

2047-30

Workshop Towards Neutrino Technologies

13 - 17 July 2009

Reactor antineutrinos and control of nuclear reactors

Michel CRIBIER CEA-Dsm-Dapnia/Sphn Cea-Saclay F-91191 Gif-sur-Yvette, FRANCE **Towards Neutrino Technologies**

Antineutrinos and control of nuclear reactors

Michel Cribier CEA/Saclay DSM/IRFU/SPP & APC-Paris mcribier@cea.fr

First evidence of physics beyond SM

- Neutrino are massive
- Flavor oscillation ν_e ſ ν_μ ſ
 ν_τ
- Neutrino are mainly understood
- Still to be measured
 - > Absolute mass scale
 - Third underlying oscillation (θ₁₃)
 - > CP violation ?
- BUT TODAY Neutrinos are ENOUGH understood for the current applications in preparation

The Breakthrough: neutrino oscillation KamLAND sees remote reactors > 1 kton monitoring 130 GWt of reactors > few events/week 4% of signal from South Korea 1.4 🗄 2002/07 2003/0 2003/07 2004/0 **Near Field Monitoring** 1.2 Geoneutrinos 1.0 Nuclear test explosion Nots/Nexp 0.8 ILL Savannah River 0.6 Bugey Rovno Goesgen 0.4 Short shallow baseline Krasnovark □ Palo Verde **Reactor neutrino experiments** KamLAND detector 0.2 Chooz KamLAND **Far Field Monitoring** At 2700 m.w.e. depth 0.0 10^{3} 10^{1} 10^{2} 10^{4} 10^{5} Distance to Reactor (m)

KamLAND sees of neutrino oscillations of reactor antineutrinos @ 180 km Confirmed by K2K & MINOS

IAEA Nobel prize for peace in 2005

- Safeguard activities :
 - > Treaty of NonProliferation (and additional protocole) :
 - accepted (and unattended) controls
 - Detect Diversion from Civil Fuel Cycles to Weapons Programs of Fissile Material (Pu, enriched U)
 - > Many places to control all around the world :
 - enrichment units, nuclear fuel factories, power and research reactors, reprocessing units, storage waste...
- Standard methods used
 - > mostly checks of input/ouput declarations
 - > sampling and analysis (γ -spectroscopy, isotopic content)
 - > no direct Pu inventory made at the production place
- Seeking for new tools to perform future controls on increasing number of installations

IAEA: Standard Technology

Safeguards are applied by the IAEA to verify the correctness and completeness of declarations made by States about the exclusively peaceful use of their nuclear material and activities and thereby reducing the risk of proliferation of nuclear weapons

Many different PERFORMANT devices

- Non Destructive Assay (NDA)
- Containment and Surveillance (C/S):
 Containment verification, Seals, Cameras
- Destructive Analysis (DA)
- Environmental Sampling (ES)

 Already a device for monitoring power output of research reactor.

What v could offer the Agency?

Neutrinos carries DIRECT information from nuclear fuel

- Neutrinos CANNOT be hidden. Not falsifiable !!!
- * CONTINUOUS Unattended Monitoring
- Neutrinos can be used to monitor the thermal power
- Neutrinos provides already a ~50 kg sensitivity to Pu content in progress
- BUT v-reactor monitoring addresses only a single step of the fuel cycle

IAEA Constraints

- AEA Detector Design Request:
 - > 'Small' : 2.5 m footprint
 - > Safe
 - Remote & Easy Operation by Inspectors
 - not trained as neutrino physicists
 - > Reliable
 - > "Relocatable"

Challenges

- Integration of detectors into the Safeguards Regime
- > Effort to Simplify the current Design while keeping detector performances
- > Monitoring of research reactors : modest power
- Monitoring of Candu type reactors, Pebble bed modular reactors

IAEA wishes, dreams ?

- > ground level detectors
- easy mounting
- sensitive to a "significant quantity" of Pu

Dialog IAEA Physicists

December 2003

- Meeting to evaluate potential applicability of antineutrino detection technologies for safeguards purposes
- > IAEA Novel Technologies Unit
- > 5 Physicists from US, Russia, France
- October 28-30, 2008
 - Workshop on antineutrino detection for safeguards applications
 - > IAEA Division of Technical Support / Novel Technologies Unit
 - > 19 Physicists from USA, Canada, Finland, Japan, France, Brazil, Netherland, EU
- Final report : soon ?

Recommendations issued by the Workshop

- It is recommended that the IAEA consider antineutrino detection and monitoring in its current R&D program for safeguarding bulk-process reactors
- It is recommended that the IAEA should also consider antineutrino monitoring in its Safeguards by Design approaches for power and fissile inventory monitoring of new and next generation reactors
- It is recommended that there should be further interaction between IAEA and the antineutrino research and development (R&D) community, including regular participation of IAEA safeguards departmental staff into international meetings
- It is recommended that IAEA safeguards departmental staff visit currently deployed and planned neutrino detection installations for safeguards applications
- It is recommended the IAEA work with experts to consider future reactor designs, using existing simulation codes for reactor evolution and detector response.

Physics basis allowing monitoring

Antineutrino detection

 \triangleright

★ Beta inverse process $\overline{v}_e + p \rightarrow e^+ + n$ ★ Threshold @ 1.8 MeV

$$\left\langle E_{\overline{v}} \right\rangle = 1.49 \rightarrow 2.94 \, MeV$$
$$\left\langle N_{\overline{v}} \right\rangle = 5.98 \rightarrow 1.92$$

An old idea

Kurchatov's pioneers...

MEASURING NUCLEAR PLANT POWER OUTPUT

BY NEUTRINO DETECTION

- V. A. Korovkin, S. A. Kodanev,
- N. S. Panashchenko, D. A. Sokolov,
- O. M. Solov'yanov, N. D. Tverdovskii,
- A. D. Yarichin, S. N. Ketov, V. I. Kopeikin,
- I. N. Machulin, L. A. Mikaélyan, and V. V. Sinev

> experim. @ Rovno in 1986

Neutrinos oscillate... Now a known effect : - $Prob(v_e -> v_e)$ fnct of E_v , L

No more unknown between emission and detection Neutrino : a reliable tool

Reactors neutrinos

- Particle physicists knows how to detect antineutrinos 11
- A detector : 2 tons target @ 25 meters from the core * ~30000 neutrinos per day -

 - * operated remotely.
- **
- Fuel evolution (burnup)

 Reactor operation: 1 kg ²³⁵U is burned & 0.2 kg ^{239,241}Pu produced
 U and Pu have a slightly different rate/spectrum neutrino emission
- The neutrino count rate is a simple function of the thermal power: **

$$N_{\overline{v}} = \gamma (1+k) P_{th}$$

: reactor constant : burn up dependent

The neutrino energy spectrum is sensitive to the burnup **

US effort

US efforts @ SONGS

The Strongest Worldwide Effort

- Liquid Scintillator target
- > Plastic Scintillator target
- > Gd doped Water target

Removal of 250 kg of ²³⁹Pu followed by replacement with 1.5 tons of fresh ²³⁵U fuel

July 16, 2009

US Effort: SANDS-Plastic scintillators

Several important advantages
 over the LS that it replaces in a commercial reactor
 environment

Non-flammable, nonhazardous, and no possibility of liquid spillage

Near completepreassembly possible

 The device clearly observes reactor antineutrinos, i.e. can monitor reactor state

✤R&D ongoing

US Effort: SANDS-Water

Important Water transparancy measurement: Is GADZOOK Dead?

Detector prototype running at SONGS >No shielding ! Calibration Data >How well could this detector see reactor neutrinos?

Segmented Detectors

Neutrino signature

Positron → single cell
 Neutron → Bright ZnS
 pulse in two adjacent cells
 about ~10 ms after e⁺

- Segmented detectors
- New R&D on highly segmented detector with ⁶LiF:ZnS(Ag)
- No Quenching
- ♦ Background rejection
 > Fast neutrons → PSD
 - Muons induced

A way to ground level detectors ? Worst a try !!!

French effort

French Effort: Double Chooz Near

✤ Very well measured spectrum ✤ 2 extreme fixed fuel compositions ◆²³⁵U=0.66 ²³⁹Pu=0.24 ²³⁸U=0.08 ²⁴¹Pu=0.02 ²³⁹Pu=0.37 ²³⁸U=0.08 ²⁴¹Pu=0.08 ✤ ²³⁵U=0.47

Kolmogorov-Smirnov Test on Burn-up: \bullet H₀: the two "burn-up" induce identical spectra ↔→Rate and shape: $P_{KS} = 1.8 \times 10^{-2}$

Œ

Nucifer @ Osiris

70 MW research reactor@ SaclayPosition @ 5-6 m from core

 $\approx 40 v \text{ evt/h}$

To be re-mounted in dec. 2009 Feb. 2010 : reactor ON March-Sept : OFF

Backgrounds @ Osiris

	γ on Nucifer E>1.5 MeV	μ att. factor	N _{th} (cm ⁻² .s ⁻¹)	N _{fast} (cm ⁻² .s ⁻¹)
Osiris Off	5 kHz	2.7	1.2 10-4	2.3 10 ⁻⁴
Osiris On	5 MHz	2.7	1. 10 ⁻³	2.3 10 ⁻⁴
ILL On	500 kHz?	?	0.3	?

- •10 cm Pb
- •15 cm CH₂
- (2.5 boré + 10 + 2.5 boré)
- Muon veto
- •10 cm Pb on wall facing the core

Sensitivity ?

Simulation Effort in France

Ab Initio simulation of the v spectrum evolution from all fission products

- Good agreement with Schreckenbach data
- Towards a reliable absolute normalisation
- Good understanding of the errors
- → Towards application to test diversion scenario

M. Fallot et al.

D. Lhuillier et al.

Sensitivity to ²³⁹Pu

x² test on shape
Study 2 x 16 days
Retrieval of 55 kg of ²³⁹Pu
seen @ 75% CL
4% false alarm
80 kg observed certainly

Others efforts

Japanese Effort: Kaska

FIRST Trial of Neutrino Detection from Joyo
 Fast Research Reactor

- Fast Breeder Research Reactor (Pu rich)
 - $> P_{th} = 140 \text{ MW}$
 - > Frequent ON/OFF
 - ≻ L~25m
 - > ~150 v p-> $e^+ n$ reaction/day
- KASKA detector prototype
- Positive Signal ?
- Ground level detector

KASKA Prototype

During that time... ...in Italy

CORMORAD

- > *M. Battiglieri et al.*
- Segmented plastic scintillator
- Mylar-Gd foils
- Developped in cooperation with industry (Ansaldo)

New challenges

Surface detectors

- Some ideas like segmented detectors
- > More sophisticated => more costly
- > Bigger detectors : veto, shielding
- > Worst a try...

Directionality

- > Already some measurement (Chooz, Rovno)
- ≻ Modest precision ≈ 20-30 °
- > Use of Li-doped scintillators ?

Compact detectors

- Coherent detectors : a good idea ? Not sure
- Not yet seen at lab level

Distant survey

Clandestine nuclear reactor Monitor a country without cooperation? Neutrino rate: 450 events $\times \left(\frac{100 \text{ km}}{D}\right)^2 \times \left(\frac{P}{10 \text{ MW}}\right) \times \left(\frac{1}{1 \text{ Megaton water}}\right) \times \left(\frac{t}{1 \text{ year}}\right)$ Challenge: Mega Ton Scale water-based antineutrino detectors

Prohibitive PMT cost

Invent low-cost 'wallpaper' photodetectors

Hope: discover and exploit coherent neutrino scattering

Remote survey

Global survey 10 Mtons units ≈ 1000 units in ocean J. Learned at Neutrino 0 Movable (non-nuclear) submarine
 > ≈ 50 000 m³

- Count at 3 positions :
 - > Signal ≈ (P_{th} ???)/ R²
 - Triangulation
- Detection of underground clandestine reactor

Thermal power with neutrinos

 $N_{\overline{v}} = \gamma P_{th} \times \left[1 + k(t)\right]$

Absolute precision 3% achievable

- More accurate calibration might be possible at research reactors
- ✤ % level monitoring
 - > In few days @ GWt_{th} reactors
 - System. errors complementary to standard procedures
- Unique opportunity of cross calibration of different cores
- Which technique?

Thermal power : SANDS Data

Daily average

8 % relative uncertainty in thermal power estimate (normalized to 30 day avg.)

Weekly average

3% relative uncertainty in thermal power estimate (normalized to 30 day avg.)

Conclusion

The 1st application of neutrino > A peaceful one : a tool to reinforce controls of nonproliferation A world wide effort > Discussions with IAEA > Already many options studied in different countries A challenging developments > Sensitivity Directionality Ground surface deployment But also small, simple, robust, easy to install...

Neutrinos for Peace

