

2048-11

From Core to Crust: Towards an Integrated Vision of Earth's Interior

20 - 24 July 2009

Deformation and anisotropy in the mantle

A. Tommasi Universite Montpellier 2, France

Deformation and anisotropies (seismic, electrical, thermal, mechanical...) in the mantle

Andréa Tommasi Géosciences Montpellier

D.Mainprice, A.Vauchez, G. Barruol, M. Knoll, B. Gibert, C. Thoraval (Montpellier, F) R. Logé (MinesTech, F); J. Signorelli (IFIR, AR)...

How can we study the mantle deformation?

xenoliths : mm to cm scale

deformation mechanisms

peridotite massifs : m to 10s of km scale

- •deformation repartition, strain localization...
- interaction with other processes, (melting, fluids, T gradients...)

•"small" pieces extracted from the shallow mantle (<150 km)

✓ cannot be used to map mantle flow

Seismic anisotropy = a tool to probe the mantle deformation

Anisotropy = dependence of a physical property on the direction of sampling

 $\overline{v} = 8.16 \text{ km/sec}$

Seismic waves velocities vary as a function of:

- the propagation direction (P & S waves)
- the polarization direction

What is seismic anisotropy?

Anisotropy = dependence of a physical property on the direction of sampling

Seismic waves velocities vary as a function of:

- the propagation direction
- the polarization direction (S waves)

S waves polarization anisotropy - shear wave splitting

Olivine cristal (µm-cm)

Fontaine et al., GJI 2007

anisotropy results from

tion (100) [001] (100) [001] (100) [001] (100) [001] (100) [010] [001] (100) [010] [01] (100) [01] (100) [010] [01] (100) [01] (10) [01] (100) [01] (*layering of materials with very ≠ properties :*

- sediments
- strain-induced layering in metamorphic or magmatic rocks

✓ crust, deep mantle (?)

- aligned cracks, dykes or melt lenses
 ✓ upper crust
 - ✓ middle & lower crust
 - ✓ upper mantle (subduction, rift...)
 - ✓ transition zone, D" (?)

Crystal or Lattice Preferred Orientation (CPO or LPO) of anisotropic minerals :

- ✓ lower crust
- ✓ mantle
- ✓ inner core (?)

deformation plays an essential role in the development of anisotropy

How do we translate seismic anisotropy data into flow patterns?

Viscoplastic deformation & crystal preferred orientations

dislocation creep = dislocation glide + dynamic recrystallization

polycrystalline ice in-situ deformation: pure shear C. Wilson - Univ. Melbourne, Australia

total crystal strain = sum of shear strains in all available slip systems

Measuring Crystal Preferred Orientations (CPO) by indexation of Electron BackScatered Diffraction (EBSD) patterns

HT, low stress deformation: Iherzolite, Tahiti

γ [001]

HT-LP experimental deformation: simple shear

2

Zhang & Karato (1995) Nature

[001]

olivine database: 3 textural >200 samples end-members

✓ dominant [100] slip in the shallow (lithospheric) mantle

Simple key to qualitatively "read" seismic anisotropy observations in the SHALLOW MANTLE (>250 km):

in oceanic domains: South Pacific

Active transform fault: San Andreas

Subduction zones : relation between deformation and anisotropy in the upper mantle not so simple!

Lassak et al 2006 EPSL

Deformation and anisotropy in the upper mantle : XXI century observations & experimental results

fluids (water, melt) & pressure change the relation between deformation & anisotropy :

• change in olivine deformation $\rightarrow \neq CPO$

✓ fast anisotropy directions normal to the shear direction

+ Couvy et al. EMJ 2005, Mainprice et al. Nature 2005...

Water, olivine deformation & shear wave splitting in the mantle wedge

forearc : trench normal fast S-waves polarization

water contents & stress high enough for dominant activation of (010)[001]?

- water solubility in olivine depends strongly on pressure
- water reduces viscosity

delay times < 0.2s!

Fore-arc trench // fast S-waves polarization due to serpentinization along tensional faults in the slab

Compilation by M. Long & P. Silver + some additional data

Long & Silver Science 2008

Effect of pressure on olivine deformation

 S_1

bi-crystal P= 55 ton T = 1200 °C

At high pressure:

higher strain rate in c crystal ✓ [001](010) slip easier than [100](010)

very low activation volume✓ dislocation creep dominant

c (010)

Raterron et al. 2007

Simple shear deformation of olivine polycrystals

Couvy et al. EJM 2004

Ab-initio modeling of dislocation core properties: Ph. Carrez, P. Cordier, D. Ferré (Lille)

✓ olivine: [001](010) slip easier than [100](010) at high pressure

Modeling the deformation & crystal orientation evolution

strain = motion of dislocations on welldefined crystal planes & directions

VPSC: Molinari et al. 1987, Lebensohn & Tomé 1993 Drex: Kaminsky & Ribe 2001, 2003

rock (polycrystal) deformation:

behavior of the aggregate (rock) =
 average of crystals' behaviors

$$\dot{E}_{ij} = \langle \dot{\epsilon}_{ij} \rangle \qquad \Sigma_{ij} = \langle \sigma_{ij} \rangle$$

$$\dot{\boldsymbol{\varepsilon}}_{kl} - \dot{\boldsymbol{E}}_{kl} = -M_{ijkl} (\boldsymbol{\sigma}_{ij} - \boldsymbol{\Sigma}_{ij})$$

input parameters: slip systems' strength, initial texture, and macroscopic sollicitation (stress or velocity gradient tensor) output: evolution of crystallographic orientations and macroscopic response (strain rate or stress tensor)

within a grain (crystal):

Crystal plasticity modeling based on calculated Peierls stresses for olivine slip systems @ 10 GPa

Mainprice et al. Nature, 2005

Global P-wave anisotropy in the deep upper mantle

Global S-wave anisotropy in the deep upper mantle

Model prediction for horizontal flow: 1. $V_{SV} > V_{SH}$

2. Vs anisotropy $\leq 2\%$

Montagner & Kennett GJI, 1996

olivine deformation = f(P) change in dominant slip direction from [100] to [001]

- strong decrease in seismic anisotropy with depth
- fast P-wave propagation & fast S-wave polarisation directions in the deep upper mantle normal to shallow ones
- global 1D seismic anisotropy data : horizontal shearing accommodated by dislocation creep
- lack of anisotropy does not imply diffusion creep!

Anisotropy & deformation in the deep mantle

Other anisotropic properties ...

Electrical conductivity anisotropy inferred from long-period MT data: Another tool to map upper mantle deformation?

resistivity // spreading direction = 1/5 * resistivity // ridge Baba et al. JGR 2006

fast EC direction // fast SKS polarisation

high conductivity & anisotropy below 60km
✓ EC anisotropy = faster H+ diffusion
// olivine [100]

Other anisotropic properties ...

metallurgy: CPO-induced mechanical anisotropy = 1st order parameter

Earing of AI cans: mechanical anisotropy AI crystal & preferred orientation of crystals in the AI sheet

ductile deformation of a olivine crystal is anisotropic: *few slip systems with highly ≠ strenghts* T = <u>152</u>3 K (010)[100] fO₂ = Ni-NiO buffer (001)[100] 10-2 P = 300 MPa strain rate (s⁻¹) (010)[001] 10-4 10⁻⁶ [001] **[011]**c [110]c 10⁻⁸ ·[010] [110]c [101]c [100j **10⁻¹⁰** [011]c [101]c 100 10 1000 deviatoric stress (MPa)

Baietal. 1990-JGR

Strain weakening in torsion experiments \Leftrightarrow olivine CPO evolution ?

coupled 3D geodynamic & crystal plasticity models: evolution of olivine orientations and anisotropy

Modeling the deformation & crystal orientation evolution

VPSC: Molinari et al. 1987, Lebensohn & Tomé 1993

input parameters: slip systems' strength, initial texture, and *macroscopic sollicitation (stress or velocity gradient tensor) output:* evolution of crystallographic orientations and *macroscopic response (strain rate or stress tensor)*

Deformation of a homogeneous, BUT textured plate is strongly anisotropic

- strength & final deformation depend on the initial CPO
- finite strain ellipsoid axes are not parallel to stress ones
 - > shearing // to average orientation of main olivine slip systems

Multi-domain models:

Reactivation of a lithospheric-scale strike-slip zone due to mechanical anisotropy of the lithospheric mantle (frozen-in olivine crystal preferred orientations)

Continental breakup parallel to ancient collisional belts

Reactivation of a lithospheric-scale strike-slip zone due to mechanical anisotropy of the lithospheric mantle (frozen-in olivine crystal preferred orientations)

transtension in the inherited shear zone, but shearing decreases with increasing strain

normal extension outside

Model predictions : reactivation of preexisting faults in transtension in the initial stages of rifting followed by normal extension

Mechanical anisotropy of the lithospheric mantle

effective in transforming convection-induced poloidal motions (plate convergence or divergence) into toroidal (strike-slip) flow => no need to invoke "exotic" rheologies

Anisotropic thermal diffusivity in the upper mantle

fastest heat conduction // [100] // to flow direction
slowest heat conduction // [010] normal to flow plane
channelling of heat along preexisting faults

mantle deformation & anisotropy

in the lithospheric mantle and asthenosphere (< 200 km):

- ✓ deformation by dislocation creep with dominant [100] slip
 - strong seismic, electrical, thermal & mechanical anisotropy
 - fast seismic directions map flow

sensciences

• delay times = path length + orientation flow plane/direction relative to propagation, not finite strain

>200 km : due to $P + H_20$ (?) in olivine: [001] slip

- seismic anisotropy decreases, fast directions normal to flow direction
- explain trench-// SKS splitting at subduction zones?

deeper in the mantle : deformation mechanisms of main minerals?

olivine CPO-induced mechanical anisotropy in the upper mantle = 1st order parameter in plate tectonics

- initiates strain localization (reactivation of preexisting lithospheric faults)
- transforms convection-related poloidal flow (divergence or convergence) into toroidal (strike-slip) motions
 - thermal conductivity anisotropy should enhance this effect