

2047-20

Workshop Towards Neutrino Technologies

13 - 17 July 2009

Neutrino induced electron capture using bound-beta beams

Rudolf OLDEMAN

Universita' di Cagliari Dipartimento di Fisica Cittadella Universitaria S. Prov.le Monserrato-Sestu Km. 0700 Monserrato

Resonant antineutrino induced electron capture with low energy bound beta beams

R.G.C. Oldeman, M. Meloni, B. Saitta Università degli studi di Cagliari

arXiv:0905.1029

Resonant neutrino processes

 Neutrino cross-sections for continuous processes are small

 $\sigma \propto \frac{G_F^2}{\pi} Q^2 \approx 10^{-44} \text{ cm}^2 \text{ at } 1 \text{MeV}^2, \approx 10^{-38} \text{cm}^2 \text{ at } 1 \text{ GeV}^2$

• With resonant intermediate state, cross-section can in principle be much larger:

$$\sigma_{peak} \propto \frac{4\pi}{Q^2} Br(Res \rightarrow initial state)$$

• Well known example: absorption of UHE v from scattering on (massive) cosmic background v $\sigma(v\bar{v}\rightarrow Z^0) = 5x10^{-31}cm^2$

Electron capture and bound-beta decay

Inverse electron capture (bound state neutrino absorption)

Bound-beta decay

Inverse bound-beta decay (antineutrino induced electron capture)

Studies of vEC

- 1950 Fermi mentions in book "Nuclear Physics"
- 1959 W.M. Visscher proposes Mossbauer neutrinos – W.M. Visscher Phys Rev 116, 1581-1582 (1959)
- 1968 Mikaelyan et al study its rate integrating over continuous reactor spectrum

- For Z>60 vEC cross-section exceeds inverse beta decay Mikaelyan et al Sovj.J.Nucl.Phys. 6. 254 (1968)

- 1983 Kells, Schiffer propose Mossbauer antineutrinos – W.P. Kells, J.P. Schiffer, Phys.Rev.C28:2162-2164,1983
- 2005 R.S. Raghavan proposes Mossbauer in ${}^{3}H \leftrightarrow {}^{3}He$ system
 - hep-ph/0511191
- 2009 A.G. Cocco et al consider vEC for CBv detection – arXiv:0903.1217

Antineutrino induced electron capture (vEC)

$$\bar{\nu}_e +^A_{Z+1} Y \to^A_Z X^*,$$

The new atom has a vacancy in an inner shell

Dominant decay: radiative de-excitation proportional to square of binding energy B: $\Gamma = \alpha \frac{B^2}{m}$,

Twofold experimental signature:

- photons from de-excitation
- Radioactive decay of daughter nucleus

The cross-section is resonant:

$$\sigma_{\bar{\nu}\mathrm{EC}}(Q) = S \frac{4\pi}{Q^2} \left[\frac{\Gamma^2/4}{(Q-Q_t)^2 + \Gamma^2/4} \right] \frac{\Gamma_{b\beta}}{\Gamma}$$

S is a spin-factor of order 1

Bound beta decay

Probability of beta minus to be emitted in orbit:

$$\frac{\Gamma_{b\beta}}{\Gamma_{c\beta}} = n_f \pi \left(\frac{\alpha}{n}\right)^3 \frac{(Z+1)^{2.87+6.2\cdot 10^{-3}(Z+1)}}{f(Z+1,Q_{c\beta})} \left(\frac{Q_{b\beta}}{m_e}\right)^2$$

Mikaelyan et al Sovj.J.Nucl.Phys. 6. 254 (1968)

Non-zero only for L=0 oribitals (ns) Largest probability for:

- 1s oribital (n=1)
- high-Z nuclei
- small Q-value
- highly ionized atoms

First observation 1992 GSI M.Jung et.al. PRL 69:2164-2167,1992

Bound beta decay probability

Fully ionized atoms to 1s orbital 8x smaller for 2s orbital

Only consider allowed transistions $(\Delta P=0, \Delta J \le 1)$

vEC peak cross-sections

Several orders of magnitude larger than neutrino-electron or neutrino proton scattering

Only valid in very narrow energy range: 1meV for ¹²C, 11eV for ¹¹²Sn

*v*EC from 2s orbital 2x larger cross-section but 8x smaller width

Need monochromatic source of antineutrinos to profit from large cross-section!

Neutrino energy in $b\beta$ and vEC

v emitted in b β does not match Q value of vEC:

- nuclear recoil: Q²/2m 'lost' in both source and target
 - <1eV for ³⁵Cl to 22keV for ⁹Be
- Differences in binding energy:
 - $Q_{c\beta,n} = \Delta m$
 - $Q_{c\beta,i} = \Delta m \Delta B_{tot}$
 - $Q_{b\beta,i} = \Delta m \Delta B_{tot} + B_{I}$
 - $Q_{v \in C, n} = \Delta m + B_n$

 $Q_{\nu\text{EC}}\text{-}Q_{b\beta,i}\approx 15 eV^{\star}Z$

Bound beta beams

- Stripped atoms in a storage ring with straight sections
- Antineutrinos emitted monochromatic in CMS frame
- Neutrino energy can be tuned with Lorentz boost:

$$E_{\bar{\nu}} = E_{\bar{\nu}s}\gamma(1+\beta\cos\theta')$$

- Neutrino energy depends on emission angle
- Tune beam speed such that at $\theta=0$ E_v=E_{vt}+x Γ
- Monochromatic (within $x\Gamma$) up to angles of

$$\cos\theta = 1 - \frac{2x\Gamma}{E_{\bar{\nu}s}\beta\gamma}.$$

• Best monochromaticity for non-relativistic beams!

How monochromatic does the beam need to be?

$$E_{\bar{\nu}} = E_{\bar{\nu}s}\gamma(1+\beta\cos\theta')$$

For non-relativistic beams ($\beta <<1$) p_v spread much smaller than beam momentum spread! Requirement on beam monochromaticity: $\frac{\Delta p}{p} \leq \frac{1}{p}$

Possible experimental setup

Conical targets as close as possible to storage ring *(demonstration experiment)*

Expected number of interactions per decaying atom:

$$N_A = \frac{\Gamma_{b\beta}}{\Gamma} \frac{1 - \cos\theta'}{2} \varepsilon_{BW} \sigma_{peak} L \frac{\rho}{m}$$

Highly idealized:

- neglected losses in curved sections
- neglected size of straight sections
- neglected momentum spread
- assumed target 100% pure isotope

for a target of 10³ kg pure isotope:

source	$\Gamma_{b\beta}/\Gamma$	$_{(10^{-3})}^{\beta}$	$_{(s)}^{\tau}$	target	natural abundance(%)	Q_t (keV)	θ (mrad)	L (m)	$\Delta p/p$	N_A (10 ⁻²²)
^{77}As	0.080	-2.06	$1.90\cdot 10^5$	$^{112}\mathrm{Sn}_{1s}$	1.0	693	177	1.61	$7.81 \cdot 10^{-3}$	486
^{108}Ag	0.035	0.45	$2.01 \cdot 10^{2}$	$^{108}Cd_{1s}$	0.9	1676	222	1.31	$1.23 \cdot 10^{-2}$	164
112 In	0.082	1.10	$1.10 \cdot 10^{3}$	$^{112}Sn_{1s}$	1.0	693	242	1.31	$1.46 \cdot 10^{-2}$	764
121 Sn	0.362	1.85	$9.62 \cdot 10^{4}$	$^{121}Sb_{1s}$	57.2	420	251	1.31	$1.56 \cdot 10^{-2}$	390
127 Te	0.193	-56.00	$4.11 \cdot 10^{4}$	$^{112}Sn_{1s}$	1.0	693	35	4.77	$2.87 \cdot 10^{-4}$	121
$^{161}\mathrm{Tb}$	0.338	73.35	$6.14 \cdot 10^{5}$	$^{112}Sn_{1s}$	1.0	693	29	5.45	$2.19 \cdot 10^{-4}$	211
161 Tb	0.338	38.66	$6.13 \cdot 10^{5}$	$^{112}Sn_{2s}$	1.0	669	6	15.11	$9.91 \cdot 10^{-6}$	139
161 Tb	0.338	33.55	$6.13 \cdot 10^{5}$	$^{112}Sn_{3s}$	1.0	666	1	42.70	$4.37 \cdot 10^{-7}$	134
¹⁷⁸ Yb	0.338	-17.53	$4.57 \cdot 10^{3}$	$^{112}Sn_{1s}$	1.0	693	61	3.28	$9.18 \cdot 10^{-4}$	486
¹⁷⁸ Yb	0.338	-52.28	$4.58 \cdot 10^{3}$	$^{112}\mathrm{Sn}_{2s}$	1.0	669	6	16.22	$7.33 \cdot 10^{-6}$	101
^{245}Am	0.303	-0.20	$8.13 \cdot 10^3$	$^{164}{ m Er}_{1s}$	1.6	1019	961	0.49	$2.14 \cdot 10^{-1}$	715
^{253}Cf	0.798	-1.10	$5.95 \cdot 10^{5}$	$^{121}\mathrm{Sb}_{1s}$	57.2	420	326	1.10	$2.62 \cdot 10^{-2}$	1206
255 Es	0.733	-15.64	$1.34 \cdot 10^{6}$	$^{121}Sb_{1s}$	57.2	420	87	2.67	$1.85 \cdot 10^{-3}$	186

Additional requirements

>10⁻²⁰ interactions per stored atom per year
 >10⁻¹⁰ interactions per joule (stripping and accelerating)

Most favourable outcome: need 8x10¹⁸ decays for one interaction

Oscillation experiment

Target volume limited by monochomaticity but fits 10³ kg for all cases studied

Potential for measuring θ_{13} from neutrino disappearance

Rates for oscillation experiment

for a target of 10 ³ kg pure isotope:											
source	$\Gamma_{b\beta}/\Gamma$	β	τ	target	natural	Q_t	θ	L	$\Delta p/p$	N_A	
		(10^{-3})	(s)	_	$\operatorname{abundance}(\%)$	(keV)	(μrad)	(m)		(10^{-24})	
^{35}S	0.114	-12.0	$9.99 \cdot 10^6$	$^{35}Cl_{2s}$	75.8	167	540	86	$3.79 \cdot 10^{-7}$	190	
^{35}S	0.114	143.2	$1.01 \cdot 10^{7}$	$^{106}Cd_{3s}$	1.2	196	181	101	$2.63 \cdot 10^{-7}$	315	
⁶⁶ Ni	0.215	-44.2	$2.34 \cdot 10^{5}$	${}^{33}S_{2s}$	0.8	249	259	128	$4.64 \cdot 10^{-8}$	174	
153 Nd	0.014	38.0	$4.56 \cdot 10^{1}$	⁶ Li _{1s}	7.6	3508	10	1813	$6.48 \cdot 10^{-11}$	115	
152 Pm	0.013	-11.8	$3.57 \cdot 10^{2}$	⁶ Li _{1s}	7.6	3508	10	1813	$2.09 \cdot 10^{-10}$	110	
155 Pm	0.015	70.1	$6.00 \cdot 10^{1}$	⁶ Li _{1s}	7.6	3508	10	1813	$3.51 \cdot 10^{-11}$	108	
^{153}Sm	0.214	63.9	$1.99 \cdot 10^{5}$	$^{69}\text{Ga}_{3s}$	60.1	910	22	470	$4.80 \cdot 10^{-9}$	148	
161 Tb	0.338	33.6	$6.13 \cdot 10^{5}$	$^{112}Sn_{3s}$	1.0	666	32	344	$4.37 \cdot 10^{-7}$	115	
¹⁶⁹ Dy	0.019	74.9	$5.63 \cdot 10^{1}$	⁶ Li _{1s}	7.6	3508	10	1813	$3.29 \cdot 10^{-11}$	127	
171 Ho	0.019	73.8	$7.65 \cdot 10^{1}$	⁶ Li _{1s}	7.6	3508	10	1813	$3.34 \cdot 10^{-11}$	132	
²³⁰ Ra	0.383	115.3	$5.52 \cdot 10^{3}$	$^{69}\text{Ga}_{3s}$	60.1	910	22	470	$2.66 \cdot 10^{-9}$	292	
²³³ Ra	0.030	39.8	$4.31 \cdot 10^{1}$	⁶ Li _{1s}	7.6	3508	10^{-10}	1813	$6.19 \cdot 10^{-11}$	252	
^{232}Ac	0.024	-81.2	$1.72 \cdot 10^{2}$	⁶ Li _{1s}	7.6	3508	10	1813	$3.03 \cdot 10^{-11}$	123	
^{255}Cf	0.398	62.9	$4.99 \cdot 10^{3}$	$^{69}\text{Ga}_{3s}$	60.1	910	22	470	$4.87 \cdot 10^{-9}$	274	
^{257}Es	0.349	-40.8	$6.97\cdot 10^5$	$^{69}\text{Ga}_{3s}$	60.1	910	22	470	$7.52 \cdot 10^{-9}$	195	

of 103 kg puro • • •

Additional requirements

>10⁻²² interactions per stored atom per year >10⁻¹² interactions per joule (stripping and accelerating)

> Most favourable outcome: need 3x10²¹ decays for one interaction

Comparison

Interaction rate 3x10²¹ decays for one interaction rate seems a lot.

Compare with nuclear reactor

3 MeV reactor neutrinos: oscillation maximum at 1500 m

- σ_{eff} =5.8x10⁻⁴³cm²/fission = 8.1x10²³ fissions per interaction
- vEC interaction rate more than 2 orders of magnitude more favourable than reactor neutrinos

But

- 3GW reactor = 10²⁰ fission/s,
- most optimistic radioactive beams 10¹³ decays/second
- Loose 7 orders of magnitude in beam power...

Conclusions

Several nuclear processes lend themselves for resonant neutrino scattering with potentially large cross-sections

Neutrino-induced electron capture has peak crosssections several orders of magnitude larger than continuoum cross-sections *many below the 1.8 MeV antineutrino-proton threshold*

Stripped ions undergoing bound-beta decay are possible source of monochromatic antineutrinos *small Lorentz boost* 10⁻³<β<10⁻¹ *sufficient*

8x10¹⁸ decays per interaction in a 1 ton target seems too low to be practical in near future

BACKUP

Rates from reactor experiments

- Oscillation maximum at 3Mev: $L = \frac{2\pi E_{\nu}}{\Delta m_{22}^2}$ =1500m
- number of interactions per fission for 1 ton dt protons - 7tons of $(CH_2)_n$
- $\forall \sigma_{\text{eff}} = (5.75 \pm 0.08) \times 10^{-43} \text{ cm/fission } Phys.Lett.B338:383-389,1994$
- M/m=number of protons in 10³kg=6.0x10²⁹

$$N = \frac{\sigma}{4\pi L^2} \frac{M}{m} = 1.23 \times 10^{-24}$$

• Require 8.1x10²³ fissions per interaction

Oscillation maximum

oscillation probability:

$$P_{\alpha \to \beta} = \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{4E}\right)$$

oscillation maximum

$$\frac{\Delta m^2 L}{4E} = \frac{1}{2}\pi \rightarrow L = \frac{2\pi E}{\Delta m^2}$$

Radiative width of excited atoms

We use $\Gamma = \alpha B^2/m_e$ For K-shell B=(1/2) $\alpha^2 m_e Z_2$ -> Γ_κ =(1/4) $\alpha^5 m_e Z^4$ =2.64x10⁻⁶Z⁴eV Bransden&Joachain: Eq 9.119: Γ_κ =1.73x10⁻⁶Z^{3.93}eV (includes Auger transistions)

Hydrogen 2p->1s We use $\Gamma = \alpha B^2/m_e$ Bransden&Joachain: electric dipole transition (E1) $\Gamma = (4/3)\alpha E_{\gamma}^{3}r^2$ $\Gamma = (2/3)^8m_e\alpha^5 = 4.13x10^{-7}eV$ mine: B=1/2 α^2m_e =13.6eV $\Gamma = (1/4)m_e\alpha^5 = 2.6x10^{-6}eV$

continuum cross-sections

$$\sigma_{\bar{\nu}p} = \frac{G_F^2}{\pi} E_{\nu}^2 \left(g_V^2 + 3g_A^2 \right) \left(1 - \frac{\Delta}{E_{\nu}} \right) \sqrt{1 - 2\frac{\Delta}{E_{\nu}} + \frac{\Delta^2 - m_e^2}{E_{\nu}^2}}$$

$$\sigma_{\overline{v}e} = \frac{G_F^2}{\pi} 2m_e E_v \left(\frac{1}{3} \left(\sin^2 \theta_w + \frac{1}{2}\right)^2 + \left(\sin^2 \theta_w\right)^2\right)$$