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Applications of Hypersharp neutrinos from 2-body tritium decay

Novel Tools

•Low Energy (18.6 keV)
•Extreme Energy precision  (∆E/E  ~5x10-29)
•Very large resonance cross section  σ ~10-17 cm2

•Long lifetime

Novel Problems---Bench top scale experiments

•Neutrino Oscillations
1-3 mixing---”long” baseline� 10m
Sterile-Active mixing—very short baseline �1-10 cm

•Time Energy Uncertainty
Quantum mechanics
Ultimate energy measurement—Fundamental Length

•Gravitational Wave Detection
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Neutrino Oscillations

Theoretical Questions addressed by numerous papers

Compare Reactor baselines
E = 18.6 keV vs 1.8 MeV� baseline 1km vs 10m

Reaction cross sections—10-43 cm2 vs 10-20 cm2

�Bench top baselines from km scale with 
� gm scale materials vs kiloton targetsen

�Sterile masses addressible in much extgended range with
� higher sensitivity to oscillation amplitures
��Much shorter baselines  ( tens of cms)

�Intial focus on  <1m  baselines
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Quantum Mechanical Time -Energy uncertainty

∆E ∆t ~ h/2π

The energy of a decaying state has a width determined by the time of observation
If ∆t  is uncontrolled, ∆t is the mean life time τ and the measurement yields 
an energy spread ∆E
The natural width of the decaying state ∆E ~ (h/2π) /τ = ∆E (nat)

If ∆t  is determined say as T, then the energy spread is more, given by
∆E ~ (h/2π)/ T  >> ∆Enat
� Directly affects cross section ∝ (1/ ∆E)

So,  What is ∆t  in a resonance reaction? E.g. in Mossbauer experience?
in the tritium resonance reaction ?

According to QM ∆t  is counted from CREATION of the state

Question can be probed lifetimes of decaying  states in both cases are long
Enough for external control of T 
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ME in 14.4 keV state of 57Fe
Lifetime = 140 ns

∆t can be controlled since the time of creation
of the ME state can be tagged by the 122 keV
Signal and the ME of the 14.4 keV γ can be observed
After a delay T in coincidence.

�Time filtered resonance

Expts done in 50’s by Wu et al and Lynch etal

14.4 keV

122 keV

140 ns
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Observed basically the cross section at resonance
Any broadening reduces this cross section relative to the 
geometrical value for  natural linewidth.
.
�TIME FILTERED RESONANCE

Observed width is QM limited width only if the nu i s 
observed without limitation on the time of  emissio n; 
i.e. the full lifetime is operational
If the time of emission is limited to times < τ the line is 
broadened, again because of QM, to a broadening a factor T 
/ τ���� Time filtering effect –

Abs. at resonance max: ∝ 1-Jo
2 (√(βT)

∝ t with T=t/τ <<1
β = Nσ f = resonance thickness of absorber
In mfp units

TEU in Fe57 ME

Wu et al (1960)
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�Calibrates the prevailing width directly to 
signal rate controllable by the time window 
of emission.

• Easy for tritium –T is very long so that each 
day of measurement T increases 
naturally� spontaneous signal growth with 
time predictable directly by the decay rate 
of tritium

• In- vivo rate increases as source ages; 
• Activation and age dependence produce a 

���� t2 rate dependence
• Two tools: 
• Signal Rate ~t2 measures Energy width
• Rate decay ~1/t measures Time 

Bgd tritium Decay ∝1/t

Nu Activation∝ t 
(corrected for decay)

Nu act. + time filter effect ∝ t2

Time t<< τ

Signal Rate at Resonance vs time t

Abs. at resonance max: ∝ 1-Jo
2(√(βT)

∝ t with T=t/τ

Time filtered Resonance Effect --Tritium
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The signal growth rate depends on β i.e the cross section at zero detuning==
Thus the state width.
The two curves show that the growth rate can lead to the width of 
Tritium state.
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The hypersharp basis presumes the resonance control of the tritium resonance
By the NATURAL width   ∆Enat

Deviation of growth rate of signal in time-filtered resonance Controlled
Prevailing width in experiment ∆E

If ∆E > ∆E nat The experiment might be way to probe the TEU.

There may be reason for TEU could be violated because tiny widths 
\at the level of  10-24 eV may be set by a 
FUNDMENTAL length rather than by TEU
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L= (G ℏ /c3)1/2 ~10-33 cm 

The Fundamental Length or Planck Length LLLL

said to indicate the limit on measurability of a physical dimension
Traceable to Max Planck himself

Connects explicitly the Universal Constants of
Newton and Planck

Incredibly small--- smaller than physical experience  so far

Minimum observable length
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LLLL ---Chimera or Physical Reality?

How to observe a very tiny length ?  Two possible approaches
L implies a ”Grainy” space-time—look for effects on Cosmic scale

Or look for a locally measurable consequence–
-- such as limits  on energy precision

Guidance from early work of Mead (1965)�
Tiny L implies a tiny limiting imprecision of the local potential V(r)
�Tiny energy imprecision or width of bound states

that overrides at some level the QM time-energy uncertainty width

Test by measuring the very small width ∆E of states with very long τ
L effect� Planck broadened line width ∆E >  QM width  h/τ
Planck length or not, the test probes the keystone of QM 
in the untested regime of extremely small energies

--Unprecedented precision needed:   ∆E/E << 10-20 !

h
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Mead Theory of Fundamental Length

Ultimate widths of nuclear states i.e. ∆E/E depends on LLLL. 

Range of predictions from simple arguments of Mead

∆E/E  (L)(L)(L)(L) = (L/  RL/  RL/  RL/  R) λ ~ 10-20 (for λ = 1) 
∆E/E  (LLLL) ~   10-40 (for λ =  LLLL/R) 

(R is the nuclear radius ~10 -13 cm) used as length scale. 
Highest precision attainable—Best chance in T hyper sharp resonance
∆E/E= 10-29 situated strategically in the predicted range !! 
Modern theory should be  able to provide tighter pr edictions
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Gravitational Waves
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Nuclear Resonance in Observation of Relativity Red 
Shifts

Red shift of photons at different Gravitational Potentials:
1.  On the earth:   ∆E/E     =  gh/c2 

= 10-18 eV /cm vertical height diff.
(g= acceleration due to earth gravity)

2.  By Equivalence Principle red shift in lab Acceleration A  
:                         ∆E/E     =  A/c2

= 10-21 eV /cm/s2

Both Effects due only to Special Relativity (time dilation)
Both effects observed (~1960)
Both effects used the sharp widths of Nuclear Gamma Rays

by the detuning by the red shifts in resonance absorption
in a resonator (absorber) tuned to the source emission
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Effect of GR on nuclear resonance
So far unsuspected!

•GR creates space distortion�length scale is changed
�Typical Length Strain  h = ∆l /l   l /l   l /l   l /l   10-21

�Detectable via Michelson-Morley� LIGO, LISA

•GW also changes wavelength/ frequency / energy of     
photons/neutrinos since number of waves/unit          
length changes when length scale changes

�Detunes very sharp nuclear resonances
�Can be detected by a suitably sharp resonance 

�New Approach to GW astronomy



R. S. Raghavan NuTech09

Signatures & Sensitivity

GW effect� Energy modulation of radiation
Modulation depends on Strain and Frequency of GW
Anisotropy of GW  � Directional dependence of modulation  
� locate source of GW
�GW Astronomy

�Typical effect ∆E/E ~ 10-21� need resonance sharpness of same order

�Best γ-resonances so far: ∆E/E ~5x10 -13; (57Fe), 10-15 (67Zn)
�Need new  “HYPERSHARP” nuclear Resonance for GW

�Neutrino Resonance with
∆E/E ~ 10-29 ���� HYPERSHARP !
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GW Detection Strategy
Effect:
∆E/E ~ h( L/λ)    � 2x10-28

where L is the baseline of the experiment 
λ= wavelength of the GW

h  = strain amplitude ~10-20

L typically 100 cm  << λ ~5x109 cm for frequency f ~ 1 Hz

GW detction:  Consider 2 absorbers for same source,
one absorber  in the plane of GW, the other  along axis

The absorber out of plane will  see a line shifted out of resonance
The axial source-absorber path sees no differential strain� zero shift� in 
resonance
Detection by differential rates in the  two absorbers.
The axis is continually changing by rotations of earth,  solar 
system…galaxy---multiple modulation
�Differential rate is predictably time dependent�signature of GW
Also locate direction to GW source
�--practical design with multiple detectors at didfferent L and directions 
wrt the source 
���� GW astronomy on the  bench top
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Conclusiions

Keep working on all fronts—
Good physics may be a hand !!




