select events with $\Delta R < 60$ cm
- 4. Reduce accidental coincidences by a radial cut (<u>F</u>iducial <u>V</u>olume)

 $^{214}\text{Bi-}^{214}\text{Po}$ events can be used to determine α/β discrimination properties of the Liquid Scintillator

²²²Rn sources

- Make of diffused Rn contamination in the FV
- Make use of a Rn source
 - Start with high intensity ²²⁶Ra source
 - Sparge nitrogen into sample of Liquid Scintillator
 - Fill quarz vial with Rn-loaded LS
 - Use insertion system to deploy the source inside the detector

Source Insertion System in Borexino

Distribution of Bi-Po events in CTF for a diffused Rn source

Bi-Po correlated distance and time

²¹⁴Bi and ²¹⁴Po measured spectra

²¹⁴Po selects FV

Liquid Scint. response in the CTF

 MonteCarlo based on calibration data and quenching Birks' model

$$Q = LY \cdot T \cdot f_q(T, k_B) \cdot f_r(r)$$

- Main systematics due to:
 - Not completely contained γ 's
 - Light loss
 - Uncertainty on $k_B^{0.019}$ cm/MeV

Data reduction

- Data from diffused Rn contamination due to an accidental air leak in 2005
- 4.54×10⁵ selected BiPo events
- α/β discrimination: 4.46×10⁵
- Fiducial Volume cut at R=42cm: 3.14×10⁴

Ground state feeding probability

 Using allowed shape fit selected ²¹⁴Bi spectrum with three unknowns:

3.0

50

Bin

60

- p_0 , LY and normalization
- At minimum $\chi^2 = 61.7/(63-3)$
- $p_0 = 0.177 \pm 0.004(stat)^{+0.003}(sys)$ [~2.8%]

Probe shape factor

 For ground state transition release assumption on "universal shape"

$$\lambda_0(T_e) = \lambda_0^{univ}(T_e) \cdot \left(1 + y \frac{T_e - \langle T_e \rangle}{\langle T_e \rangle}\right)$$

- Assumed shape factor:
 - given in terms of dimensionless parameter y
 - does not change normalization, only shape
- Constraining p₀ and p₁ to Tol values (including errors): y = -0.11±0.06(stat); p₀~0.177; p₁~0.008
- At minimum: $\chi^2 = 51.6/(65-5)$
- Statistical evidence of deformed shape is 2.4σ

Impact on GeoNeutrino Signal

$$s(^{214}Bi) = p_0 \langle \sigma \rangle_0 + p_1 \langle \sigma \rangle_1$$

- Using ToI: $s(^{214}Bi)=(1.46\pm0.05)\times10^{-44} \text{ cm}^2$
- Using CTF: $s(^{214}Bi)=(1.42\pm0.03^{+0.023}_{-0.008})\times10^{-44} \text{ cm}^2$
- Using deformed spectrum: s(²¹⁴Bi)=(1.48±0.01±0.03)×10⁻⁴⁴ cm²
- From our data: ground state transition gives ~57% of signal from ²³⁸U

Future Plans

- Results can be improved using Rn source in quarz vial near the center of CTF
- Collect ~6×10⁶ events to be able to compare error on p_0 to that on σ_0
- Use same method for ²¹²Bi
 - data already taken
 - much more difficult source preparation

Conclusions

- First attempt to determine uncertainty on geoneutrino signal due to β decay spectral shape using a 4ton LS low background detector
- Direct measurement of the feeding probability to ground state in ²¹⁴Bi
- Probed forbidden shape
- Attempt same method for other sources