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• Interactions of quantum liquids: fermionic cosmological relics

have propagating zero-sound
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Introduction: Review of the Cosmic ν Background

Cosmic neutrinos decouple from the Big Bang plasma at a temper-

ature around 2 MeV. At that time they have a thermal Fermi-Dirac

distribution.

As the universe expands, their density and temperature red-shift, lead-

ing to

Tν =

(
4

11

)1/3
Tγ = 1.95K; nνi = nνi =

3

22
nγ =

56

cm3

where Tγ and nγ are the measured temperature and number density

of CMB photons. Thus at least two species must be non-relativistic

today. If neutrinos cluster gravitationally, the density is enhanced

[Singh, Ma; Ringwald, Wong].

Due to large mixing, the 
avor composition is equilibrated. All three

mass eigenstates have equal densities. [Lunardini, Smirnov]

The asymmetry ην = (nν−nν)/nγ is related to the baryon asymmetry
ηb = (nb − nb)/nγ ' 10−10, so that any asymmetry can be neglected

and we will assume nν = nν.



Introduction: Where are we?

The universe is not empty.

We live in a bath of neutrinos.

Even \vacuum" contains long wavelength neutrinos and photons.

To leading order we're justi�ed in ignoring them because

Tν, Tγ, N
1/3
ν , N

1/3
γ << T0, pF0 << MW

.

Our �eld theories and experiments have accurately told us what lives

at high energies (W±, Z± and possibly H0).

If I look at the scales that are known, the ratios of those scales seem

to contain the Planck scale (M2
Z/Tν or M

2
Z/pF ).



Introduction: Scales of the neutrino background

What scales do I know about? (note p3F = 3π2n; EF =
√
m2+ p2F )

pF (ν) 2.34× 10−4 eV per 
avor/anti√
�m12 8.94× 10−3 eV√
�m23 5.29× 10−2 eV
Tν 1.68× 10−4 eV

G
−1/2
F 2.92× 1012 eV

What scales do I want to explain? (using pF as representative of the

low scale)

� 2.3× 10−3 eV O(pF )
pF (χ) 8.80× 10−6 eV

(
100GeV
Mχ

)
O(pF )

M−1Pl =
√
GN (1.22× 1028eV )−1 O(pFGF )

α� 1.51× 10−33 eV O(p3FGF )
αMOND 2.63× 10−34 eV O(p3FGF )
αPioneer 1.92× 10−33 eV O(p3FGF )

Is this all a big coincidence?



Introduction: Scattering Scales

This interactions of cosmic neutrinos are a theory of contact inter-

actions in a quantum liquid at �nite density and temperature. The

fundamental parameters are the Fermi momentum pF , T and GF .

Let us examine the e�ective range expansion of neutrino self-scattering

to get an idea of the scales:

k cot δ0 = −
1

a
+
1

2
k2l0+ . . .

where a =
√
σνν/4π ' TνGF is the s-wave scattering length and l0 =√

GF is the range of the potential. Thus we have the approximation

regime a� l0.

This is the opposite approximation regime to atomic and nuclear �nite

density systems, BEC's, and BCS superconductivity, so one must be

careful when applying results from those �elds, and we want to take

a→ 0.

Therefore, the leading dynamics occurs due to this p-wave term.



Introduction: Scattering Scales Again

Note that the self-interactions of a weakly-interacting 
uid can be

expanded as

M = ReM+ iImM = αGF + iβG2F

That is, the imaginary part of the matrix element is related, by

the Optical Theorem, to the total scattering cross section. This

is O(G2F ). The real part however is only O(GF ).

Or, to repeat the last slide, l0 � a. The range (l0 =
√
GF ) is much

larger than the scattering length (a = TνGF ).

Therefore, the dynamics of the real part of the matrix element are

much, much more important than the scattering cross section for

weakly interacting 
uids.

So, in terms of interactions, we will want to discover what the p-wave,

real part of the matrix element is doing.



What are neutrinos doing today

The dynamics of the neutrino background is given just by its kinetic

term and self-interaction

ψγµ∂µψ −mψψ+
g2

M2
Z

ψγµψψγµψ

let us ignore the interactions for a few slides and concentrate on the

�rst two terms. They do 2 things:

• Give rise to the 2 point function, transporting neutrinos in space

• Cause the expansion of the neutrino's wave packet

The latter e�ect is normally forgotten in QFT under the assumption

that we have asymptotic localized particles. Is this a good assumption

for a cosmological relic?



Wave packet expansion I/IV

Wave packets expand because di�erent wave numbers move at dif-

ferent velocities in the presence of a mass or interaction. The wave

number at p = p0+�p moves with velocity v = (p0+�p)/E while the

wave number on the other side moves with velocity v = (p0−�p)/E,
and these wave numbers separate in space.

Thus the uncertainty of a wave packet evolves as

�x(t)2 =�x20+�v2t2

In the relativistic case we must use

�v =
�p

E
(1− v2).

Assuming the initial uncertainty is given by the de Broglie wavelength

�x0 = λ/p = λ/
√
3mkT

allows us to derive the condition for a massive quantum liquid with

t = 0 (or equivalently �p = 0)

�x > n−1/3 ⇒ T <
n2/3λ2

3mk



Wave packet expansion II/IV
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Wave packet expansion III/IV

The quantum liquid condition is: (by e�nition)

�x� n−1/3.

The opposite limit is the classical gas limit, and is the limit used by

scattering theory (particles are localized):

�x� n−1/3 ∼ b.
where b is the impact parameter in scattering theory. The tempera-

ture condition is valid only if scattering occurs su�ciently often that

the time dependence of the wave packet can be neglected:

τ �
�x

�v
= E

�x

�p

where τ = (σnv)−1 is the mean time between collisions. This holds

for atomic and nuclear matter at the densities usually considered.

Notice that the other assumption �p = E�v = 0 implies �x = ∞
by �x�p ≥ �h/2 and vacuum calculations are not appropriate. they

must be done at �nite density. (i.e. we're in a momentum eigenstate

but there is no empty space: we must use mean �eld theory)



Wave packet expansion conclusion

Putting everything together using t = τ :

�x > n−1/3 ⇒
1

p2
+
(1− v2)2

σ2n2
>

1

λ2n2/3
.

If we can neglect the �rst term, which is valid for decoupled relics,

we obtain the quantum liquid criterion for weakly coupled relics:

�x < n−1/3 ⇒ σ >
λ(1− v2)
n2/3

.

This is very (very very) well satis�ed for both relic neutrinos and dark

matter (σ ' 10−56eV−2, n−2/3 ' 10−8eV−2). This means:

1) We have to worry about the dynamics of a quantum liquid for

any massive cosmological relic (dark matter, at least 2 
avors of

neutrinos)

2) We need to worry about quantum liquid dynamics of massless

relics (lightest neutrino, axions, photons) too, because T ∼ n−1/3

and the low-momentum components of the distribution function are

a quantum liquid.



Where do we go from here?

How do we deal with this kind of quantum liquid, and what are its

dynamics?

The wave packet �x calculation is telling us that relics are plane

waves. Therefore they are entirely described by their thermal distri-

bution n(p).

When �x � n−1/3, collective dynamics begin to be important. It

doesn't make sense to compute �x larger than this. The dynamical

impact of �x is the suppression of collective e�ects, and if �x �
n−1/3, one cannot observe this.

Fuller and Kishimoto recently calculated �x for relic neutrinos and

gave an answer of Gpc [Phys. Rev. Lett. 102, 201303 (2009)].

(a.k.a. \Ginormous Neutrinos")



What's di�erent about a quantum liquid?

We have non-zero density everywhere. Particles are not isolated or

localized.

⇒ Contact operators have expectation values in \vacuum".

This means that those contact operators can de�ne propagating com-

posite degrees of freedom.

For a Fermi liquid with repulsive interactions, this is zero-sound.

Just as with a BEC (cooper pair), or meson, it is the attractive

interactions that de�ne the propagating collective modes.

This is also index of refraction (forward-scattering) physics, which

is important when there is no scattering! (look through a plate of

glass)



Landau Zero Sound References

In 1957, Landau realized that to describe the dynamics of 3He, a

relativistic degree of freedom was required. He proved its existence

on the context of his Landau Fermi Liquid Theory.

Landau & Lifshitz, \Statistical Physics" Volume 9, Part 2, p. 13;

Baym & Pethick, \Landau Fermi Liquid Theory", section 1.3.1, p.46

The relativistic extension of this theory was provided by Baym & Chin,

NPA 3, 527 (1976). The best relativistic exposition of Zero-Sound in

the literature is due to Chin, Annals of Physics 2, 301 (1977) (section

5) in the context of Quantum HadroDynamics (QHD).

The original Landau theory is only a phenomenological model, and is

missing important Pauli-blocking and interference e�ects: Chitov &

Senechal, Phys. Rev. B57, 1444 (1998)



The Fermion's Spacetime I: Lagrange Multipliers

A free (Weyl) fermion:

iχ†σa∂aχ

has two global symmetries: a U(1) \lepton number" (or particle

number) with current Jα:

χ→ eiθχ; Jα = χ†σαχ

and the Lorentz symmetry with generators Mαβ and current Tαβ.

χ→ eiε
αβMαβχ; Tαβ =

i

2

[
{σα, ∂β}+ ηαβσλ∂λ

]
Therefore in the presence of a background of χ, we can introduce

two Lagrange multipliers that �x the matter content of the theory.

L = iχ†σa∂aχ+ µαJα+ ωaµE
µ
a

(note ωαβTαβ = ωaµE
µ
a with Eaµ =

i
2
χ†σa∂µχ and ωαβ is required to be

symmetric)

µα = (µ,~0) in the rest frame, where µ is the chemical potential.

ωαβ I cannot �nd any previous use in the literature.



The Fermion's Spacetime II: what is ωαβ?

Introducing µα and ωαβ is aMean-Fieldmethod. (a.k.a Self-Consistent

Field Theory)

If ωαβ is constant (density/temperature constant in space/time), we

can make a Lorentz transform to make Tαβ diagonal. Therefore, we

can choose:

ωαβ = diag(−
ω

c
,
ηω

3
,
ηω

3
,
ηω

3
)

For a massless relic, η = 1. For massive, η → 0 (massive relics are

pressureless).

We can rewrite the action for a free fermion to absorbing ωαβ into

the metric:

χ†eµaσ
a∂µχ; eµa = δµa + ωµa ; δµa = diag

(
1

c
,−1,−1,−1

)
gµν = eaµe

b
µηab = ηµν +2ωµν + ωaµω

b
νηab

= diag

(
(1− ω)2

c2
,−(1−

1

3
ωη)2 ~1

)



The Fermion's Spacetime III:

We can rewrite this metric as follows

gµν = ε2 diag

(
c2

n2
,−1,−1,−1

)
implying the new action is

iε

�hdet eaµ

∫
x
iχ†σa∂aχ

in a Lorentz invariant space with speed of light c′ = c/n = 1 and

n =
1− 1

3
ωη

1− ω
The deformed Lorentz group has �h is changed, as is c. It is an index

of refraction. As computed by Notzold & Ra�elt (1988):

n = 1+
14π

45
sin2 θW cos2 θWG

2
FT

4/α ' 1+ 2.47× 10−58

Note the above �xes the sign of ω by the requirement n > 1 (other

sign for ω is superluminal in the original space).



Lorentz Invariance is Broken

The order parameters µα and ωαβ parameterize Lorentz breaking by

a physical background.

The fundamental theory is still globally Lorentz invariant!

When µα and ωαβ gets an expectation value, a new, approximate

Lorentz symmetry is still present.

Infrared poles in correlation functions are no longer renormalizable

because they depend on the density (through the index of refraction

n)!

Infrared poles in correlation functions correspond to new, physical

degrees of freedom.

Note: I'm talking about global, not local Lorentz invariance.



Landau Zero Sound

[We follow here Chin, Annals of Physics 2, 301 (1977)]

Zero sound exists in a Fermi liquid with repulsive interactions.

Here I take \Zero Sound" to mean any collective excitation with a

linear dispersion relation ω(k) = cs|~k| as ~k → 0.

\Zero Sound" is the density and spin-density 
uctuations of the sys-

tem.

Neutrinos have repulsive self-interactions [Caldi, Chodos, '99]

The tree diagrams are all �nite. One is required to compute at

one loop to see the infrared divergences corresponding to collective

e�ects.



Fermi Liquid Self-Interactions

BCS ZS ZS′

This set of diagrams has two singular limits: the BCS (p1 = −p2)
and Zero-Sound (p1 · p3 = p2 · p4 forward scattering) limits.

All three of these diagrams have infrared singularities due to a back-

ground density.

∗

∗The Landau Theory of Fermi Liquids omits the ZS′ diagram, and therefore does
not properly have the correct interference and Pauli blocking due to it.



Vector Zero Sound

. . .

The 4-point operator is IR divergent: We must resum the divergence

of the diagram with Dyson's equation

Dµν(q) = D0
µν(q) +D0

µα(q)�
αβ(q)Dβν(q)

⇒ Dνβ(q) =
[
δµν −D0

µα(q)�
αν(q)

]−1
D0
µβ(q)

In terms of the vector boson self-energy,

�αβ(q) = ig2ν

∫
d4k

(2π)4
Tr[γαG(k)γβG

0(k+ q)]

and fermion Green's function G(k). The poles occur when

det[δµν −D0
µα(q)�

α
ν (q)] = 0



Vector Zero Sound Spectrum

We can factorize this dielectric function

εµν(q) = δµν −D0
µα(q)�

α
ν (q)

ε(q) = det εµν(q) = εL(q)ε
2
T (q) = 0

re
ecting the three degrees of freedom of a massive vector boson

(two transverse and one longitudinal).

εL(q) = 1−
g2pFEF
π2

1− C20
~q2 − q20 +M2

Z

�

(
C0
vF

)

εT (q) = 1+
g2p3F
2π2EF

1

~q2 − q20 +M2
Z

[
1+

(
1−

C20
v2F

)
�

(
C0
vF

)]

�(y) = −1+
1

2
y ln

∣∣∣∣∣y+1

y − 1

∣∣∣∣∣
This is written in terms of the gauge boson propagator. In terms of

a four-Fermi operator, it is

(χ†pµχ†)Dµν(χpνχ)



Vector Zero Sound Properties

Solving εL(q) = 0 and expanding around C0 = vF we can �nd an

expression for the velocity of zero sound:

C0 ' nvF

(
1± 2exp

{
−
2
+ (1− v2F )

1− v2F

})
; 
 =

π2M2
Z

kFEFg
2
' 1030

Thus a relativistic mode appears in the limit EF → kF or equivalently,

m→ 0.

⇒ The Zero-Sound of a massless Fermi liquid is relativistic!

Kinematically this pole corresponds to a pole in the scattering ampli-

tude at cos θ ∼ 1 at weak coupling (
� 1).

This exponential is equivalent to the gap equation for a super
uid. (A

Kohn-Luttinger super
uid occurs for kF ∼MZ: the forward scattering

limit p1 · p3 = p2 · p4 contains the BCS con�guration ~p1 = −~p3).



Vector Zero Sound Operators

The e�ective one loop operator containing a pole in this interaction

g4ν ~p
2

16π2M4
Z

(χ†χ†)(χχ)

A pole in an operator is physically nonsense. Another way to describe

this pole is that there is a gapless vector gauge boson that couples

to

Aµ(x, y) =
i

2kF

(
χx~∂

µ
xχy − χx~∂µyχy

)
=

i

2kF
~pµχχ

We can describe this pole by de�ning an auxiliary particle Aµ. (The
momentum ~pµ = −i~∂µ contains an index of refraction)

Because this mode is a goldstone boson, the theory has a cuto� at

2kF , so the e�ective action is an expansion in ~pµ/kF .

Thus our e�ective interaction is

−
g4νk

2
F

4π2M4
Z

AµA†µ



Identify the neutrino sound wave(s)

Let us examine the possible quasi-particles containing one derivative:

Aµ(x, y) =
i

2kF

(
~∂µχ(x)εχ(y)− χ(x)ε~∂µχ(y)

)
Eaµ(x, y) =

i

2kF

(
~∂µχ
†(x)σaχ(y)− χ†(x)σa~∂µχ(y)

)
These arise from integrating out the Z and including the 1-loop cor-
rections from the previous slide(s). The 4-point interactions are

A†µA
µ; Ea†µ E

µ
a

these are the same interaction (related to each other by a Fierz
transformation). The derivative is

~∂µ = (n∂t/c, ~∂)

re
ecting the fact that the dispersion relation for these states is
E = cnp with n > 1 (there is an index of refraction). The interaction
terms are therefore

−
g4k2F
4π2M4

Z

A†µA
µ; −

g4k2F
4π2M4

Z

Ea†µ E
µ
a

these are clearly tachyonic mass terms.



Tensor Zero Sound

. . .

We only resummed the bubble insertions of the gauge boson propa-

gator to �nd vector Zero Sound. However this is not the only class

of diagrams. Consider the resummation of the ZS and ZS′ graphs.

This gives rise to a contribution that is simply a Fierz transformation

of the previous operator

−
g4νk

2
F

4π2M4
Z

∫
xy

[
(1− ην)Ea†µ Eµa + ηνA

†
µA

µ
]
.

where

ην =
nν − nν
nν + nν



Some Calculational details *

One can regard this problem as zero-temperature and �nite density.

Temperature e�ects only a�ect cross sections and are down by T2p3FG
2
F

which is much smaller than leading p2FG
2
F we're interested in.

The poles that occur due to �nite density occur regardless of the

form of the distribution function. The system is de�nitely out of

equilibrium anyway.

Then one can write the fermion propagator as:

SF (p) = �(µ− E)
i

p/−m+ iε
+�(µ+ E)

i

p/−m− iε

=
i

p/−m+ iε
−
(

i

p/−m+ iε
−

i

p/−m− iε

)
(�(E − µ)−�(µ+ E))

We're going to Pauli-block some of the momentum modes from the

loop integral.

* Bob McElrath, to appear



The zero-temperature distribution function
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More Calculational Details

As long as the momentum modes that get Pauli blocked have

p < M2
Z/T , then we don't care which momentum modes are blocked,

and it's equivalent to consider a degenerate distribution �(µ− E).

The number of modes that are blocked is de�ned by the density

parameter, pF = (3πn)1/3 or EF = µ(T = 0) =
√
m2+ p2F .

This is almost equivalent to putting in a chemical potential. A chem-

ical potential µ is a Lagrange multiplier which forces conservation of

N = nf − nf : µ
αψγαψ. In the rest frame, µα = (µ,~0).

This is only appropriate in equilibrium where particle-antiparticle pairs

are quickly annihilated.

For relic neutrinos and dark matter, we need to separately conserve

nν and nν, necessitating two \chemical potentials" µ and µ (but

remember (nν−nν)/(nν+nν) ∼ 10−10). What is conserved is EνNν+

E�νN�ν, which is the same as conserving Tµν.



Yet More Calculational Details: Renormalization

One might consider doing a Taylor expansion around q = 0 on the

gauge boson propagator which would generate (Eaµ)
2. Since this is

an irrelevant operator, it has a polynomial running anyway, and we

can absorb Lorentz-invariant functions like q2 into the de�nition of

GF or g2Z/M
2
Z.

If we choose to renormalize at the scale q2 = p2F , we can choose that

at that scale, the only operator that appears is

g2Z
M2
Z

χ†σaχχ†σaχ

Then at one-loop we generate

−
g4Zk

2
F

4π2M4
Z

∫
xy

[
(1− ην)Ea†µ Eµa + ηνA

†
µA

µ
]
.

which are clearly proportional to the renormalization scale pF (and

would disappear if we renormalize around q = 0!)

We are not at zero temperature or density, and if we renormalize

around q = 0 we miss important physics. . .



Lorentz Symmetry Breaking

The expectation value for Eaµ has a simpler interpretation in terms of

the stress tensor for a massless fermion:

〈τµν〉 =
1

2
〈Eaλ〉

[
δνaη

λµ+ δµaη
λν +2δλaη

µν
]

The Lorentz symmetry is actually two symmetries, spacetime and

spin:

~Lµν = i(xµ~∂ν − xν~∂µ); Sab =
i

2
(γaγb − γbγa)

the neutrino transforms as a scalar (0,0) under the �rst group and a

spinor (1
2
,0) under the second group.

Note that ~Lµν is not the original Lorentz symmetry, but the approx-

imate symmetry which emerges once indices of refraction are taken

into account:

n = 1− ηνk2FGF +det(ωµν)G
2
F



The Weinberg Witten Theorem I

Weinberg and Witten (1980) told us that for any massless spin 2

object with a conserved Lorentz covariant stress tensor, its self-

scattering matrix elements are zero.

This is generally used to \rule-out" a composite graviton, and indeed

it does rule out a meson-like composite graviton.

However the theory of neutrino zero-sound is NOT Lorentz covariant.

The fundamental theory is, but pF breaks it! This results in the

following Lorentz-breaking objects∗

value today 
at space (WW) limit

〈Eaµ〉 O(10−3) eV 0

n = c/v 1+G2Fp
4
F ' 1 1

pF O(10−3) eV 0

GN O(p2FG
2
F ) 0

MPl O(1/pFGF ) ∞
∗ Alejandro Jenkins and Bob McElrath, to appear



The Weinberg Witten Theorem II

Thus this theory evades the Weinberg-Witten Theorem (1980): the

emergent graviton does not propagate in 
at Minkowski space. It

lives only in a curved space. As pF → 0, 〈Eaµ〉 → 0 and we return to

Minkowski space, and in that limit, GN → 0 and the emergent gravi-

ton disappears from the theory. The smallness of Lorentz violation

is directly related to the smallness of the coupling GN . We can write

GN ∝
1− n
k2F

= k2FG
2
F

Thus there is a conserved stress tensor for the gravitational sector of

this theory, but it does not live in the same space as the gravitational

theory itself.

As stringers would prefer to word it: The WW theorem implies that

spacetime itself must be emergent. In the present context, it is

the space containing the index of refraction that is the emergent

spacetime. This graviton lives only in that emergent space. The

neutrino's stress tensor does not.



The Weinberg Witten Theorem III

The operator we generated was

~p2

M4
Z

χ†σaχχ†σaχ.

In a Lorentz invariant space (~p = p and n = 1), this is simply

a quadratic running for my irrelevant 4-fermion operator. I could

choose to absorb this correction by a choice of the �nite part of my

counter-term for the low-energy e�ective theory:

GF (p
2) = GF − p2G2F

This is a beautiful restatement of the Weinberg-Witten theorem:

In a Lorentz Invariant theory, an emergent spin-2 operator can be

absorbed by a renormalization counterterm choice

Or,

You can't have density waves if there is no density!



The Cuto�

This theory has a cuto� de�ned by the density 2kF . A
µ and Eaµ are

rearrangements of existing modes in the background. Therefore they

cannot carry energy density larger than 2kF . They are exactly stable
below 2kF . As such, this is an implementation of Sundrum's \soft

graviton", and the cosmological constant is � ∝ k4F .

Above 2kF these states acquire a width. This width is proportional

to the mean free path and can be regarded as the decay of the spin-

density perturbation back into free neutrinos. This width is extremely

small. (very long lifetime)

If we ask when this width becomes large, this occurs when the CM

energy puts the Z on pole. For a probe with energy E, this occurs
when

E =M2
Z/Tν 'MPl

Therefore, in the lab frame, this low-energy e�ective gravitational

description of the relic neutrinos is valid throughout the range of

energies we have explored (and even above kF ).



This Quasi-Particle is a Graviton

We already know what a SO(3,1) bi-vector is: the vierbein (tetrad):

gµν(x, y) = Eaµ(x, y)E
b
ν(x, y)ηab

This �eld has an internal global SO(3,1) symmetry due to the spin
Lorentz invariance.

This is di�erent from the �rst-order (Palatini) formulation of gravity
(which uses a local internal Lorentz symmetry).

Thus the fermion spin dependence is not a gauge symmetry, but is a
physical observable in this theory. The spin distribution of the fermion
gives rise to Torsion.

Such a theory was explored by Hebecker and Wetterich [2003; Wet-
terich 2003, 2004]. They conclude that the addition of torsion, due
to a global, rather than local Lorentz symmetry is at present unob-
servable.

This theory di�ers from that of Hebecker and Wetterich due to the
presence of the SO(3,1)×SO(3,1) symmetry breaking structure, and
the associated metric ηµν. (e.g. they don't have (Eaµ)

2 or (Eaµ)
4)



Gravitational Action

S =
∫
d4xdet(eaµ)

(
4π2M4

Z cos
4 θW

g4p2F
R− 2�

)
Can also be written naturally in terms of the index of refraction

S =

∫
d4xdet(eaµ)

(
��2

1− n
R(eaµ)−

2

1− n
��4
)

with the cuto� �� = 2pF = (8π)
1

3T = 4.92× 10−4 eV.

Some numerology:

8πGN '
1

9

g4T2

8π2 cos4 θWM
4
Z

(+1.4%)

�1/4 ' 4�� (−14%)



Summary

• Massive relic neutrinos are extended objects. (�x very large)

• A gas of massless relic neutrinos (no antineutrinos) has a rela-

tivistic vector density 
uctuation Aµ. This is the long-wavelength

goldstone boson 
uctuation around the chemical potential.

(⇒ density wave)

• A CP-symmetric gas of massless relic neutrinos has a relativistic

tensor density 
uctuation Eaµ. This is the long-wavelength gold-

stone boson 
uctuation around the index of refraction.

(⇒ spin-density wave)

• The gravitational theory has a cosmological constant and New-

ton's constant that is the correct size.

• Massive neutrinos result in the same modes, but their velocity is

vF = pF/
√
m2+ p2F



How to prove/disprove this?

First and foremost measure the temperature of the relics. (See talk

by A. Cocco, Friday 11am)

Anomalous forces (and/or gravitation) due to density 
uctuations of

relics cannot prove that the relic is a neutrino.

Beta decays prove the participation of a neutrino (or generally, lepton

number).

This theory has only ONE new free parameter: Tν, and predicts

several others such as GN and �. (Also pF if mν > 0 { but that gives

a graviton with v < c)

(More ideas coming. . . )



Conclusions

If the universe contains a massless fermionic relic (such as a neutrino),

then the long-wavelength 
uctuations around its vacuum stress tensor

is a goldstone graviton. If it has an asymmetry, then it is accompanied

by a gravitationally-coupled goldstone vector boson.

these are acoustic quasi-particles (\zero sound" or \phonons") in the

Cosmic Neutrino Background.

This theory is entirely natural. The highest scale in the theory is MZ.

The cuto� is kF , generating a natural cosmological constant of the

correct order.

This theory may also contain the keys to galactic rotation curves,

neutrino mass, and cosmic expansion, at the next order in
√
p2FGF .

This theory is supremely testable and falsi�able (unlike other gravity

theories). We can make W's, Z's, and neutrinos. It contains zero

free parameters.



Other Ideas

The low scale could be Tγ, Tν, pF (γ), pF (ν) or mν.

• Photons are boring: 4-γ vertex is dimension 8, and self-interaction
cross section approximately 10−14p4FG

2
F . (i.e. it may be interest-

ing, but is very sub-leading)

• The combination T2ν G2F is the self-interaction cross section of neu-

trinos. This would seem to be a hydrodynamic theory. However

then one has to confront the 
ux. The inverse mean free path of

a neutrino is

λ−1 = (σn)−1 = T2ν G
2
Fp

3
F ' O(p

5
FG

2
F )

and much larger than the horizon size, and the interaction rate is

too low to be interesting.

• If mν is a fundamental Lagrangian parameter it would only arise

in combination with pF or Tν.

These come in at higher order in ratios of pF and GF than phenomena

we can (and have) seen. e�ects that could be relevant for (leading

order) gravity.



Hierarchy Problems

This theory has neither the Gauge hierarchy problem nor the cosmo-

logical constant problem.

The gravitational theory undergoes a phase transition at MZ. Thus,

scalar masses are pulled by radiative corrections up to MZ, not MPl.

Zero-point vacuum diagrams contribute constants to the e�ective

action. However constants are non-dynamical. The cosmological

constant is related to the physical mass and density of the theory

(and as such, is a \rolling" CC). Also, it could not be negative or

zero.

Given this, I prefer to discard the notion of classical gravity (and the

two hierarchy problems along with it), and let's see if this theory can

�t gravitational data, before we start adding new fundamental �elds.




