

2047-38

Workshop Towards Neutrino Technologies

13 - 17 July 2009

Stellar tomography with high energy neutrinos

Md. Soebur RAZZAQUE National Research Council Research Associate U.S. Naval Research Laboratory Space Science Division, Code 7653 Washington, DC, U.S.A.

Stellar Tomography with High Energy Neutrinos

Soebur Razzaque

U.S. Naval Research Laboratory, Washington, D.C.

Workshop Towards Neutrino Technologies The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy. 13-17 July, 2009

Core Collapse Supernovae

... and some details

 \Box Fe core collapse of $>8M_{\odot}$ stars $\Box \sim 10^{54}$ erg of energy release in v's \Box Thermal ~10 MeV v's Detection from SN 1987A \Box Rate: 1 Snu = 10⁻² yr⁻¹ 10⁻¹⁰ blue L_{\odot} or 1/yr within 20 Mpc (4000 galaxies) □ Can provide information on stellar collapse and on v properties No detection since 1987 Look for high energy v signature to

probe stellar interior in the rarer

cousin of SNe →

Gamma Ray Bursts

Collapsar Model: Pioneered by Stan Woosley and collaborators

Illustration credits: NASA

Soebur Razzaque

Relativistic Jet in Gamma Ray Bursts

Simulation by Zhang & Woosley

GRB Fireball Shock Model

Rees, Meszaros, Piran and others ...

Explains non-thermal prompt MeV data and afterglow X-ray, UV,... data

Explanation of γ **-ray Lightcurve**

Simplest form ... Discrete outflow or "shells" with variable speeds or Γ

Baryons are Essential in GRB Jet

Non-thermal y ray Emission Mechanism

Soebur Razzaque

Stellar tomography with neutrinos

Evidence of Relativistic Jet

Extreme relativistic motion of the γ -ray emitting region to avoid $\gamma\gamma \rightarrow e^+e^$ production (opacity τ_{yy} <1) in-situ which will destroy non-thermal spectra

- → Constraint on the bulk Lorentz factor: $\Gamma > 887 + -21$ (time bin "b", $\Delta t \sim 2$ s) with observed variability time Δt from Fermi GBM or INTEGRAL
- → Size scale of prompt emission region is large

$$R \approx \frac{\Gamma^2 c \Delta t}{1 + z}$$

> 9 × 10¹⁵ $\left(\frac{\Gamma}{890}\right)^2 \left(\frac{\Delta t}{2s}\right) \left(\frac{5.35}{1 + z}\right) cm$

High bulk Lorentz factor can relax the actual energy emission by up to $1/\Gamma$ from the observed apparent isotropic 8.8×10^{54} erg

 $\Gamma > 1100$ (time bin "b", $\Delta t \sim 500$ ms)

Further Evidence of Jetted Emission

Afterglow lightcurves of Swift GRBs

Racusin et al., ApJ 2009

- □ GRB afterglow flux evolution $F \sim t^{-\alpha} v^{-\beta}$ initially with $\alpha, \beta \sim 1$
- As the jet slows down by external medium the bulk Lorentz factor decreases
 - → smooth light curve as long as $1/\Gamma < \theta_{jet}$ or the edge of the jet is not visible
 - for 1/Γ > θ_{jet} the slope of the lightcurve changes
 "Jet break"
- \Box Typically $\theta_{jet} \sim 5-7$ degrees

The most powerful explosion in the universe

Direct Evidence of SN-GRB Connection

Low redshift (<0.2) GRBs have been observed as precursors to SNe: GRBs 980425, 030329, etc.

Typical afterglow power-law spectrum

SN bump (SN 2003dh) due to radioactivity appears later when the envelope is optically thin to photons as it expands

Core Collapse SN and GRB Relation

- GRBs and core-collapse SNe are related, both from collapse of massive stars
- ♦ GRBs are rare (few % of SN) → more massive stars are fewer in numbers
- SN explosions are spherical with sub-relativistic shock velocity
- ♦ GRB jets are highly relativistic → Highly asymmetric explosion

Stellar Tomography with High Energy v's

Concentrate on GRBs and jetted SN with jets buried inside stars

- Shocks in relativistic jets
- Jet energy estimate from observations
- Proton acceleration and interactions, neutrino production

Discuss three models

- Supranova model → SN explosion before the GRB event
- ♦ Choked GRBs → Relativistic GRB jet while still inside star
- ♦ Hypernovae → A fraction of SN which may have mildly relativistic buried jet
 - ➔ Neutrino oscillation physics in play

Calculation of Energetics in GRB Shocks

Basic calculation approach (*a la Astrophysicists*)

□ Collision between two plasma "shells"

- → Relativistic forward & reverse shockwaves plough through the "shells"
- → Plasma instabilities, turbulent motion generate magnetic field
- → Charged particles (*test particle*) are accelerated in the induced electric field via a Fermi mechanism

Proton Acceleration and Cooling

Magnetic field
$$B' = \sqrt{8\pi u'_B} \approx 2 \times 10^6 R_{12}^{-1} \Gamma_{2.5}^{-1} L_{\gamma,52}^{-1/2} \sqrt{\varepsilon_B / \varepsilon_e} \text{ G}$$

 $R = 10^{12} R_{12} \text{ cm}; \ \Gamma = 10^{2.5} \Gamma_{2.5} L_{\gamma} = 10^{52} L_{\gamma,52} \text{ erg/s (isotropic)}$
 $L_{\gamma} = 10^{52} L_{\gamma,52} \text{ erg/s (isotropic)}$
 $E'_p = 10^9 E'_{p,9} \text{ GeV}; \ B' = 10^6 B'_6 \text{ G}$

Synchrotron cooling

$$t'_{acc} = \frac{3}{4} \left(\frac{m_p}{m_e}\right)^2 \frac{m_p^2 c^3}{\sigma_T u'_B E'_p} \approx \frac{0.0045}{B'_6 E'_{p,9}} \sec.$$

- Compton cooling \rightarrow may be important if $u'_B \ll u'_{\gamma}$
- Photopion production \rightarrow Dominant channel for high-energy neutrino production

$$p\gamma \to \Delta^+ \to n\pi^+/p\pi^0$$
 at resonance $E_p E_\gamma \simeq 0.3 \ GeV$

- Hadronic interactions $pp/pn \rightarrow \pi^{\pm}/K^{\pm}$
- Bethe-Heitler process

Neutrino production

$$\pi^+/K^+ \to \mu^+ \nu_\mu \to e^+ \nu_e \bar{\nu}_\mu \nu_\mu$$

Similar to atmospheric ν 's Seconaries may suffer further losses

Supranova GRB Model

Buried Relativistic GRB Jet

Relativistic GRB-like jet inside star → Successful or *choked* GRB
 → Choked GRBs may be related to orphan afterglows
 Shocks in the jet → particle acceleration → high-energy v production

v's precursor to GRB or Orphan Afterglow

High Energy GRB v Detection Prospects

Projected v events for IceCube		
Flux model	\mathbf{v}_{μ}	\mathbf{v}_{e}
Precursor I (He)	_	-
Precursor II (H)	4.1	1.1
Burst/prompt	3.2	0.3
Afterglow (ISM)	-	-
Afterglow (wind)	0.1	-
Supranova (>0.1 d)) 13	2.4

 $E_{\rm v}$ > TeV, no oscillation

Conclusion

- Distinguish between H and He envelope
- Rule out >0.1 day delay between SN and GRB

GRB 030329/SN 2003dh

Typical long duration GRB with bright SN $\sim 10^{51}$ ergs/s luminosity at redshift z = 0.17

Neutrino flux models: Dai & Lu 2000 (afterglow wind) Razzaque, Meszaros & Waxman, PRL 2003 (supranova) Razzaque, Meszaros & Waxman, PRD 2003 (precursor) Waxman & Bahcall 2000 (afterglow ISM) Waxman & Bahcall 1997 (burst/prompt)

Jetted Supernova: Hypernova

Razzaque, Meszaros & Waxman, PRL 2004

A dirty fireball model of SN explosion
→ A weak semi-relativistic jet (Γ~3) forms after core collapse
→ Jet chokes inside

Motivation

- High expansion velocity (30-40 x 1000 km/s) of SN remnant shell as seen in SN 1998bw
- Radio afterglow not associated with gamma-ray emission
- Asymmetric explosion inferred polarimetry observations of SN type Ib/c

High Energy v's from Jetted SNe

Oscillation Effects on Neutrino Fluxes

Mena, Mocioiu & Razzaque, PRD 2007

Density profiles of pre-SN stellar envelopes of a Blue Super Giant High energy ν 's are produced inside the He envelope and propagate through the He and H envelopes

$$N_e = 2.4 \times 10^{23} \text{ cm}^{-3} \text{ at } r = r_{\text{iet}} = 10^{10.8} \text{ cm}$$

Comprehensive study on MSW oscillation effects for thermal SN v's by *Dighe & Smirnov 2000*

Resonant densities

$$N_{e}^{L} = \frac{\Delta m_{\text{sol}}^{2} \cos 2\theta_{12}}{2\sqrt{2}G_{F}E} \simeq \frac{3 \times 10^{23}}{E[\text{GeV}]} \text{ cm}^{-3}$$
$$\sin^{2}2\theta_{13} = 0.15$$
$$N_{e}^{H} = \frac{|\Delta m_{\text{atm}}^{2}| \cos 2\theta_{13}}{2\sqrt{2}G_{F}E} \simeq \frac{9 \times 10^{24}}{E[\text{GeV}]} \text{ cm}^{-3}$$

 $\Rightarrow Expect MSW effect for ~TeV v's$

Numerical Calc. of Oscillation Probabilities

Flip probabilities due to atmospheric transition for $\sin^2 2\theta_{13} = 0.15$

Transitions are mostly non-adiabatic at ~TeV energy due to rapid change in density

- ➔ Analytic estimates are unreliable
- Numerically solve propagation equation

$$irac{d}{dr}|
u_lpha
angle=UH_mU^\dagger|
u_lpha
angle$$

With different matter potentials

$$V_{e,CC} = \sqrt{2}G_F N_e$$

Fluxes at Production and on Earth

Soebur Razzaque

Stellar tomography with neutrinos

Probing Oscillation Effects in v Telescopes

Calculate neutrino events in a km-scale water/ice Cherenkov detector \rightarrow Neutrino "telescopes" can not distinguish between v_{ρ} and v_{τ} at these energies

For a jetted SN

No matter effect

Profile B

 10^{5}

Only neutrinos carry information from inside stars High energy neutrinos can probe jetted SN/GRB models

- Observations of GRBs provide evidence of relativistic jet formation from massive stellar collapses, SN and GRBs are connected
- Supranova model can be constrained or ruled-out from neutrino telescope (such as IceCube) data
- Precursor neutrino from buried GRB jet can distinguish progenitor star model, better detection prospect than burst neutrinos
- Jetted SN or hypernova may constitute a new class of collapse
 - → Can only be probed with high-energy neutrinos
 - ➔ Probe MSW effect for TeV neutrinos for the first time!

Not sure if SN/GRB science will lead to ν technology though \ldots