

2047-18

Workshop Towards Neutrino Technologies

13 - 17 July 2009

The GSI anomaly

Manfred B. LINDNER Max Planck Institute for Nuclear Physics Saupfercheckweg 1 D-69117 Heidelberg, GERMANY

The GSI Anomaly

Based on collaboration with: H. Kienert, J. Kopp and A. Merle + close contact with experiment

Workshop Towards Neutrino Technologies International Center for Theoretical Physics Trieste, Italy, July 13-17, 2009

What is the GSI Anomaly?

\rightarrow Periodically modualted exponential β -decay law

of highly charged, stored ions at GSI by the FRS/ESR Collaboration

Production of HCI's

Production and Selection of exotic Nuclei

Beam Cooling

Initial momentum spread → cooling required:

- stochastic cooling for the first few seconds
- electron cooling (permanently on)

momentum exchange with 'cold' electron beam → cooling ~ seconds
ions get the sharp velocity of the electrons, small size and divergence

→ sharp rotation frequency

Schottky-Pickup Detection

Observation of Decays of stored Ions

Examples for Decay of Single Ions

- ordinary β -decay and EC clearly separable (magnitude of Δf)
- for few ions: intensity allows to see individual decays
- mother *AND* daughter seen

Spectroscopy of individual Particles

- sensitive to single ions
- well-defined
 - creation time t_0
 - charge states
- two-body β-decay
 → monochromatic ν_e
- observation of changes in peak intensities of mother and daughter ions

- investigation of a selected decay branch, e.g. pure EC decay
- time-dependence of the detection efficiency is excluded

Relevant Decays: H-like ¹⁴⁰Pr and ¹⁴²Pm

Examples of measured Time-Frequency Traces

140Pr all runs: 2650 EC decays from 7102 injections

142Pm: 2740 EC decays from 7011 injections

Periodic modulation of exponential decay?

142Pm: zoom on the first 35s after injection

Fits

1) exponential

$$dN_{EC} (t)/dt = N_0 \exp \{-\lambda t\} \lambda_{EC} ; \lambda = \lambda_{\beta+} + \lambda_{EC} + \lambda_{loss}$$

2) exponential plus oscillation

 $dN_{EC} (t)/dt = N_0 \exp \{-\lambda t\} \lambda_{EC} (t)$ $\lambda_{EC} (t) = \lambda_{EC} [1+a \cos(\omega t+\phi)]$

T agrees for Pr and Pm

→ what about the phase (relative, absolute)?

Recent Developments

New run with Iodium:

- 3.5 σ effect in Pr/Pm data \rightarrow could be a statistical fluctuation
- new Iodium data: so far only partial information public (talks, GSI annual report)
- \rightarrow analysis & publication rather slow... talks...
- \rightarrow confirm oscillations $\rightarrow 8\sigma \dots$, M scaling seen
- → understanding / explanation required!

Carefully checks of the experiment by the colaboration:

- artefacts such as periodic coupling of the Schottky-noise to all sort of backgrounds excluded
- all EC decays are recorded; continuous information on the status of mother- and daughter ion during the whole observation time

Questions and potential Issues

- Neutrino explanation?
 - wrong masses/mixings compared to KamLAND
 - ideas to change KamLAND analysis $\leftarrow \rightarrow$ solar parameters
 - \rightarrow will show that cannot be neutrinos
- Scaling of amplitude of the Schottky-signal → 9, 10
 → no plausible model fits scaling of the growing fluctuations
 → fluctuations limit to few ions (N or N+1 ions?)
- Primary signal unobserved + 30th harmonic + hardware FFT noise >> individual ion signal → 6,7
- Relative phase Pr / Pm
- Precision $\leftarrow \rightarrow$ complex system
 - interaction ions with other ions, eöectron-cooler, ring, ...

- . . .

Statistical Issues

Visible even by eye: Central values follow the curve to nicely! → unexplained statistical feature **→** statistical fluctuations on top of oscillation must exist!

Neutrino Mixings?

• Why this is <u>NOT</u> explained by neutrino mixing

➔ H. Kienert, J. Kopp, ML, A. Merle, arXiv: 0808.2389, J.Phys.Conf.Ser.136:022049,2008 (proceedings of Neutrino 2008)

→ Feynman diagram of neutrino oscillation:

- energy momentum properties, quantum numbers, coherence, ...
- e.g. observation of solar neutrinos in v_e channel

The EC Process

Kinematics:

- a) precise measurement of mother and daughter energies and momenta → emitted mass eigenstate known → one contribution
 → no oscillation, but rate ~ |U_{ei}|² → not realized here (& no oscillation)
- b) finite kinematical resolution much less than neutrino masses
 All three mass eigenstates contribute incoherently

$$ightarrow \propto \sum |U_{ei}|^2 = 1$$
 $ightarrow$ independent of flavour mixing

no periodic modulation of decays due to netrino mixing
same result in detailed QM calculation → see our paper

Explanations

So far two categories of explanations:

- simply wrong
- in principle OK → but order of magnitude...
- systematic issues in the experiment ...
- - ➔ c.f. neutrino oscillations
 - the mother ion is a two level system
 - **←→** not seen in $β^+$ decays **→** ... nucleus or e-shell?
 - quantum beats ?
 - β -decay + unobserved neutrino (only v_e) + kinematics
 - → unresolved kinematical states of the daugther ion
 - → quantum beat due to neutrino masses...
 - ➔ no do incoherent sum!

Conclusions

- observation of an unexplained periodic modulation of the decay of H-like HCIs (3.5σ → ~ 8σ)
- M scaling confirmed ←→ necessary but not sufficient for a physics effect
- *NOT* related to neutrino masses and mixing
- conceivable: tiny splitting of a 2 level mother system
 - how to explain such a tiny split?
 - coherence length?
- careful checks of all sort of systematics were performed
- however: some unexplained issues

release of full information from Iodium run
new ideas?