

2047-25

Workshop Towards Neutrino Technologies

13 - 17 July 2009

Antineutrino monitoring at the San Onofre Nuclear Generating Station (SONGS)

David REYNA Sandia National Laboratories 7011 East Avenue Livermore, CA 94550, U.S.A.

Antineutrino Monitoring at the San Onofre Nuclear Generating Station (SONGS)

A Joint Project Between Sandia and Lawrence Livermore National Laboratories

David Reyna Sandia National Laboratories, CA

Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344

Acknowledgements and Project Team

David Reyna Jim Lund Belkis Cabrera-Palmer Scott Kiff

This Work is supported by DOE-NA22 (Office of Nonproliferation Research and Development)

2

Lawrence Livermore National Laboratory

Timeline of LLNL/SNL Presence at SONGS

Lawrence Livermore National Laboratory

D. Reyna

16 July 2009

Sandia National Laboratories

3

Our Past, Present and Future Home

Our long stay at SONGS is a strong validation of the nonintrusiveness of this technique.

awrence Livermore lational Laboratory

16 July 2009

D. Reyna

SONGS Unit 2 Tendon Gallery

- Tendon gallery is ideal location
 - Rarely accessed for plant operation
 - As close to reactor as you can get while being outside containment
 - Provides ~20 mwe overburden

5

Detected antineutrino rates from reactors are reasonable for cubic meter scale detectors

Reactors emit huge numbers of antineutrinos

- 6 antineutrinos per fission from beta decay of daughters
- 10²¹ fissions per second in a 3,000-MWt reactor

About 10²² antineutrinos are emitted per second from a typical PWR unattenuated and in all directions

Detected rates are quite reasonable

- 10¹⁷ antineutrinos per square meter per second at 25-m standoff
- 6,000 events per ton per day with a perfect detector
- 600 events per ton per day with a simple detector (e.g., SONGS1)

Example: detector total footprint with shielding is 2.5 meter on a side at 25-m standoff from a 3-GWt reactor

6

Antineutrino Detection

We use the same antineutrino detection technique used to first detect (anti)neutrinos:

$$\overline{v_e} + p \rightarrow e^+ + n$$

- inverse beta-decay produces a pair of correlated events in the detector very effective background suppression
- Gd loaded into liquid scintillator captures the resulting neutron after a relatively short time

Neutrino Energy is Sensitive to Isotope

8

The Antineutrino Production Rate varies with Time

The fuel of a reactor evolves under irradiation: ²³⁵U is consumed and ²³⁹Pu is produced

16 July 2009

The energy spectrum and integral rate produced by each fissioning isotope is different

9

Timeline of LLNL/SNL Presence at SONGS

Lawrence Livermore National Laboratory

16 July 2009

D. Reyna

Sandia National Laboratories

Sandia/LLNL Antineutrino Detector (SONGS1)

- 640 liters Gd doped liquid scintillator readout by 8 x 8" PMTs
- 6-sided water shield
- 5-sided active muon veto

Sandia National Laboratories

Candidate event extraction

We record ~30 million events per 100000 day, only a handful of which are antineutrino interactions An automatic energy calibration is \overline{v} candidates, 28µs performed using background 2.6 MeV gamma Counts Cuts are applied to extract uncorrelated background, 10000 correlated events: 1/singles rate energy cuts >2.5 MeV prompt >3.5 MeV delayed at least 100µs after a muon in the veto detector 1000 Examine time between prompt and 200 400 600 800 0 delayed to pick out neutron captures on Gd Inter-event time (μ s)

Reactor Power Monitoring using only \overline{v}

Long Term Monitoring – Fuel composition

Timeline of LLNL/SNL Presence at SONGS

Lawrence Livermore National Laboratory

///

16 July 2009

D. Reyna

SONGS1 was very successful, but....

- ...the liquid scintillator
 - is slightly flammable, combustible
 - Note: newer formulations are much safer (similar to plastics)
 - requires extra precautions to exclude the possibility of any liquid spillage
- With the SONGS1 run completed, we leveraged installed infrastructure to investigate several paths to more deployable detectors:
 - Use of less combustible, more robust, plastic scintillator
 - Use of doped water Cerenkov detectors instead of scintillator

In Pursuit of Other Technologies

- Plastic Scintillator
 - Solves hazardous material problem
 - Able to be preassembled and easily transported
 - Difficulty to include neutron capture
 - Include dead material in fiducial volume
- Water Cerenkov
 - Cheap materials
 - No hazardous material issues
 - Insensitive to backgrounds from proton recoil
 - Very low light-yield ⇒ poor efficiency
- Germanium
 - Non-hazardous materials
 - Much higher cross-section ⇒ compact size
 - Cryogenic system
 - Increased need for shielding

Plastic Detector

- Replace half of liquid scintillator with plastic scintillator (PS):
 - Must retain neutron capture capability, ideally on Gd
 - commercial neutron capture PS not suitable/available (e.g. Boron loaded BC-454)
 - Final design: 2 cm slabs of BC-408 PS, interleaved with mylar sheets coated in Gd loaded paint

Construction of Plastic Detector

Plastic detector outage data

Plastic detector shows similar sensitivity as Liquid, when normalized to fiducial mass

Fin Sandia National Laboratories

19

A Water based Antineutrino Detector

- Water Cerenkov commonly used for neutrino detection
- Addition of a neutron capture agent should allow for antineutrino detection via inverse beta decay
- Addition of ~0.2% GdCl₃ has been studied at LLNL/UC Davis
 - known to be stable in water
 - Does not affect light attenuation in small detectors

Construction of Water Detector

Initial Data

Aboveground At LLNL

16 July 2009

 The water detector desponds to neutrons in the expected fashion: neutron captures on Gd are observed, as well as correlated (gamma,neutron) and (neutron,neutron) ievents from an ²⁵²Cf neutron source

Unshielded Water Detector Results at SONGS

- The water detector was initially deployed without passive shielding
 - High correlated and uncorrelated background rates have made it difficult to clearly identify a reactor signal. Best evidence so far:

- Gd-doped water should be sensitive to reactor antineutrinos but we are yet to prove it.
- Neutron-neutron correlated backgrounds must be reduced
- Data being re-analyzed as a PhD project (Jerry Coleman at LSU)

SONGS1 Removal – August 2008 5+ years in U2TG

Timeline of LLNL/SNL Presence at SONGS

Lawrence Livermore National Laboratory

16 July 2009

D. Reyna

New Deployment at SONGS Unit-3 May 2008

- Leveraged our good relationship with SONGS to initiate new deployment in the second reactor tendon gallery
- With University of Chicago we tested a prototype germanium detector
 - ✓Non-hazardous materials
 - ✓ Much higher cross-section ⇒ compact size
 - **X**Cryogenic system
 - **XIncreased need for shielding**
 - Physical process that has never been seen before

Installed at SONGS

16 July 2009

D. Reyna

Sandia National Laboratories

Germanium: preliminary results of SONGS deployment

First months of data show:

For the first time the background is of same order as the NCS signal

- Internal backgrounds are now within 2-3x of necessary
- Few weeks of reactor off data were dominated by surface activation
- Possible noise fluctuations have been causing poor low-energy performance
- No evidence of reactor induced backgrounds

Interest Developing from Safeguards Agencies

- We are very pleased that as a result of our work, and other projects getting under way elsewhere, IAEA is considering this new tool
- Experts meeting (Vienna 2008)
 - Assessing where it might fit
 - Bulk accountancy mentioned
 - Online refueled mentioned
- Expecting an SP-1 (official IAEA request for further development and study) later this year

Final Report: Focused Workshop on **Antineutrino Detection** for Safeguards Applications 28-30 October 2008 **IAEA Headquarters, Vienna**

Conclusion

- Antineutrino detectors can be used to monitor nuclear reactors remotely and non-invasively
 - This has been firmly established by prior experiments and has been demonstrated by our collaboration with a more practical/simple device
- We are pursuing several directions in promising technologies that are more deployable
- Currently involved in looking towards aboveground deployments
 - Improved shielding enclosures
 - Improved water detector design
 - Should be deployed at the end of this year
 - Scintillator detectors with neutron/gamma separation
 - Novel capture agents (Li, B,...)
 - PSD for fast neutron elimination
 - Segmentation

