

2047-8

Workshop Towards Neutrino Technologies

13 - 17 July 2009

Coherent elastic neutrino nucleus scattering at a stopped pion source

Kate SCHOLBERG

Duke University Department of Physics P.O. Box 90305 Durham, NC 27708-0305, U.S.A.

Coherent Elastic Neutrino Nucleus Scattering at a Stopped Pion Source

Kate Scholberg, Duke University Nutech '09

OUTLINE

- Coherent vA scattering
- Measurement in a stopped pion beam
 - Possible detectors
 - Rate calculations
- Physics that could be explored
- The CLEAR Experiment

Coherent neutral current neutrino-nucleus elastic scattering

 $v + A \rightarrow v + A$

A neutrino smacks a nucleus via exchange of a Z, and the nucleus recoils

- Neutral current, so flavor-blind
- Coherent up to E_v~ 50 MeV
 Important in SN processes & detection

This process has a cross-section easily calculable in the Standard Model:

A. Drukier & L. Stodolsky, PRD 30:2295 (1984) Horowitz et al. , PRD 68:023005 (2003) astro-ph/0302071

$$\frac{d\sigma}{d\Omega} = \frac{G^2}{4\pi^2} k^2 (1 + \cos\theta) \frac{(N - (1 - 4\sin^2\theta_W)Z)^2}{4} F^2(Q^2)$$

k: neutrino energy

- N: no. of neutrons; Z: no of protons
- θ : scattering angle of v
- F: form factor (depends on nucleus);
- Q: 4-mom transfer
- G: Fermi constant; θ_w : Weinberg angle

And the cross-section is *large!*

Typical cross-sections for other neutrino interaction processes in the few-50 MeV range:

Coherent v-A elastic: ~10⁻³⁹ cm² very large

v-A charged current: ~10⁻⁴⁰ cm²

 \bar{v} -p charged current: ~10⁻⁴¹ cm²

v-e elastic : $\sim 10^{-43}$ cm²

Neutrino energy k, MeV

Total cross-section increases with ν energy, and scales approximately as N²

But this coherent v A elastic scattering has never been observed!

Why not?

Nuclear recoil energy spectrum for 30 MeV ν

Most neutrino detectors (water, gas, scintillator) have thresholds of at least ~MeV: so these interactions are hard to see

Why try to measure this?

- It's never been done!

Important in supernova processes
 Important for supernova v detection

- Deviations from expected x-scn may indicate non-SM processes

- Possibly even applications..

e.g. Barbeau et al., IEEE Trans. Nucl. Sci. 50: 1285 (2003) C. Hagmann & A. Bernstein, IEEE Trans. Nucl. Sci 51:2151 (2004)

Attempts so far to measure v-A elastic scattering: (COGENT, TEXONO)

Ultra-low energy detectors, e.g. germanium (~ keV thresholds) near reactor neutrino source

- Reactor v flux is huge, but ~ few MeV, so recoil energies are tiny (~few keV or less)
- Detectors with ~ keV thresholds are hard to make large (>kg) and clean
- Hard to get 'beam-off' time for background measurement
- Electron antineutrino flavor only

Another approach: use stopped pion v beam with low threshold detector

Stopped pion beam: 10-50 MeV energies

- cross-section higher and recoil energies higher at higher energy
- high v flux available
- background rejection for pulsed beam
- several flavors

New detector technologies now (or will soon be) available!

- large, low background, low threshold detectors for pp solar neutrinos or WIMPs
- up to ton scale detectors with <~10 keV thresholds

\$1B facility for neutron science: most intense pulsed neutron beams in the world for chemistry, materials science, engineering, structural biology...

24 μ C/pulse at 60 Hz \Rightarrow 1.4 MW power

Full power in early 2010

Neutrinos are a free by-product!

TN 26 nsec

 $\overline{\mathbf{v}}_{\mathrm{III}}$

π

Fragments

In addition to kicking out neutrons, protons on target create copious pions: π⁻ get captured; π⁺ slow and decay at rest

Expected neutrino spectrum

Neutrino flux: few times 10⁷/s/cm² at 20 m ~0.13 per flavor per proton

Time structure of the source

Background rejection factor ~few x 10⁻⁴

Comparison of stopped-pion neutrino sources

	LANSCE	ISIS	SNS	JSNS
Location	USA (LANL)	UK (RAL)	US (ORNL)	Japan (J-PARC)
Proton energy	0.8 GeV	0.8 GeV	1 (1.3) GeV	3 GeV
Beam current	70 mA	0.2 mA	1.1 mA	0.33 mA
Time structure	Continuous	Two 200 ns bunches separated by 300 ns	380 ns FWHM	1 ms
Repetition rate	N/A	50 Hz	60 Hz	25 Hz
Power	56 kW	160 kW	> 1 MW	1 MW
Target	Various	Water-cooled tantalum	Mercury	Mercury

-very high intensity v's
-~below kaon threshold
-nearly all decay at rest
-narrow pulses

Supernova neutrino spectrum overlaps very nicely with stopped π neutrino spectrum!

Study CC and NC interactions with various nuclei, in few to 10's of MeV range

Understanding of core-collapse SN processes
 Understanding of SN v detection processes

NuSNS (Neutrinos at the SNS)

Multi-target program: currently on hold

- <10 keV threshold achievable, good recoil selection
- large target masses may be possible
- bg requirements less stringent than for WIMPs

Differential nuclear recoil spectrum

Integrated yield over threshold

Integrated SNS yield for various targets 46 m

So, the 'sanitized' rates look good...

What physics could be learned?

K. Scholberg, Phys. Rev D 73 (2006) 033005

Basically, any deviation from SM cross-section is interesting...

- Weak mixing angle
- Non Standard Interactions (NSI) of neutrinos
- Neutrino magnetic moment
- Nuclear physics

Weak mixing angle? L. M. Krauss, Phys. Lett. B 269 (1991) 407-411

Absolute rate in SM is proportional to

$$(N - (1 - 4\sin^2\theta_W)Z)^2$$

Momentum transfer is Q~ 0.04 GeV/c

If absolute cross-section can be measured to ~10%, Weinberg angle can be known to ~5%

First-generation measurement not competitive: (assuming ~10% systematic error on rate)

(normalize with a well-known rate? multiple targets?)

Consider Non-Standard Interactions (NSI) specific to neutrinos + quarks

Model-independent parameterization

Davidson et al., JHEP 0303:011 (2004) hep-ph/0302093 Barranco et al., JHEP 0512:021 (2005) hep-ph/0508299

$$\mathcal{L}_{\nu H}^{NSI} = -\frac{G_F}{\sqrt{2}} \sum_{\substack{q=u,d\\\alpha,\beta=e,\mu,\tau}} [\bar{\nu}_{\alpha} \gamma^{\mu} (1-\gamma^5) \nu_{\beta}] \times (\varepsilon_{\alpha\beta}^{qL} [\bar{q} \gamma_{\mu} (1-\gamma^5) q] + \varepsilon_{\alpha\beta}^{qR} [\bar{q} \gamma_{\mu} (1+\gamma^5) q])$$

$$NSI parameters$$

'Non-Universal': ε_{ee} , $\varepsilon_{\mu\mu}$, $\varepsilon_{\tau\tau}$ Flavor-changing: $\varepsilon_{\alpha\beta}$, where $\alpha \neq \beta$ \Rightarrow focus on poorly-constrained (~unity allowed) $\varepsilon_{ee}^{\ uV}$, $\varepsilon_{ee}^{\ dV}$, $\varepsilon_{\tau e}^{\ uV}$, $\varepsilon_{\tau e}^{\ dV}$

Cross-section for NC coherent scattering including NSI terms

For flavor α , spin zero nucleus:

$$\begin{split} \left(\frac{d\sigma}{dE}\right)_{\nu_{\alpha}A} &= \frac{G_{F}^{2}M}{\pi}F^{2}(2ME)\left[1-\frac{ME}{2k^{2}}\right] \times \\ \left\{\left[Z(g_{V}^{p}+2\varepsilon_{\alpha\alpha}^{uV}+\varepsilon_{\alpha\alpha}^{dV})+N(g_{V}^{n}+\varepsilon_{\alpha\alpha}^{uV}+2\varepsilon_{\alpha\alpha}^{dV})\right]^{2} \text{ non-universal} \right. \\ &+ \sum_{\substack{\alpha \neq \beta \\ q \neq \beta}} \left[Z(2\varepsilon_{\alpha\beta}^{uV}+\varepsilon_{\alpha\beta}^{dV})+N(\varepsilon_{\alpha\beta}^{uV}+2\varepsilon_{\alpha\beta}^{dV})\right]^{2}\right\} \text{ flavor-changing} \\ &\left.g_{V}^{p} &= \left(\frac{1}{2}-2\sin^{2}\theta_{W}\right), \quad g_{V}^{n} = -\frac{1}{2} \right] \text{ SM parameters} \\ &\left.\varepsilon_{\alpha\beta}^{qV} &= \varepsilon_{\alpha\beta}^{qL} + \varepsilon_{\alpha\beta}^{qR} \end{split}$$

- NSI affect total cross-section, not differential shape of recoil spectrum
- size of effect depends on N, Z (different for different elements)
- ε's can be negative and parameters can cancel

Experimental limits on non-universal couplings
with quarksDavidson et al., hep-ph/0302093

$$\begin{aligned} |\varepsilon^{uL}_{\tau\tau}| < 1.4, |\varepsilon^{uR}_{\tau\tau}| < 3 \\ |\varepsilon^{dL}_{\tau\tau}| < 1.1, |\varepsilon^{dR}_{\tau\tau}| < 6 \end{aligned}$$

$$\begin{aligned} \text{LEP} \end{aligned}$$

$$\begin{aligned} |\varepsilon^{dL}_{\mu\mu}| < 0.003, -0.008 < \varepsilon^{dR}_{\mu\mu} < 0.015 \\ |\varepsilon^{uL}_{\mu\mu}| < 0.003, -0.008 < \varepsilon^{uR}_{\mu\mu} < 0.003 \end{aligned}$$

$$\begin{aligned} -1 < \varepsilon^{uL}_{ee} < 0.3, -0.4 < \varepsilon^{uR}_{ee} < 0.7 \\ -0.3 < \varepsilon^{dL}_{ee} < 0.3, -0.6 < \varepsilon^{dR}_{ee} < 0.5 \end{aligned}$$

ε
μμwell-constrainedε
eeε
ττροοrly constrained

Experimental limits on flavor-changing couplings with quarks

 $|\varepsilon^{\mathrm{uL},\mathrm{R}}_{\tau\mathrm{u}}| < 0.05$ **NuTeV** $|\varepsilon^{\mathsf{dL},\mathsf{R}}_{\tau u}| < 0.05$ $|\varepsilon^{uL,R}_{ue}| < 7.7 \times 10^{-4}$ flavor conversion in nuclei $|\epsilon^{dL,R}| < 7.7 \times 10^{-4}$ $|\varepsilon^{\mathrm{uL},\mathrm{R}}| < 0.5$ CHARM $\left|\epsilon^{dL,R}\right| < 0.5$

ε
τepoorly constrainedε
μeε
τμψψε
τμ

Given

And, since at the SNS we have only μ and e neutrinos (assuming no oscillation), we have no access to $\epsilon_{\tau\tau}$

 $\Rightarrow focus on parameter space of$ $\epsilon_{ee}^{\ uV}, \ \epsilon_{ee}^{\ dV}, \ \epsilon_{\tau e}^{\ uV}, \ \epsilon_{\tau e}^{\ dV}$

Look at a few sample slices to estimate sensitivity employing electron flavor component of flux (delayed)

90% CL allowed region, assuming non-universal only for 100 kg-year at SNS, Neon

Note that for

 $Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) = \pm (Zg_V^p + Ng_V^n)$

the rate is the same as for the SM, so parameters will be allowed

 \Rightarrow get linear allowed regions, slope = -(A+N)/(A+Z)

Different targets have different slopes

In principle, can further constrain if you measure in more than one element

Can improve ~ order of magnitude beyond current limits with a first-generation experiment

$\epsilon_{e\tau}^{dV}$ vs ϵ_{ee}^{dV} parameter space slice $\varepsilon_{e\tau}^{uV} = 0$

Significant constraint wrt current allowed parameters

J. Barranco, O.G. Miranda, T.I. Rashba, Phys. Rev. D 76: 073008 (2007) hep-ph/0702175: Low energy neutrino experiments sensitivity to physics beyond the Standard Model

Specific NSI models: Z', leptoquark, SUSY with broken R-parity

Summary of physics reach

Basically, any deviation from SM x-scn is interesting...

- Standard Model weak mixing angle: could measure to ~5% (new channel)
- Non Standard Interactions (NSI) of neutrinos: could significantly improve constraints
- Neutrino magnetic moment:

hard, but conceivable

- Neutron form factor: also hard but conceivable

P. S. Amanik and G. C. McLaughlin, J. Phys. G 36:015105, 2009 hep-ph.0707.4191

Measurement looks promising... but...

The CLEAR (Coherent Low Energy A Recoils) Experiment

CLEAR Collaboration

Duke: Kate Scholberg Taritree Wongjirad Houston: Ed Hungerford Toni Empl NCCU: Ben Crowe Diane Markoff ORNL: Dan Bardayan Raph Hix Paul Mueller Tennessee: Yuri Efremenko TUNL: Alex Crowell Yale: Dan McKinsey James Nikkel

Detector site 46 meters from the SNS target

Shielding: 8 m diameter bolted steel water tank 66 cm steel (Duratek blocks, not shown) Water tank instrumented with PMTs for cosmic veto

Single phase scintillation (like CLEAN/DEAP DM detectors)

Pulse-shape discrimination for recoil selection in Ar/Ne

W. H. Lippincott et al., PRC 78:035801 (2008) arXiv:0801.1531 J. A. Nikkel et al., Astropart. Phys. 29:161 (2008), astro-ph/0612108

different n/e ionization density leads to different scintillation pulse shapes >10⁶ rejection (threshold-dependent)

Yale test cell

Another possibility: detector principle similar to that of xenon dark matter search TPCs

The key is to select nuclear-recoil-like signals from gammas and electrons (different ionization energy loss)

Backgrounds

Most backgrounds mitigated by pulsed beam rejection factor (10⁻⁴-10⁻³)

- Radioactivity

- cosmogenic ³⁹Ar intrinsic to argon
- radon
- other radioactivity in detector materials
- non-recoils suppressed by PSD
- depleted argon may be available
- Cosmic-ray related
 - muons, muon-induced neutrons
 - reduced by shielding
 - tagged by veto

Beam-related neutrons

Few-MeV neutrons make 10's of keV recoils

SNS neutronics group calculation of neutron spectrum + Fluka sim through shielding (T. Empl, Houston) + noble liquid detector sim (J. Nikkel, Yale)

worst is 'skyshine': can optimize shielding configuration

Bottom line signal and background

Signal events/year: ~500 in 240 kg of Ar >20 keVr ~160 in 200 kg of Ne >30 keVr

First version of CLEAR has initial goal of detection of the process

Nearer future: - larger detectors - multiple targets (cancel flux normalization systematics) reduction of systematics for ~ %-level Weinberg angle

- **Farther future:** directional detection? (technology in R&D phase)
 - polarization? (very hard...)
 - high intensity flux w/beta beams?

Conclusion

Coherent neutral current elastic neutrino nucleus scattering is observable using a high intensity stopped-pion neutrino source: recoil energies are few to tens of keV, which is observable with WIMP detectors

The CLEAR experiment aims to measure the rate and recoil spectrum with a noble liquid detector at the SNS

