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A Natural Fission Reactor
Predicted by P.K. Kuroda, 

J. Chem. Phys. 25, 781 (1956). 
Discovered at Oklo in west Africa

G.A. Cowan, Sci. Am. 235, 36 (1976).

• 235U/238U ~0.03 (~4 x present) 2 Gy ago
• Water concentrates deposit & moderates n

• Reactor released ~15 GW-yr of energy over 
few 105 yr
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Deep-Earth Geo-reactor Models

Core-Mantle Boundary P~5TW
R.J. de Meijer & W. van Westrenen 

S. Afr. J. Sci. 104, 111 (2008)

r=3480 km

r=1222 km Inner Core Boundary P~20-30 TW
V.D. Rusov et al., 

J. Geophys. Res. 112, B09203 (2007)

Earth Center P~3-10 TW
J.M. Herndon, 

Proc. Nat. Acad. Sci. 93, 646 (1996)

Proposed at 3 depths w/ loosely defined
power output sufficient to explain:

• surface heat flow > radiogenic heat
33-46 TW > ~20 TW

•3He/4He OIB>MORB
tritium fission product- 3H→3He+β-+ν

Deep-earth Geo-reactor:
Hypothetical and very speculative

Possible and not ruled out
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Observing a Deep-Earth Geo-reactor

Model antineutrino flux & spectrum after commercial reactor
Observe using inverse beta reaction on free proton
Selection efficiency >0.9

Anti-neutrino energy, Eν (MeV)
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Antineutrino Detection

PMTs measure position and amount of deposited energy

γ

e+
e-

γ

n p+

γ

Prompt event deposits
energy of Eν-0.8 MeV

Delayed event deposits
energy of 2.2 MeV

p+νe

Antineutrino (Eν>1.8 MeV)
interacts with free proton
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Experimental Constraint

- Nuclear plant

KamLAND exposure 2.44x1032p+-yr
and solar neutrino data
set upper limit to power

of earth-centered geo-reactor

P < 6.2 TW (90% C.L.)

Abe et al., PRL 100, 221803 (2008)

55 Japanese
nuclear power 
reactor units
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More Sensitive Search Possible

Oceanic antineutrino observatory
operating far from reactors

in deep ocean

Signal/Background ~0.8/TW

8.5x1032 p+-yr exposure
sets P < 0.5 TW 

at >95% C.L.

Or measure power to ~10%
if P~ few TW at earth center

Dye et al., EMP 99, 241 (2006)
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Uncertainties- Power vs Location

KamLAND power limit translates
to 1.3 – 15 TW allowing 

geo-reactor position along 
diameter through core

Locating geo-reactor source 
position would lead to more 

precise power estimate
and discriminate 

geo-reactor models

What if geo-reactor not earth-centered?
Models suggest 3 possible 
deep-earth locations:
Earth center
Inner core boundary
Core-mantle boundary

…or use neutrino oscillation pattern to
make the map  
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Could consider antineutrino 
direction measurement

Excellent recent progress at RCNS
although technology 

not fully available 



Distortion of Energy Spectrum
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Mixing parameters from 
global solar + reactor fit
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Reactor spectrum approximated Reactor antineutrino energy spectrum

Earth center
d=6370 km

Core-mantle
d=2890 km

δE=0

δE=0
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Energy Resolution

Distortions well preserved 
with 3%√E energy resolution

Idealized energy spectra: TW-1033p+-yr

δE=6%√E δE=3%√E

6370 km

5150 km

2890 km

Benchmark:
KamLAND visible energy 
resolution δE/E=6.5%/√E

8.0−= eEE ν
Visible energy resolution

determined by scintillation
light collection:

•Photocathode coverage
•Photocathode QE

•Scintillation light output

Visible energy related to 
antineutrino energy
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Improving Energy Resolution
Benchmark- KamLAND at ~6%

Goal- Increase light collection x4 to achieve 3%

3%√E possible

Increase light output with 
LAB-based scintillating oil

x ~1.7
(M. Chen 2006)

Increase photocathode 
coverage to SNO-like (55%) 

x ~1.6
(B. Aharmin et al. 2007)

Increase PC quantum efficiency 
x ~1.6

(R. Mirzoyan et al. 2006)
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For each event in the spectrum

Test significance of spectrum 
at distances L=500-8000 km 

Rayleigh Power Estimates Spectral Significance

Distance limitations: 
spectrum must modulate,

Lind is minimum;
modulations must be resolved,

energy resolution sets maximum

Introduced by Lord Rayleigh to
study directions of pigeon flight

Used to test for periodicity of
light curves in astronomy

amplitude modulation
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Measuring Distance to Reactor

Power peaks at correct distance
FWHM ~1000 km

δE=6%√E δE=3%√E

Oversampled x10

2890 km

5150 km

6370 km

δE=3%√EδE=6%√E

Rayleigh Power DistributionsIdealized energy spectra: TW-1033p+-yr
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Resolving Distances to Multiple Sources

Method capable of finding 
discrete sources at
different distances

Idealized energy spectrum with 
δE=3%√E from TW-1033p+-yr exposure 
to sources at:

• CMB
• Inner core boundary- near
• Earth center
• Inner core boundary- far

Rayleigh power distribution resolves
discrete sources at different distances

separated by > ~500 km
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Distributed Sources

Method has potential for finding 
distributed sources

r=5km

r=50km

r=500km

Single source

Near and far
surfaces 

resolved!!!Idealized energy 
spectra with 

δE=3%√E from 
TW-1033p+-yr
exposure to

source
distributed

uniformly on 
a geo-centric,

spherical shell:
different radii
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Distributed Sources

r=500km

r=1222km

r=3480km

Peaks due to
near and far surfaces
just poking up above 

noise: potential for
inner core boundary?

Idealized energy spectra with δE=3%√E from TW-1033p+-yr exposure 
Geo-centric source uniformly distributed on spherical shell

CMB

Inner 
core
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Assessing Exposure Requirements

• Randomly sample idealized event spectra

• Number of sampled events determines exposure

• Generate Rayleigh power distribution

• Test if peak within  ± Lind (150 km) of “true” distance

• Repeat for 1000 spectra at each exposure

• Efficiency is fraction of “correct” distance measurements



Earth-centered: r = 6370 km

Inner core boundary: r = 5150 km

Core-mantle boundary: r = 2890 km

95%

20

6

0.4

Exposures w/ efficiency ε=0.99 
σdistance≈ Lind ≈ 150 km

Efficiency Increases with Exposure

Greater distance requires
larger exposure

NuTech 09 18



• Background not included:
• Reactor antineutrinos- far away from commercial plants
• Cosmic rays- overburden > 3000 m.w.e.
• Geo-neutrinos- far away from continents

• Solution: Observe from mid-Pacific location- Hanohano
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Limitations of Study



Conclusions
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• Neutrinos are marvelous tools

• L/E for reactor antineutrinos at deep-earth distances 
good match for solar mass-squared differences

• Energy spectrum distortions resolved with high 
light collection (~x4 KL)- aim for δE=3%√E

•Distances to deep-earth geo-reactors measured 
to ± few 100 km using Rayleigh power scan

•Suitable for discriminating geo-reactor models with
detector like Hanohano



HanohanoHanohano-- Deep Ocean AntiDeep Ocean Anti--Neutrino ObservatoryNeutrino Observatory

Project OverviewProject Overview
• portable 10 kt scintillator
• deploy and recover
• site determines science
• project cost >$100M, operate >10y
• international collaboration of ~100
• design study completed 2006

Custom BargeCustom Barge
• tow to any ocean
• 10m draft, fits harbors
• onboard 

– oil purification
– RO water
– detector support

• detector to 100 kt
• 9 kt max to fit PanamaDetector DesignDetector Design

• 10-kt scintillating oil
• inverse-beta coincidence
• 2-m H2O veto,1-m oil buffer
• PMTs in glass spheres
• carbon steel outer tank
• SS inner tank
• volume change compensation
• power <5 kW
• data rate few Gb/s

Deployment/RecoveryDeployment/Recovery
• tow to site, transfer fluids
• lower anchor, pass cable
• release anchor, fill hoses
• descent rate ~100 m/min
• take data for year or more
• max depth 6700 m
• release anchor to recover
• ascent rate ~100 m/min
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Reactor Site: Neutrino ParametersReactor Site: Neutrino Parameters
Precision measurements in several years!
• optimum baseline ~50-60 km
• 5-6 GW sites available with 1-3 km depth
• need study of overburden requirement
• analysis w/ systematics- M. Batygov (UH)
• solar- Δm2

21, sin2(2θ12) to ~1% in 2y, 4y
• if sin2(2θ13)>0.05, then

– Δm2
31 to ~1% in 2y

– mass hierarchy in 5y

Plots by M. Batygov, UH

HanohanoHanohano-- Particle Physics & Geo/Astro StudiesParticle Physics & Geo/Astro Studies
Deep Ocean Site: GeoDeep Ocean Site: Geo--nu & Solarnu & Solar--nunu
Geo-neutrino measurements
• study origin, composition, distribution Pearth
• 3-4 km depth to filter cosmic ray muons
• resolution of mantle models 
• synergy with continental observations
• sensitive test of geo-reactor hypothesis
• locate geo-reactor if existing
Solar-neutrino measurements
• pep and CNO solar neutrinos

– >4 km depth for signal/noise>1
– 55,000 events/y
– probe vacuum/matter transition, NSI

All Sites: SN and proton decay searchAll Sites: SN and proton decay search
Supernova neutrino measurements
• standard galactic core collapse SN

– ~5000 CC & NC events in 10 s
– measure SN & neutrino parameters

• observe relic SN neutrinos 1-4/y (DSNB)
SUSY proton decay search- GUT test
• p→νK+, τ/B>1034y w/ 10-y exposure
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