

2047-3

Workshop Towards the Neutrino Technologies

13 - 17 July 2009

Progress on coherent neutrino detection using P-type point contact germanium detectors

Juan COLLAR COLMENERO

University of Chicago Department of Physics and Enrico Fermi Institute 5640 Ellis Ave., LASR 214 Chicago, IL 60637, USA

Coherent neutrino detection with P-type Point Contact Ge detectors

- <u>Uncontroversial</u> Standard Model process
- Large enhancement in cross-section for E_V < few tens of MeV (σ ∝ N², possible only for neutral current)
- However, not yet measured... detector technology has been missing.

Detector mass must be at least ~1 kg (reactor experiment) + <u>recoil</u> energy threshold << 1keV

(low-E recoils lose only 10-20% to ionization or scintillation)

 Cryogenic bolometers and other methods proposed, no successful implementation yet

Fundamental physics:

Largest o_V in SN dynamics: should be measured to validate models (J.R. Wilson, PRL 32 (74) 849)

• A large detector can measure total E and T of SN $v_{\mu}, v_{\tau} \Rightarrow$ determination of v oscillation pattern and mass of v star (J.F.Beacom, W.M.Far & P.Vogel, PRD 66(02)033011)

- Coherent σ same for all known ν... oscillations observed in a coherent detector
 ⇒ evidence for v_{sterile} (A.Drukier & L.Stodolsky, PRD 30 (84) 2295)
- Sensitive probe of weak nuclear charge
 test of radiative corrections due to new physics above weak scale (L.M.Krauss, PLB 269, 407)
- More sensitive to NSI and new neutral bosons than v factories. Also effective v charge ratio (J. Barranco et al., hep-ph/0508299,hep-ph-0512029
- σ critically depends on μ_V: observation of SM prediction would increase sensitivity to μ_V
 by > an order of magnitude (A.C.Dodd et al, PLB 266 (91) 434)

Smallish detectors... <u>"v technology"?</u>

 Monitoring of nuclear reactors against illicit operation or fuel diversion: present proposals using conventional 1-ton detectors reach only > ~3 GWt reactor power

- Uncontroversial Standard Model process
- Large enhancement in cross-section for E_V < few tens of MeV (σ ∝ N², possible only for neutral current)
- However, not yet measured... detector technology has been missing.

Detector mass must be at least ~1 kg (reactor experiment) + <u>recoil</u> energy threshold << 1keV

(low-E recoils lose only 10-20% to ionization or scintillation)

 Cryogenic bolometers and other methods proposed, no successful implementation yet

Fundamental physics:

Largest o_V in SN dynamics: should be measured to validate models (J.R. Wilson, PRL 32 (74) 849)

• A large detector can measure total E and T of SN $v_{\mu}, v_{\tau} \Rightarrow$ determination of v oscillation pattern and mass of v star (J.F.Beacom, W.M.Far & P.Vogel, PRD 66(02)033011)

- Coherent σ same for all known ν... oscillations observed in a coherent detector
 ⇒ evidence for v_{sterile} (A.Drukier & L.Stodolsky, PRD 30 (84) 2295)
- Sensitive probe of weak nuclear charge
 test of radiative corrections due to new physics above weak scale (L.M.Krauss, PLB 269, 407)
- More sensitive to NSI and new neutral bosons than v factories. Also effective v charge ratio (J. Barranco et al., hep-ph/0508299,hep-ph-0512029
- σ critically depends on $\mu_{\mathcal{V}}$: observation of SM prediction would increase sensitivity to $\mu_{\mathcal{V}}$ by > an order of magnitude (A.C.Dodd *et al*, PLB 266 (91) 434)

Smallish detectors... <u>"v technology"?</u>

 Monitoring of nuclear reactors against illicit operation or fuel diversion: present proposals using conventional 1-ton detectors reach only > ~3 GWt reactor power

- <u>Uncontroversial</u> Standard Model process
- Large enhancement in cross-section
 for E_V < few tens of MeV
 (σ ∝ N², possible only for neutral current)
- However, not yet measured... detector technology has been missing.

Detector mass must be at least ~1 kg (reactor experiment) + <u>recoil</u> energy threshold << 1keV

(low-E recoils lose only 10-20% to ionization or scintillation)

 Cryogenic bolometers and other methods proposed, no successful implementation yet

Fundamental physics:

Largest o_V in SN dynamics: should be measured to validate models (J.R. Wilson, PRL 32 (74) 849)

• A large detector can measure total E and T of SN $v_{\mu}, v_{\tau} \Rightarrow$ determination of v oscillation pattern and mass of v star (J.F.Beacom, W.M.Far & P.Vogel, PRD 66(02)033011)

- Coherent σ same for all known ν... oscillations observed in a coherent detector
 ⇒ evidence for v_{sterile} (A.Drukier & L.Stodolsky, PRD 30 (84) 2295)
- Sensitive probe of weak nuclear charge
 test of radiative corrections due to new physics above weak scale (L.M.Krauss, PLB 269, 407)
- More sensitive to NSI and new neutral bosons than v factories. Also effective v charge ratio (J. Barranco et al., hep-ph/0508299,hep-ph-0512029
- σ critically depends on μ_V: observation of SM prediction would increase sensitivity to μ_V
 by > an order of magnitude (A.C.Dodd et al, PLB 266 (91) 434)

Smallish detectors... <u>"v technology"</u>?

 Monitoring of nuclear reactors against illicit operation or fuel diversion: present proposals using conventional 1-ton detectors reach only > ~3 GWt reactor power

- <u>Uncontroversial</u> Standard Model process
- Large enhancement in cross-section for E_{γ} < few tens of MeV ($\sigma \propto N^2$, possible only for neutral current)
- However, not yet measured... detector technology has been missing.

Detector mass must be at least ~1 kg (reactor experiment) + <u>recoil</u> energy threshold << 1keV

(low-E recoils lose only 10-20% to ionization or scintillation)

 Cryogenic bolometers and other methods proposed, no successful implementation yet

2005: Geoneutrinos detected.

Dawn of the applied neutrino physics era?

Applied Anti-Neutrino Physics Workshops

Fundamental physics:

Largest over in SN dynamics: should be measured to validate models (J.R. Wilson, PRL 32 (74) 849)

• A large detector can measure total E and T of SN $\nu_{\mu}, \nu_{\tau} \Rightarrow$ determination of ν oscillation pattern and mass of ν star (J.F.Beacom, W.M.Far & P.Vogel, PRD 66(02)033011)

- Coherent σ same for all known ν... oscillations observed in a coherent detector
 ⇒ evidence for v_{sterile} (A.Drukier & L.Stodolsky, PRD 30 (84) 2295)
- Sensitive probe of weak nuclear charge
 test of radiative corrections due to new physics above weak scale (L.M.Krauss, PLB 269, 407)
- More sensitive to NSI and new neutral bosons than v factories. Also effective v charge ratio (J. Barranco et al., hep-ph/0508299,hep-ph-0512029
- σ critically depends on μ_V: observation of SM prediction would increase sensitivity to μ_V
 by > an order of magnitude (A.C.Dodd et al, PLB 266 (91) 434)

Smallish detectors... <u>"v technology"</u>?

 Monitoring of nuclear reactors against illicit operation or fuel diversion: present proposals using conventional 1-ton detectors reach only > ~3 GWt reactor power

- <u>Uncontroversial</u> Standard Model process
- Large enhancement in cross-section for E_V < few tens of MeV ($\sigma \propto N^2$, possible only for neutral current)
- However, not yet measured... detector technology has been missing.

Detector mass must be at least ~1 kg (reactor experiment) + <u>recoil</u> energy threshold << 1keV

(low-E recoils lose only 10-20% to ionization or scintillation)

Cryogenic bolometers and other methods proposed, no successful implementation yet

Fundamental physics:

Largest o_V in SN dynamics: should be measured to validate models (J.R. Wilson, PRL 32 (74) 849)

• A large detector can measure total E and T of SN $v_{\mu}, v_{\tau} \Rightarrow$ determination of v oscillation pattern and mass of v star (J.F.Beacom, W.M.Far & P.Vogel, PRD 66(02)033011)

- Coherent σ same for all known ν... oscillations observed in a coherent detector
 ⇒ evidence for v_{sterile} (A.Drukier & L.Stodolsky, PRD 30 (84) 2295)
- Sensitive probe of weak nuclear charge
 ⇒ test of radiative corrections due to new
 - physics above weak scale (L.M.Krauss, PLB 269, 407)
- More sensitive to NSI and new neutral bosons than v factories. Also effective v charge ratio (J. Barranco et al., hep-ph/0508299,hep-ph-0512029
- σ critically depends on μ_{V} : observation of SM prediction would increase sensitivity to μ_{V} by > an order of magnitude (A.C.Dodd *et al*, PLB 266 (91) 434)

Smallish detectors... <u>"v technology"?</u>

 Monitoring of nuclear reactors against illicit operation or fuel diversion: present proposals using conventional 1-ton detectors reach only > ~3 GWt reactor power

- <u>Uncontroversial</u> Standard Model process
- Large enhancement in cross-section for E_V < few tens of MeV (σ ∝ N², possible only for neutral current)
- However, not yet measured... detector technology has been missing.

Detector mass must be at least ~1 kg (reactor experiment) + <u>recoil</u> energy threshold << 1keV

(low-E recoils lose only 10-20% to ionization or scintillation)

 Cryogenic bolometers and other methods proposed, no successful implementation yet

Fundamental physics:

Largest over in SN dynamics: should be measured to validate models (J.R. Wilson, PRL 32 (74) 849)

• A large detector can measure total E and T of SN $v_{\mu}, v_{\tau} \Rightarrow$ determination of v oscillation pattern and mass of v star (J.F.Beacom, W.M.Far & P.Vogel, PRD 66(02)033011)

- Coherent σ same for all known ν... oscillations observed in a coherent detector
 ⇒ evidence for v_{sterile} (A.Drukier & L.Stodolsky, PRD 30 (84) 2295)
- Sensitive probe of weak nuclear charge
 test of radiative corrections due to new physics above weak scale (L.M.Krauss, PLB 269, 407)
- More sensitive to NSI and new neutral bosons than v factories. Also effective v charge ratio (J. Barranco et al., hep-ph/0508299,hep-ph-0512029
- σ critically depends on μ_{V} : observation of SM prediction would increase sensitivity to μ_{V} by > an order of magnitude (A.C.Dodd *et al*, PLB 266 (91) 434)

Smallish detectors... <u>"v technology"</u>?

 Monitoring of nuclear reactors against illicit operation or fuel diversion: present proposals using conventional 1-ton detectors reach only > ~3 GWt reactor power

One should always start with the foundations: sub-keV recoil calibrations at the KSU TRIGA reactor

Ti post-filter "switches off" the recoils, leaving all backgrounds unaffected

•Measurements of ionization from nuclear recoils in Ge is in excellent agreement with the Lindhard theory prediction.

Other nice features brought by the point contact:

What is happening?

MAJORANA PPCs

MAJORANA as a DM detector

Front End Electronics

<u>Pulse Reset</u>

<u>COGENT front ends</u> (U Chicago/ANL)

<u>UW "Hybrid" Design</u>

Resistive Feedback

Front End Electronics

SONGS-III deployment

SONGS deployment

BaDAss (Background Detector Assembly)

SONGS deployment

Backgrounds well-understood ~30 m.w.e. equivalent "Clean" (outside of containment)

Additional fast n and Rn channels to be added

The bottom line:

- Have met our background goals.
 Factor ~2 larger background than CDMS, at 30 m.w.e.
- Demonstrated long-term stability, absence of RX-associated backgrounds.
- Need 2-3 improvement in noise to see neutrinos. Almost there!

Reactor Monitoring: Right technological timing (HPGe technology flourishing: segmentation, encapsulation, arrays and (silent) mechanical cooling)

CLUSTER

MAJORANA

INTEGRAL

Reactor Monitoring: Right technological timing (HPGe technology flourishing: segmentation, encapsulation, arrays and (silent) mechanical cooling)

New generation of recondensing Dewars add almost no microphonic noise and need topping (not refilling) every ~ 1yr (can be filled from N2 gas cylinder!) Ideal for reactor deployment.

Day

Hexagonal tapering - diam.: 70 mm - height: 78 mm FWHM resolution : ≤ 2.3 keV Efficiency: ≥ 55% Alu wall thickness: 0.7 mm Cap-to-Ge distance: 0.7 mm.

The team:

ANL: Pat de Lurgio, Gary Drake, Richard Talaga CANBERRA: Jim Colaresi, Orren Tench, Mike Yocum LLNL: Adam Bernstein, Nathaniel Bowden, Steven Dazeley PNNL: Craig Aalseth, Jim Fast, Todd Hossbach, Jeremy Kephart, Harry Miley, John Orrell SNL: Belkis Cabrera-Palmer, Jim Lund, David Reyna, Lorraine Sadler UC: Phil Barbeau, Juan Collar, Nicole Fields, Charles Greenberg UW: Mike Marino, Hamish Robertson, Tim Van Wechel, John Wilkerson

(+ <u>much help</u> from other MAJORANA collaborators)

Funding:

NSF, DOE/NNSA, DIA, Laboratory LDRD's

